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We introduce a new algorithm for solving the three-component

three-phase flow problem in two-dimensional and

three-dimensional heterogeneous media. The oil and gas

components can be found in the liquid and vapor phases,

whereas the aqueous phase is only composed of water com-

ponent. The numerical scheme employs a sequential implicit

formulation discretized with discontinuous finite elements.

Capillarity and gravity effects are included. The method is

shown to be accurate and robust for several test problems. It

has been carefully designed so that calculation of appearance

and disappearance of phases does not require additional steps.
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1 INTRODUCTION

The three-phase three-component problem, also referred to as the black-oil problem in petroleum engi-

neering, is a nonlinear system of coupled partial differential equations and algebraic equations. The

formulation of the problem consists of the mass balance equations for each of the components and of

closure relationships between the physical unknowns such as phase pressure, saturations and mass

fractions. The resulting compositional model is in general used for a large number of components. In

the black oil model, there are three components (water, oil, gas) and three phases (aqueous, liquid,

vapor). We assume that the aqueous phase is comprised of the water component only and that mass

transfer occurs between the liquid and vapor phase: the gas component can be dissolved in the liq-

uid phase and the oil component can evaporate. One of the numerical challenges of multicomponent
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multiphase flows is to efficiently treat the phase appearance and disappearance as components move

from one phase to another one. The literature on black-oil model is vast and dates back from several

decades. We refer the reader to classical books [1–3] and to the papers [4–11] for several approaches to

solve the resulting nonlinear coupled system of equations. Once a set of primary unknowns is selected

(among quantities such as phase pressure, global pressure, phase saturation, mass fraction, molar den-

sities), the main approaches are the fully implicit approach that requires a Newton-based scheme [6],

the IMPES approach in which the pressure is solved implicitely and saturation explicitely [4, 8]

and the sequential approach that solves each equation implicitely and separately from the other ones

[5, 9, 10]. The large number of proposed numerical algorithms in the literature is due to many tech-

nical differences in the details of each approach. It is also worth noting that not all papers address the

full complexity of the multiphase flows and the effects of capillary pressure and gravity are some-

times neglected. Overall, when comparing cost versus accuracy and stability, it is well-accepted that

the sequential approach is the most efficient method for large scale computations.

This paper’s main contribution is to formulate a discontinuous Galerkin (DG) method for solving

the three-phase three-component problem in two-dimensional and three-dimensional porous media.

We start with the compositional model and introduce a new variable, the total mass fraction of gas,

following [12]. The primary unknowns are the liquid pressure, the aqueous saturation and the total

mass fraction of gas. We show that the proposed sequential implicit algorithm converges optimally

for smooth solutions and that it is robust when phases disappear or appear. The main features of the

numerical method are: (a) the use of weighted averages (see [13]); (b) the use of a subiterative scheme

for higher accurary; (c) the use of upwind fluxes; and (d) the projection of the total velocity into H(div)

conforming spaces (see [14, 15] for the benefits of this projection for highly heterogeneous media).

We note that slope limiters are not used in our proposed algorithm as they are not needed for stability.

The choice of primary variables and the formulation of the model problem produce an algorithm that

easily handles the appearance and disappearance of phases without additional effort.

DG methods have been applied successfully for simulating incompressible two-phase flows with-

out mass transfer over the last decade. The use of discontinuous elements allows for a flexible method

that can handle unstructured grids, full matrix coefficients and that produces numerical solutions with

artificial diffusion that is significantly less than in the case of cell-centered finite volume methods.

There is an abundant literature on the topic where DG are used with other methods such as mixed

finite element methods or where they are used stand-alone [16–22]. The DG literature for composi-

tional flows (with mass transfer) is very sparse. For one-dimensional problems, we can mention the

works [23, 24] where DG methods are used to solve the two-component two-phase flow problem of

CO2 sequestration problem using either linear relationship between pressure and density or nonlin-

ear relationships. In [25], the black-oil problem in one-dimensional problems has been numerically

discretized by high order DG methods (with polynomials of degree up to four), where mass transfer

between the liquid and vapor phases is modeled by the gas–oil ratio.

