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Abstract
A discontinuous Galerkin method of first order is proposed to solve the three-phase flow problem in three-
dimensional heterogeneous reservoirs. The formulation is based on the compositional model and the primary
unknowns are the total mass fraction of gas, the aqueous phase saturation and the liquid phase pressure. The
algorithm is sequential and controls the nonlinearity with a subiteration scheme. Robustness of the method
is shown on reservoirs with different heterogeneities: random permeability field, reservoir with barriers
and layered reservoir. The algorithm easily handles phase appearance and disappearance, as well as mass
transfer between the vapor and liquid phase.

Introduction
The study of three-phase flow in porous media is important as it is a popular model in petroleum engineering
and in upstream industry. This work formulates a numerical model for three-component (oil, gas, water) and
three-phase (liquid, vapor, aqueous) flow. Typically, the conventional black-oil model is used for modeling
three-component three-phase flows where the hydrocarbons are gouped in pseudo-components. Black-oil
models are common and are computationally cheaper than compositional models. However, conventional
black-oil models do not easily handle phase appearance and disappearance (Forsyth 1984). A compositional-
based formulation of the black-oil problem has been proposed to remediate this difficulty (Shank & Vestal
1989). Following this formulation, the choice of primary unknowns is the liquid phase pressure, the aqueous
phase saturation, and the total mass fraction of gas. Our model assumes that mass transfer occurs between
the liquid and vapor phase. Because the formulation is based on the compositional model, either flash or
differential physical data can be used. The novelty of this work is the discretization of the equations based
on locally mass conservative discontinuous Galerkin methods. The liquid phase pressure equation is solved
by the incomplete interior penalty discontinuous Galerkin method, the aqueous phase saturation equation
and the total mass fraction of gas equation are solved by the non-symmetric interior penalty discontinuous
Galerkin method. The nonlinear system of equations is solved sequentially and a subiteration scheme is
employed for higher accuracy. The general algorithm is described in the work by Cappanera and Riviere
(2018), where it was applied to homogeneous reservoirs. The contribution of this work is to show the
robustness of the numerical method for highly heterogeneous reservoirs.
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Discontinuous Galerkin (DG) methods have gained popularity in modeling two-phase flows in porous
media for over ten years, either by themselves or combined with other methods (see for instance Klieber &
Riviere 2006, Hoteit & Firoozabadi 2008, Natvig & Lie 2008, Ern & Mozolevski & Schuh 2010, Arbogast,
Juntunen, Pool & Wheeler 2013, Bastian 2014). These methods are locally mass conservative like the
popular finite volume methods. DG methods achieve higher accuracy and exhibit much less numerical
diffusion. The application of DG methods to three-phase flows without or with mass transfer has been rare.
Two-component two-phase flow with mass transfer, using liquid pressure and dissolved hydrogen density
as primary unknowns, was approximated by a DG method of first order in one-dimensional reservoirs in
the work of Ern & Mozolevski (2012). A DG method up to fourth order was proposed for the conventional
black-oil model for saturated and undersaturated one-dimensional reservoirs in the work of Rankin &
Riviere (2015). An iterative implicit pressure-explicit saturation method based on the local discontinuous
Galerkin method was applied to the conventional black-oil model by Wang, Zhang & Chen (2015). In this
work, we apply a sequential DG method of first order to three-dimensional heterogeneous reservoirs. The
phase velocities are locally projected onto discrete subspaces of H(div), namely the Raviart-Thomas spaces
(Raviart & Thomas 1977, Ern, Nicaise & Vohralik 2007). For the numerical fluxes of the elliptic operators,
we use the weighted averages proposed in Ern, Stephansen & Zunino (2008) and the weighted penalty
values of Bastian (2014).

The outline of the paper is as follows. We first present the formulation of the problem and its
discretization. The numerical results include several simulations in three-dimensional reservoirs with
various types of heterogeneities. Conclusions follow.

Numerical Model
We first introduce the differential equations satisfied by the primary unknowns, and then describe the
sequential algorithm.

Problem equations
We select for primary unknowns the liquid phase pressure, pl, the aqueous phase saturation, Sa, and the total
fraction of gas in the reservoir, zg, defined by

For each phase α, the phase saturation is denoted by Sα, the phase density by ρα and the mass fraction of
the gas component in the liquid phase and in the vapor phase are denoted by xg,l and xg,v respectively.

