1 Problems and Comments For Section 2

Problems: 2.1, 2.5, 2.7, 2.8

Problem 2.13 requires some thought. It is optional.

A product term is defined recursively as follows:

1. \(p = a \) is a product where \(a \) is any element of the group \(G \).
2. If \(p_1 \) and \(p_2 \) are products, then \(p = (p_1 \cdot p_2) \) is a product.
3. All products are obtained that way.

For any two elements \(a, b \) one has that \(p = (a \cdot b) \) is a product. For three elements \(a, b, c \) there are two possibilities to form a product of these elements without changing the order: \((a \cdot (b \cdot c))\) and \(((a \cdot b) \cdot c)\). By associativity, both products have the same value.

The complexity of a product is the number of dots in it. \(p = a \) has complexity 0. If \(p \) has complexity \(n \) and \(q \) complexity \(m \) then \((p \cdot q) \) has complexity \(n + m + 1 \). A product is a string of parenthesis (left and right), elements of \(G \) and dots. However such strings have to be constructed according to the rules 1. and 2. They have to be well-formed.

If, read from left to right, the elements in a product are \(a_1, a_2, \ldots, a_n \) then the product \(p = p(a_1, a_2, \ldots, a_n) \) has complexity \(n - 1 \). Given a list \(a_1, a_2, \ldots, a_n \) of elements, the normal product \(n(a_1, a_2, \ldots, a_n) \) of these elements is defined recursively by

1. \(n(a_n) = a_n \)
2. \(n(a_1, a_2, \ldots, a_n) = (a_1 \cdot n(a_2, \ldots, a_n)) \)

The claim of 2.13 now is

\[p(a_1, \ldots, a_n) = n(a_1, \ldots, a_n) \]

for any product \(p(a_1, \ldots, a_n) \). Prove this by induction over the complexity of the product. 2.12 is a preparation for the general proof. Notice that for 2.12 and 2.13, only associativity is used.

Question: Why did I say “dots”, and not products, in the definition of complexity?

Comments

A group is most often defined as an algebraic system with three operations: \(\cdot,^{-1}, e \). Here \(\cdot \) is binary, \(-1 \) is unary and \(e \) is nullary. The axioms for a group then are all equations:

1. \(a \cdot (b \cdot c) = (a \cdot b) \cdot c \)
2. \(a \cdot e = e \cdot a = a \)
3. \(a \cdot a^{-1} = a^{-1} \cdot a = e \)
An algebraic system $\struct A = (A, \cdot)$ with only one binary associative operation is called a \textit{semi group}. A semi group with an identity (or unit) is called a \textit{monoid}. Thus a group is a monoid where every element has an inverse. Notice that under this definition, a group cannot be empty. It must at least have one element, the identity.

With this convention, the notation for the additive group of integers is $\struct Z = (\mathbb Z, +, -, 0)$. Here addition is the binary group operation. The multiplicative group of non-zero real numbers is $\struct R^* = (\mathbb R \setminus \{0\}, \cdot, -1, 1)$.

For any set S, $\Map(S) = \{ f | f : S \to S \}$ is the set of maps from S to S. It is a semigroup. Here the operation is composition of maps. The identity map $\id : S \to S, x \mapsto x$ is the identity.

$$\Map(S) = (\{ f | f : S \to S \}, \circ, \id)$$

is the prototype of a monoid. It is not a group unless S has only one element.