Developing flexible numerical methods for solving multi-component multi-phase flows with mass

transfer is an active and rich area of research. In addition to DG methods, mixed hybrid finite element

(MHFE) methods and multi-point flux approximation (MPFA) discretizations are locally mass conser-

vative numerical methods that can handle complex grids and full matrix coefficients [26, 27]. In [28],

MHFE methods for pressure and DG for explicit mass transport update are used for compositional

three-phase flows without capillary pressure. In [29], multi-point flux mixed methods are introduced

for a sequential implicit formulation of the compositional equations. We propose to use DG methods

because they easily allow for the implementation of high order (global or local) polynomial approxi-

mation and local mesh adaptivity. While these attractive features are not the object of this paper, they

form additional motivation for the use of DG methods.
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The paper is organized as follows. Section 2 presents the mathematical equations describing the

black oil problem. The time discretization of our algorithm, based on the formulations of [12, 30]

is introduced in Section 3. Section 4 describes the full discretization of our method using DG finite

elements. The convergence properties of this approximation method are studied with manufactured

solutions in Section 5. Problems involving gravity effects, mass transfer and phase disappearance, are

solved in Sections 6 and 7, respectively. Finally, we show the robustness of our scheme in Section 8

by studying a gas–water injection problem in a highly heterogeneous media.

2 BLACK OIL MODEL

This section introduces the variables and the equations involved in a black oil problem with three

components (oil, gas, water) and three phases (liquid, vapor, aqueous) in a porous medium Ω. We

assume that the oil and gas components may exist in the liquid and vapor phases, and that the aqueous

phase is uniquely formed of water. The notation used in this section is classical for multiphase flows

in porous media [2].

2.1 Notation and set-up

We introduce the fraction of oil in the liquid phase xo,𝓁 and the fraction of gas in liquid phase xg,𝓁 .

They are defined as follows:

xo,𝓁 =
mass oil in liquid

mass liquid
, xg,𝓁 =

mass gas in liquid

mass liquid
.

The liquid is exclusively composed of oil and gas, so these fractions satisfy the following equality:

xo,𝓁 + xg,𝓁 = 1. (2.1)

We also introduce the fraction of oil in the vapor phase xo, v, respectively the fraction of gas in

vapor phase xg,v. They are defined as follows:

xo,v =
mass oil in vapor

mass vapor
, xg,v =

mass gas in vapor

mass vapor
.

As the vapor is uniquely composed of oil and gas, these fractions satisfy the relation:

xo,v + xg,v = 1. (2.2)

The aqueous phase is only composed of water so the fraction of water in aqueous phase xw,a is

equal to 1. The saturations of the liquid phase, the vapor phase and the aqueous phases are denoted by

S𝓁 , Sv and Sa. They are defined as follows:

S𝓁 =
volume liquid phase

volume pore
, Sv =

volume vapor phase

volume pore
, Sa =

volume aqueous phase

volume pore
,

and satisfy the equation:

Sl + Sv + Sa = 1. (2.3)

In the following of this paper, we enforce that the mass fractions satisfies:

(xo,𝓁 , xg,𝓁) = (1, 0) if S𝓁 = 0, (2.4)

(xo,v, xg,v) = (0, 1) if Sv = 0. (2.5)



4 CAPPANERA AND RIVIÈRE

Moreover, we assume that:

xg,𝓁 < xg,v. (2.6)

The purpose of hypothesis (2.4)–(2.5) is to give a definition to the mass fractions of a phase that is

not present. Our choice, of setting xo,𝓁 = 1 when the liquid phase disappears, is motivated by the fact

that the gas component should turn into vapor faster than the oil component. Thus, before completly

disappearing the liquid phase should only contain oil. The same argumentation is used to set xg,v = 1

when Sv = 0. Hypothesis (2.6) is required to prove that the algorithm introduced in Section 3 gives rise

to a unique set of saturations (S𝓁 , Sv, Sa). A physical interpretation of this condition is that the gas

component is always more represented in the vapor phase. Such condition is consistent with the above

hypothesis when there is no vapor phase.