The primary unknowns satisfy the system of coupled nonlinear partial differential equations:

(1)

(2)

(3)

where we have used the following shorthand notation

The phase mobilities are denoted by λα and the fractional flow is defined as
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Equations (1), (2) and (3) are completed by boundary conditions and initial conditions. In the rest of
the paper, K denotes the absolute permeability. We end this section by recalling the definition of capillary
pressures:

Full discretization
Equations (1), (2) and (3) are discretized in space by the interior penalty discontinuous Galerkin method
(Riviere 2008). The reservoir is partitioned into hexaedra and each unknown is approximated by a
discontinuous piecewise linear polynomial. The algorithm solves for each primary unknown sequentially
at each time step, with a subiteration scheme loop. The incomplete interior penalty discontinuous Galerkin
is used to solve the pressure equation whereas the non-symmetric interior penalty discontinuous Galerkin
method is used for the saturation and mass fraction equations. Let τ denote the time step. The iterations are
initialized with the unknowns at the previous time step. Let  denote the solutions at the previous
time step and let  denote the k-th iterate.

Step 0: initialization

Step 1: pressure equation: solve for Pk+1 satisfying

Using the iterate Pk+1, update the mass fractions  and the phase densities 
and compute the projected velocity, denoted by , of the quantity -K∇Pk+1, and the projected velocity,
denoted by , of the quantity , into the Raviart-Thomas space of
first order.

Step 2: saturation equation: solve for Sk+1 satisfying

Using the iterate Sk+1, we update the relative permeability of the aqueous phase, .
Step 3: mass fraction equation: solve for Zk+1 satisfying

where the variables A, B, E are defined below:
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Next, update the relative permeabilities and saturations of the liquid and vapor phases.
Step 4: set k ← k + 1 and repeat steps 1 to 3 until convergence of the iterates.

Numerical Results
The proposed method is applied to reservoirs with various permeability fields. The first three examples study
the impact of random permeability fields, of layered permeability fields and of barriers in the reservoirs on
three-phase flows without mass transfer between the phases. The fourth example allows for mass transfer to
occur between the liquid and vapor phase as the pressure varies in the reservoir. All the units are SI, unless
explicitely stated. The computations were performed with the fully parallel framework Dune developed by
Bastian et al (2008a, 2008b).

Random permeability
We consider a three-dimensional domain with dimensions [0,1000] × [0,100] × [0,100]. The reservoir is
initially filled with a mixture of liquid and vapor phases by setting

The initial pressure is defined as follows:

Dirichlet boundary conditions that match the liquid pressure initial condition are applied on the faces (x
= 0) and (x = 1000). The following boundary conditions are enforced on the aqueous and vapor saturations:

Homogeneous Neumann conditions are applied on the remaining boundaries. The physical properties of
the fluid and medium are:

Capillary pressures and relative permeabilities are chosen as:

The constant Apc is specified later and will take different values. In this section, there is no mass transfer
and we set:
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The absolute permeability of the reservoir is equal to (3.12 × 10-15)Krand, where Krand is a piecewise
constant function that takes random values in the interval [100,2100]. Figure 1 displays the permeability
field in a three-dimensional view and in the slice (y = 50).

Figure 1—Three-dimensional view (left) and slice view (right) of the random
multiplicative factor. Permeability field is obtained by multiplying by 3.12 × 10-15.

Snapshots of the liquid saturation are shown in Figure 2 at two different times. The entry pressure is
Apc = 107.

Figure 2—Liquid phase saturation at t=4.63 days (left) and t=23.15 days (right) with high capillary pressure.

We repeat the experiment with a lower amount of capillary pressure by setting Apc = 105. Figure 3 shows
the liquid phase saturation at two distinct times. We observe that fingers appear as the saturation front is
less diffusive than in the high capillary case.

Figure 3—Liquid phase saturation at t=4.63 days (left) and t=23.15 days (right), with low capillary pressure.