2.2 Black oil problem equations

A black oil problem consists of approximating the solution of the mass conservation of the gas, oil

and water components under the assumptions (2.1)–(2.3). The mass conservation equations of the oil,

gas and water components are expressed as follows:

𝜕t(𝜙(xo,𝓁𝜌𝓁S𝓁+xo,v𝜌vSv))−𝛻⋅(xo,𝓁𝜌𝓁𝜆𝓁(𝛻p𝓁−𝜌𝓁g)+xo,v𝜌v𝜆v(𝛻pv−𝜌vg)) = xo,𝓁𝜌𝓁q𝓁+xo,v𝜌vqv, (2.7)

𝜕t(𝜙(xg,𝓁𝜌𝓁S𝓁+xg,v𝜌vSv))−𝛻⋅(xg,𝓁𝜌𝓁𝜆𝓁(𝛻p𝓁−𝜌𝓁g)+xg,v𝜌v𝜆v(𝛻pv−𝜌vg)) = xg,𝓁𝜌𝓁q𝓁+xg,v𝜌vqv, (2.8)

𝜕t(𝜙𝜌aSa) − 𝛻 ⋅ (𝜌a𝜆a(𝛻pa − 𝜌ag)) = 𝜌aqa, (2.9)

where p𝓁 is the pressure of the liquid phase, pv is the pressure of the vapor phase and pa is the pressure

of the aqueous phase. The function 𝜙 is the porosity and the coefficients 𝜌𝓁 , 𝜌v and 𝜌a are the phases

densities. The phase mobilities are denoted by 𝜆𝓁 , 𝜆v and 𝜆a. We recall that 𝜆j is defined as the ratio

𝜅abs𝜅 j/𝜇j where 𝜅abs is the absolute permeability, 𝜇j is the viscosity that only depends of the pressure

pj and 𝜅 j is the relative permeability that only depends of the saturation Sj. The gravity is denoted by

g and the functions q𝓁 , qv and qa are source/sink terms. In the rest of the paper, we assume that

𝜌v ≤ 𝜌𝓁 . (2.10)

This condition is used in Section 3.2.5 to prove that a unique set of saturations (S𝓁 , Sv) is derived

from our formulation.

2.3 Introduction of capillary pressures and reformulation of black oil problem

The action of capillary effects induces a difference in pressure between the three phases. Although

the quantities p𝓁 , pv and pa differ, they are linked to each other by the capillary pressures pc,v and pc,a
defined as follows:

pc,v = pv − p𝓁 , pc,a = p𝓁 − pa. (2.11)

The function pc,v, respectively pc,a, is assumed to uniquely depend of the variable Sv, respectively

of Sv and Sa. Thus, we can write:

pc,v = pc,v(Sv), pc,a = pc,a(Sv, Sa). (2.12)

Moreover the capillary pressures are assumed to be differentiable functions of Sv and Sa. The

introduction of pc,v and pc,a allows us to eliminate the variables pv and pa from Equations (2.7)–(2.9).

We note that the component mass fractions, phases densities and porosity are function of the phases

pressures. Furthermore, the phases mobilities are function of the phases saturations. Thus, one can
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show that approximating the solutions of a black oil problem can be reduced to approximating the

liquid pressure and the aqueous and vapor phase saturations.

3 ALGORITHM FOR DISCRETIZATION IN TIME

We present a new time stepping algorithm to approximate Equations (2.7)–(2.9) inspired from [12,

30]. This algorithm is consistent with the three-phase black oil model described in Section 2. In the

remainder of the paper, we let 𝜏 > 0 be a time step and n≥ 0 an integer. A function f evaluated at the

time n𝜏 is denoted by f n.

3.1 Strategy and introduction of new variable

To approximate the black oil problem (2.7)–(2.9) we choose the aqueous saturation Sa as independent

primary variable. In the wake of Shank and Vestal [12], Hajibeygi and Tchelepi [30], we choose the

liquid pressure and the total fraction of gas in the media, denoted by zg, as the remaining two inde-

pendent primary variables. The liquid pressure is approximated as the solution of the sum of the three

mass conservation Equations (2.7)–(2.9). It reads p𝓁 solution of:

𝜕t(𝜙(𝜌𝓁S𝓁 + 𝜌vSv + 𝜌aSa)) − 𝛻 ⋅ (𝜌𝓁𝜆𝓁(𝛻p𝓁 − 𝜌𝓁g)) − 𝛻 ⋅ (𝜌v𝜆v(𝛻pv − 𝜌vg))
− 𝛻 ⋅ (𝜌a𝜆a(𝛻pa − 𝜌ag)) = 𝜌𝓁q𝓁 + 𝜌vqv + 𝜌aqa, (3.1)

where pv and pa can be substituted with p𝓁 and the capillary pressures pc,v and pc,a defined by (2.11).

The total fraction of gas in the media zg is defined as follows:

zg = xg,𝓁
𝜌𝓁S𝓁

𝜌𝓁S𝓁 + 𝜌vSv + 𝜌aSa
+ xg,v

𝜌vSv

𝜌𝓁S𝓁 + 𝜌vSv + 𝜌aSa
. (3.2)

We note that zg is a convex combination of (xg,𝓁 , xg,v, 0). The assumption (2.6) implies that

0 ≤ zg ≤ xg,v. Using the definition of the capillary pressure pc,v, the mass conservation of the gas

component can be rewritten in function of zg. It reads zg solution of the following equation:

𝜕t(𝜙𝜌tzg) − 𝛻 ⋅ (Fg(𝜌𝜆)t𝛻p𝓁) − 𝛻 ⋅ (xg,v𝜆v𝜌v𝛻pc,v) + 𝛻 ⋅ ((xg,𝓁𝜌
2
𝓁𝜆𝓁 + xg,𝓁𝜌

2
v𝜆v)g) = fg(𝜌𝑞)t, (3.3)

where

𝜌t = 𝜌𝓁S𝓁 + 𝜌vSv + 𝜌aSa, (𝜌𝜆)t = 𝜌𝓁𝜆𝓁 + 𝜌v𝜆v + 𝜌a𝜆a, (𝜌𝑞)t = 𝜌𝓁q𝓁 + 𝜌vqv + 𝜌aqa.

This formulation also involves the gas fractional flow Fg = xg,𝓁Fg,𝓁 + xg,vFg,v with the following

phases fractional flows:

Fg,𝓁 = 𝜌𝓁𝜆𝓁

𝜌𝓁𝜆𝓁 + 𝜌v𝜆v + 𝜌a𝜆a
and Fg,v =

𝜌v𝜆v

𝜌𝓁𝜆𝓁 + 𝜌v𝜆v + 𝜌a𝜆a
.

The source term f g is equal to xg,𝓁f g,𝓁 + xg,vf g,v where the liquid source term is fg,𝓁 = 𝜌𝓁q𝓁
(𝜌𝑞)t

and the

vapor source term is fg,v =
𝜌vqv

(𝜌𝑞)t
.

We conclude this section with boundary conditions for the three primary variables. The boundary

of the domain is decomposed as follows:

𝜕Ω = Γp
D ∪ Γp

N = ΓS
D ∪ ΓS

N = Γz
D ∪ Γz

N .