Finally we show in Figure 4 the time evolution of the saturation of each phase at the location (200,50,50)
in the reservoir for both high and low values of Apc. We observe that for both cases, the saturation of
aqueous and vapor phases increase while the liquid phase saturation decreases and eventually the liquid
phase disappears. When capillary pressure is reduced, the aqueous phase saturation front reaches the location
later.
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Figure 4—Time evolution of the saturation phases at the point (200,50,50): with Apc = 107 (left) and Apc = 105 (right).

Layered medium
In this experiment, we inject both vapor and aqueous phases in the reservoir. We study the effect of
viscosities by first considering the case of equal viscosities and second the case where the vapor viscosity
is ten times smaller than the aqueous viscosity. The setup is similar than in the previous example, except
for the following data. Initially the reservoir is filled with both liquid and vapor phases:

Both vapor and aqueous phases are injected at the inflow face of the reservoir, via Dirichlet boundary
conditions:

The absolute permeability increases with the vertical direction:

where Krand,1, Krand,2, Krand,3 are random functions such that Krand,1 ∈ [100,2100], Krand,2 ∈ [10,210] and Krand,3

∈ [1,21]. This means that the top layer in the reservoir is more permeable on average than the middle and
bottom layers. Figure 5 displays the permeability field in a three-dimensional view and in the slice (y=50).

Figure 5—Three-dimensional view (left) and slice view (right) of the random
functions. Permeability field is obtained by multiplying by 3.12 × 10-15.

First we assume that μv = 10-3. Figure 6 shows the snapshots for each phase saturation at two distinct
times. The phases first move through the regions with larger average permeability.
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Figure 6—Phase saturations at two distinct times in the stratified reservoir at early and late timesr.

We now repeat the experiments with

Figure 7 shows the phase distributions at different times. This set-up is more favorable to the flow of the
vapor phase as it competes with the aqueous phase.
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Figure 7—Phase saturations in the stratified reservoir at early and late times.

To better visualize the effect of the heterogeneities and the viscosities on the phase distributions, we show
in Figure 8 the time evolution of the phases at two different points in the reservoir. One location is chosen
in the middle layer, and the other location is in the top layer.
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Figure 8—Time evolution of phase saturations in middle layer (left) and top layer (right) for different vapor viscosities.

Reservoir with barriers
In this experiment, the porous medium has the same dimensions as for the layered medium, and is
characterized by a heterogeneous permeability field and several barriers in a section of the reservoir. The
absolute permeability of the reservoir is equal to (3.12 × 10-15)Krand, where Krand is a piecewise constant
function that takes random values in the interval [100,2100]. Barriers are created in the section [200,400] ×
[0,100] × [0,100] by reducing the range of Krand to the interval [1,21]. Figure 9 shows a 3D representation
of the permeability and a 2D view corresponding to the slice (x = 300).

Figure 9—Distribution of the random permeability Krand: 3D view (left) and 2D view
for slice (x = 300) (right). The absolute permeability is multiplied by 3.12 × 10-15.
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Except for the permeability, the input data and setup are similar to those for the layered reservoir with
vapor viscosity equal to 10-4. The vapor saturation is shown in Figure 10 using the threshold Sv ≥ 0.25, for
better visualization of the front. The entry pressure is chosen as Apc = 107. We observe that the barriers have
little impact on the saturation propagation. We repeat the simulations with lower values Apc = 106 and Apc

= 105. The threshold vapor phase saturation is shown at two distinct times in Figure 11 and Figure 12. We
observe that fingers occur as the vapor phase does not easily flow in the barriers and even avoids them
altogether for the smaller value of capillary pressure.

Figure 10—Threshold of the vapor phase saturation at time t = 2.31 days (left) and t
= 3.7 days (right). Minimum value is 0.25 and maximum value is 0.9. Case: Apc = 107.

Figure 11—Threshold of the vapor phase saturation at time t = 2.31 days (left) and t
= 3.7 days (right). Minimum value is 0.25 and maximum value is 0.9. Case: Apc = 106.

Figure 12—Threshold of the vapor phase saturation at time t = 2.31 days (left) and t
= 3.7 days (right). Minimum value is 0.25 and maximum value is 0.9. Case: Apc = 105.