Dirichlet boundary conditions are imposed on Γp
D for the liquid pressure, respectively on ΓS

D and

Γz
D for the aqueous saturation and the variable zg. The boundary conditions imposed on these surfaces
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are denoted by pbdy

𝓁 , Sbdy
a and zbdy

g . Neumann boundary conditions are imposed on Γp
N for the liquid

pressure, respectively on ΓS
N and Γz

N for the aqueous saturation and the variable zg as described below:

(𝜌𝜆)t𝛻p𝓁 ⋅ n = jNp , 𝜌a𝜆a
𝜕pc,a

𝜕Sa
𝛻Sa ⋅ n = jNS , xg,v𝜌v𝜆v

𝜕pc,v

𝜕Sv

𝜕Sv

𝜕zg
𝛻zg ⋅ n = jNz .

3.2 Time marching

After an initialization step of the variables introduced in the previous sections, the algorithm proceeds

as follows.

3.2.1 Liquid pressure
The liquid pressure is updated as the solution of the sum of the mass conservation Equations (3.1).

Using a backward difference formula of order one to discretize the time derivative, first order extrap-

olation of fluid–vapor–aqueous phases properties and the definition of the capillary pressures (2.11),

gives pn+1
𝓁 solution of the following equation:

𝜙n𝜌n
t − 𝜙n−1𝜌n−1

t

𝜏
− 𝛻 ⋅ ((𝜌𝜆)nt 𝛻pn+1

𝓁 ) − 𝛻 ⋅ (𝜌n
v𝜆

n
v𝛻pn

c,v) + 𝛻 ⋅ (𝜌n
a𝜆

n
a𝛻pn

c,a)

= (𝜌𝑞)∗,n+1
t − 𝛻 ⋅ (((𝜌2

𝓁)
n𝜆n

𝓁 + (𝜌2
v)n𝜆n

v + (𝜌2
a)n𝜆n

a)g), (3.4)

where

(𝜌𝑞)∗,n+1
t = 𝜌n

𝓁qn+1
𝓁 + 𝜌n

vqn+1
v + 𝜌n

aqn+1
a .

The vapor and aqueous pressures are then updated using (2.11) as follows:

pn+1
v = pn+1

𝓁 + pn
c,v, pn+1

a = pn+1
𝓁 − pn

c,a. (3.5)

Remark 3.1 We can now compute the components fractions xn+1
o,𝓁 , xn+1

o,v , xn+1
g,𝓁 , xn+1

g,v and

the phases densities 𝜌n+1
𝓁 , 𝜌n+1

v , 𝜌n+1
a using pn+1

𝓁 , pn+1
v and pn+1

a .

3.2.2 Aqueous saturation
The aqueous saturation is the solution of the water component conservation equation. Using

Equation (2.11), it gives Sa solution of:

𝜕t(𝜌aSa) + 𝛻 ⋅ (𝜌a𝜆a𝛻pc,a) = 𝛻 ⋅ (𝜌a𝜆a(𝛻p𝓁 − 𝜌ag)) + 𝜌aqa. (3.6)

As the capillary pressure pc,a is a differentiable function of Sv and Sa, and only depends of these

variables, one can write:

𝛻pc,a =
𝜕pc,a

𝜕Sv
𝛻Sv +

𝜕pc,a

𝜕Sa
𝛻Sa. (3.7)

Eventually, we solve Sn+1
a solution of the following equation:

𝜙n+1𝜌n+1
a Sn+1

a − 𝜙n𝜌n
aSn

a

𝜏
+ 𝛻 ⋅

(
𝜌n+1

a 𝜆n
a

(
𝜕pc,a

𝜕Sa

)n

𝛻Sn+1
a

)
= 𝜌n+1

a qn+1
a

−𝛻 ⋅
(
𝜌n+1

a 𝜆n
a

(
𝜕pc,a

𝜕Sv

)n

𝛻Sn
v

)
+ 𝛻 ⋅ (𝜌n+1

a 𝜆n
a(𝛻pn+1

𝓁 − 𝜌n+1
a g)), (3.8)

where we use a backward difference formula of order one to approximate the time derivative.
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Remark 3.2 We can now compute the phases mobility 𝜆n+1
a using the saturations Sn+1

a .

Moreover, since
𝜕pc,a

𝜕Sa
is negative by construction, the second term of the above left-hand

side is a diffusive term.