We next show the aqueous phase saturation at different times. Becasuse of smaller viscosity and smaller
relative permeability, the aqueous phase saturation propagates slower than the vapor phase. The threshold
values are shown for larger times (about ten times larger). Figure 13 shows the aqueous saturation with a
threshold 0.01 ≤ Sa ≤ 0.1 for the value Apc = 107. Figure 14 and Figure 15 show the aqueous saturation at the
same times with smaller values Apc = 106 and Apc = 105. We observe that fingers occur when Apc decreases
and the front moves more slowly.

Figure 13—Threshold of the aqueous phase saturation at time t = 23 days (left) and
t = 37 days (right). Minimum value is 0.01 and maximum value is 0.1. Case: Apc = 107.
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Figure 14—Threshold of the aqueous phase saturation at time t = 23 days (left) and
t = 37 days (right). Minimum value is 0.01 and maximum value is 0.1. Case: Apc = 106.

Figure 15—Threshold of the aqueous phase saturation at time t = 23 days (left) and
t = 37 days (right). Minimum value is 0.01 and maximum value is 0.1. Case: Apc = 105.

Mass transfer
The following example is a three-phase flow simulation with mass transfer between the vapor and liquid
phase for a heterogeneous medium. The gas component is in liquid phase for high pressure and as the
pressure decreases, moves to the vapor phase. The water and oil components remain entirely in the aqueous
and liquid phase respectively. Figure 16 shows the mass fraction xg,l and the density of the liquid phase ρl,
as a function of liquid phase pressure. The gas component is in the vapor phase if the pressure is below 2
× 108 and forms 10% of the mass of liquid if the pressure is above 3 × 108.

Figure 16—Mass fraction of gas in liquid phase (left) and liquid phase density (right) as functions of liquid phase pressure.

The reservoir is the domain [0,1000] × [0,100] × [0,100]. It is initially filled with liquid phase only with
a composition of about 90% of oil and 10% of gas. The other characteristics are

Relative permeabilities and capillary pressures are the same as in the previous experiments with Apc =
107. Initial pressure and boundary conditions are defined below:
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From the boundary condition on the pressure, we see that the magnitude of the pressure decreases with
time such that the injected gas is in vapor phase after a few days. We recall that the liquid phase saturation is
not a primary unknown and the definition of the total mass fraction of gas is used with the above conditions
to obtain a Dirichlet boundary condition for zg. Homogeneous Neumann boundary conditions are applied
to pl, Sa and zg elsewhere. Finally the permeability of the medium is K = (6.24 × 10-13)Krand, where Krand is
a piecewise constant function that takes random values in. Figure 17 displays the permeability field in a
three-dimensional view and in a slice.

Figure 17—Random permeability field: 3D view (left) and 2D view in
slice y = 50 (right). Absolute permeability is multiplied by 6.24 × 10-13.

We show in Figure 18 the mass fraction xg,l along the line obtained by the intersection of the two planes
(y = 50) and (z = 50), and at two different times. As time increases, the fraction of gas in the liquid phase
tends to zero.

Figure 18—Profile of the mass fraction of gas in the liquid phase at t=3.17 days (left) and t=4.86 days (right).

The next figure shows the profile of each phase pressure along the same line (see Figure 19). The liquid
pressure is shown in blue, the vapor pressure in green and the aqueous pressure in red. We observe that the
liquid pressure is below 2 × 108 around x = 800 at t = 3.17 days and around x = 300 at t = 4.86 days, which
are consistent results with the profile of the mass fraction of gas in the liquid phase in Figure 18.
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Figure 19—Profile of the liquid, aqueous and vapor phase pressure at t=3.17 days (left) and t=4.86 days (right).

The evolution of the phase saturations is shown at two different locations in the reservoir (see Figure 20).
As time increases, the liquid phase saturation disappears.

Figure 20—Time evolution of phase saturations at the location (100,50,50) (left) and at (200,50,50) (right).

Conclusions
This paper applies an algorithm to solve the three-phase flow without and with mass transfer in highly
heterogeneous reservoirs. The primary unknowns are the liquid phase pressure, the aqueous phase saturation
and the total mass fraction of gas. They are approximated by discontinuous polynomials of degree one. The
algorithm solves for each unknown sequentially with a subiteration scheme to handle the nonlinearity. The
pressure equation is solved with the incomplete interior penalty Galerkin whereas the saturation and mass
fraction equations are solved with the non-symmetric interior penalty Galerkin method. No slope limiters
are used. The paper shows the method is robust and can handle various types of heterogeneities in the
permeability field, as well as phase appearance and disappearance and mass transfer between phases. Future
work includes additional validation of the method and its extension to higher order.