3.2.3 Total gas fraction
Before describing the scheme used to update zg, we note that the saturation Sv is a differentiable

function of zg, xg,𝓁 , xg,v, Sa, 𝜌𝓁 , 𝜌v, and 𝜌a (see Section 3.2.5).

As the capillary pressure pc,v is a differentiable function of Sv, the term 𝛻pc,v can be rewritten as

follows:

𝛻pc,v =
𝜕pc,v

𝜕Sv

(
𝜕Sv

𝜕zg
𝛻zg +

𝜕Sv

𝜕xg,𝓁
𝛻xg,𝓁 +

𝜕Sv

𝜕xg,v
𝛻xg,v +

𝜕Sv

𝜕Sa
𝛻Sa +

𝜕Sv

𝜕𝜌𝓁
𝛻𝜌𝓁 +

𝜕Sv

𝜕𝜌v
𝛻𝜌v +

𝜕Sv

𝜕𝜌a
𝛻𝜌a

)
.

(3.9)

The variable zn+1
g is computed as the solution of the following problem:

𝜙𝜌
∗,n+1
t zn+1

g

𝜏
− 𝛻 ⋅

((
𝜕Fg

𝜕zg

)n

zn+1
g (𝜌𝜆)∗,n+1

t 𝛻pn+1
𝓁

)
− 𝛻 ⋅

(
xn+1

g,v 𝜌n+1
v 𝜆n

v

(
𝜕pc,v

𝜕Sv

)n(
𝜕Sv

𝜕zg

)+,n

𝛻zn+1
g

)
=

𝜙𝜌
∗,n
t zn

g

𝜏
+ f n+1

g (𝜌𝑞)n+1
t + 𝛻 ⋅

((
Fn

g −
(
𝜕Fg

𝜕zg

)n

zn
g

)
(𝜌𝜆)∗,n+1

t 𝛻pn+1
𝓁

)
+ 𝛻 ⋅

(
xn+1

g,v 𝜌n+1
v 𝜆n

v

(
𝜕pc,v

𝜕Sv

)n ((
𝜕Sv

𝜕zg

)−,n

𝛻zn
g +

(
𝜕Sv

𝜕xg,𝓁

)n

𝛻xn+1
g,𝓁 +

(
𝜕Sv

𝜕xg,v

)n

𝛻xn+1
g,v

))
+ 𝛻 ⋅

(
xn+1

g,v 𝜌n+1
v 𝜆n

v

(
𝜕pc,v

𝜕Sv

)n ((
𝜕Sv

𝜕Sa

)n

𝛻Sn+1
a

+
(
𝜕Sv

𝜕𝜌𝓁

)n

𝛻𝜌n+1
𝓁 +

(
𝜕Sv

𝜕𝜌v

)n

𝛻𝜌n+1
v +

(
𝜕Sv

𝜕𝜌a

)n

𝛻𝜌n+1
a

))
− 𝛻 ⋅ ((xn+1

g,𝓁 (𝜌
2
𝓁)

n+1𝜆n
𝓁 + xn+1

g,v (𝜌n+1
v )2𝜆n

v)g), (3.10)

where we set

𝜌
∗,n+1
t = 𝜌n+1

𝓁 Sn
𝓁 + 𝜌n+1

v Sn
v + 𝜌n+1

a Sn
a, (𝜌𝜆)∗,n+1

t = 𝜌n+1
𝓁 𝜆n

𝓁 + 𝜌n+1
v 𝜆n

v + 𝜌n+1
a 𝜆n

a.

We also split the term
𝜕Sv

𝜕zg
into its positive and negative parts. For any function f , we denote:

f + = max(0, f ), f − = min(0, f ).

We use a backward difference formula of order one to approximate the time derivative and the

following Taylor expansion: Fn+1
g = Fn

g +
(

𝜕Fg

𝜕zg

)n
(zn+1

g − zn
g) where

(
𝜕Fg

𝜕zg

)n
= 𝜕Fg

𝜕zg
(zn

g).