Nomenclature
Notation Physical quantity

ϕ Porosity
Sα Phase saturation
zg Total fraction of gas
pα Phase pressure

pc,α Capillary pressure
xi,β Mass fraction of component i in phase α.

ρα Phase density
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λα Phase mobility
μα Phase viscosity
kra Phase relative permeability
K Absolute permeability

Bibliography
Arbogast, T. & Juntunen, M. & Pool, J. & Wheeler, M.F. (2013). A discontinuous Galerkin method for two-phase flow

in a porous medium enforcing H(div) velocity and continuous capillary pressure. Computational Geosciences, 17(6),
1055–1078

Bastian, P. & Blatt, M. & Dedner, A. & Engwer, C. & Klofkorn, R. & Kornhuber, R. & Ohlberger, M. & Sander, O.
(2008a). A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework. Computing,
82, 121–138.

Bastian, P. & Blatt, M. & Dedner, A. & Engwer, C. & Klofkorn, R. & Kornhuber, R. & Ohlberger, M. & Sander, O.
(2008b). A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in
Dune. Computing, 82, 121–138.

Bastian, P. (2014). A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous
capillary pressure. Computational Geosciences, 18(5), 779–796

Cappanera, L. & Riviere, B. (2018). Discontinuous Galerkin method for solving the black-oil problem in porous media.
Numerical Methods for Partial Differential Equations. In press

Ern, A. & Mozolevski, I., & Schuh, L. (2010). Discontinuous Galerkin approximation of two-phase flows in heterogeneous
porous media with discontinuous capillary pressures. Computer Methods in Applied Mechanics and Engineering, 199,
1491–1501

Ern, A. & Mozolevski, I. (2012). Discontinuous Galerkin method for two-component liquid-gas porous media flows.
Computational Geosciences, 16, 677–690

Ern, A. & Nicaise, S. & Vohralik, M. (2007). An accurate H(div) flux reconstruction for discontinuous Galerkin
approximations of elliptic problems. Comptes Rendus Mathematique, 345(12), 709–712

Ern, A. & Stephansen, A.F. & Zunino, P. (2008). A discontinuous Galerkin method with weighted averages for advection-
diffusion equations with locally small and anisotropic diffusivity. IMA Journal of Numerical Analysis, 29(2), 235–256

Forsyth, P. (1984). Gas phase appearance and disappearance in fully implicit black oil simulation. SPE Journal,
SPE-11757-PA.

Hoteit, H. & Firoozabadi, A. (2008). Numerical modeling of two-phase flow in heterogeneous permeable media with
different capillarity pressures. Advances in Water Resources, 31(1) 56–73

Klieber, W., & Riviere, B. (2006). Adaptive simulations of two-phase flow by discontinuous Galerkin methods. Computer
Methods in Applied Mechanics and Engineering, 196, 404–419

Natvig, J. & Lie, K. (2008). Fast computational of multiphase flow in porous media by implicit discontinuous Galerkin
schemes with optimal ordering of elements. Journal of Computational Physic,. 227, 10108–10124

Rankin, R. & Riviere, B. (2015). A high order method for solving the black-oil problem in porous media. Advances in
Water Resource,. 78, 126–144

Raviart, P. & Thomas, J. (1977). A mixed finite element method for second order elliptic problems. Mathematical Aspects
of the Finite Element Method, Lecture Notes in Mathematics, 606, 292–315

Riviere, B. (2008). Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics.

Shank, G., & Vestal, C. (1989). Practical techniques in two-pseudocomponent black-oil simulation. SPE Reservoir
Engineering, 4(2), 244–252

Wang, K. & Zhang, L. & Chen, Z. (2015). Development of discontinuous Galerkin methods and a parallel simulator for
reservoir simulation. SPE, SPE-176168-MS


	Flexible Discretizations of the Three-Component Three-Phase Flow Problem
	Introduction
	Numerical Model
	Problem equations
	Full discretization

	Numerical Results
	Random permeability
	Layered medium
	Reservoir with barriers
	Mass transfer

	Conclusions

	Bibliography