Remark 3.3 We note that
𝜕pc,v

𝜕Sv
is strictly positive. Thus, the term

𝜕pc,v

𝜕Sv

(
𝜕Sv

𝜕zg

)+
is posi-

tive. We treat implicitly the diffusive part of the Laplace operator while the other part,

involving the term
(

𝜕Sv

𝜕zg

)−
, is treated explicitly for stability purpose. We refer to the annex

Appendix B for more details on the computation of the terms
𝜕Fg

𝜕zg
,
(

𝜕Sv

𝜕zg

)+
, and

(
𝜕Sv

𝜕zg

)−
.

3.2.4 Correction of the components fractions
We recall that the densities and xg,v are strictly positive, see hypothesis (2.6). Thus in the region where

Sa is strictly positive, the variable zg is zero if and only if Sv and xg,𝓁S𝓁 are zero. The condition S𝓁 equal
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to zero implies that xo,𝓁 equal one and xg,𝓁 equal zero while the condition xg,𝓁 equal zero implies that

xo,𝓁 is one. Similarly the condition Sv equal to zero implies that (xg,v, xo,v)= (1, 0). As a consequence,

we enforce (xo,𝓁 , xg,𝓁)= (1, 0) and (xo,v, xg,v)= (0, 1) in the regions where Sa is strictly positive and zg
is zero. In the region where Sa is zero, the maximum value of xg,𝓁 is zg. Thus, if the computed value

of zg is found to be smaller than xg,𝓁 , we set xg,𝓁 = zg. In this case, we have Sv equal to zero so we can

set xg,v to one.

3.2.5 Liquid and vapor saturations
Using the definition of zg and Equation (2.3), we have (Sn+1

v , Sn+1
𝓁 ) solution of the following problem:

(zn+1
g − xn+1

g,𝓁 )𝜌
n+1
𝓁 Sn+1

𝓁 + (zn+1
g − xn+1

g,v )𝜌n+1
v Sn+1

v = −zn+1
g 𝜌n+1

a Sn+1
a , (3.11a)

Sn+1
𝓁 + Sn+1

v = 1 − Sn+1
a . (3.11b)

The determinant of the above system is denoted by d and depends on zg:

d(zg) = (zg − xg,𝓁)𝜌𝓁 + (xg,v − zg)𝜌v. (3.12)

As d′(zg) is equal to 𝜌𝓁 − 𝜌v, a positive term thanks to the hypothesis (2.10), the determinant of the

above system is an increasing function of zg. The variable zg belongs to the interval [0, xg,v] so showing

that d(0) is strictly positive would imply that the above system has a unique solution. As shown in

the previous section, zg equal to zero implies that (xg,𝓁 , xg,v)= (0, 1). Therefore, d(0)= 𝜌v is strictly

positive and the above system has a unique solution defined by:

Sn+1
𝓁 =

(xn+1
g,v − zn+1

g )𝜌n+1
v (1 − Sn+1

a ) − zn+1
g 𝜌n+1

a Sn+1
a

(xn+1
g,v − zn+1

g )𝜌n+1
v + (zn+1

g − xn+1
g,𝓁 )𝜌

n+1
𝓁

, (3.13)

Sn+1
v =

(zn+1
g − xn+1

g,𝓁 )𝜌
n+1
𝓁 (1 − Sn+1

a ) + zn+1
g 𝜌n+1

a Sn+1
a

(xn+1
g,v − zn+1

g )𝜌n+1
v + (zn+1

g − xn+1
g,𝓁 )𝜌

n+1
𝓁

. (3.14)

Remark 3.4 We can now compute the phases mobilities 𝜆n+1
𝓁 , 𝜆n+1

v and the capillary

pressures pn+1
c,v , pn+1

c,a using the saturations Sn+1
𝓁 , Sn+1

v and Sn+1
a .

3.3 Subiteration scheme

In practice, at each time step, we iterate over the equations and approximate the variables

(pn+1
𝓁 , Sn+1

a , zn+1
g ) as follows.

• Set k = 0 and introduce pk
𝓁 , Sk

a and zk
g equal to (pn

𝓁 , S
n
a, zn

g). Similarly, we introduce densities, mass

fractions, viscosities and relative permeabilities at iteration k.

• Solve pk+1
𝓁 solution of:

𝜕p𝓁 (𝜙
k𝜌k

t )(pk+1
𝓁 − pk

𝓁)
𝜏

+
𝜙k𝜌k

t − 𝜙n𝜌n
t

𝜏
− 𝛻 ⋅ ((𝜌𝜆)kt 𝛻pk+1

𝓁 )

− 𝛻 ⋅ (𝜌k
v𝜆

k
v𝛻pn

c,v) + 𝛻 ⋅ (𝜌k
a𝜆

k
a𝛻pn

c,a) + 𝛻 ⋅ (((𝜌2
𝓁)

k𝜆k
𝓁 + (𝜌2

v)k𝜆k
v + (𝜌2

a)k𝜆k
a)g) = (𝜌𝑞)∗, k+1

t ,

where (𝜌𝑞)∗, k+1
t = 𝜌k

𝓁qk+1
𝓁 + 𝜌k

vqk+1
v + 𝜌k

aqk+1
a . The time derivative is approximated with a backward

difference formula of order one where the term 𝜙k+1𝜌k+1
t is approximated with a Taylor expansion of

order one.
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• Update the mass fractions and densities with pk+1
𝓁 .

• Solve Sk+1
a solution of:

𝜙k𝜌k
aSk+1

a − 𝜙n𝜌n
aSn

a

𝜏
+ 𝛻 ⋅

(
𝜌k+1

a 𝜆k
a

(
𝜕pc,a

𝜕Sa

)k

𝛻Sk+1
a

)
= 𝜌k+1

a qn+1
a

−𝛻 ⋅

(
𝜌k+1

a 𝜆k
a

(
𝜕pc,a

𝜕Sv

)k

𝛻Sk
v

)
+ 𝛻 ⋅ (𝜌k+1

a 𝜆k
a(𝛻pk+1

𝓁 − 𝜌k+1
a g)),

• Update the relative permeability and viscosity of the aqueous phase.

• Solve zk+1
g solution of:

𝜙k+1𝜌
∗, k+1
t zk+1

g

𝜏
− 𝛻 ⋅

((
𝜕Fg

𝜕zg

)k

zk+1
g (𝜌𝜆)∗, k+1

t 𝛻pk+1
𝓁

)
− 𝛻 ⋅

(
xk+1

g,v 𝜌k+1
v 𝜆k

v

(
𝜕pc,v

𝜕Sv

)k(
𝜕Sv

𝜕zg

)+, k

𝛻zk+1
g

)

=
𝜙n𝜌∗,nt zn

g

𝜏
+ f n+1

g (𝜌𝑞)n+1
t + 𝛻 ⋅

((
Fk

g −
(
𝜕Fg

𝜕zg

)k

zk
g

)
(𝜌𝜆)∗, k+1

t 𝛻pk+1
𝓁

)

+ 𝛻 ⋅

(
xk+1

g,v 𝜌k+1
v 𝜆k

v

(
𝜕pc,v

𝜕Sv

)k
((

𝜕Sv

𝜕zg

)−, k

𝛻zk
g +

(
𝜕Sv

𝜕xg,𝓁

)k

𝛻xk+1
g,𝓁 +

(
𝜕Sv

𝜕xg,v

)k

𝛻xk+1
g,v

))

+ 𝛻 ⋅

(
xk+1

g,v 𝜌k+1
v 𝜆k

v

(
𝜕pc,v

𝜕Sv

)k ((
𝜕Sv

𝜕Sa

)n

𝛻Sk+1
a

+
(
𝜕Sv

𝜕𝜌𝓁

)n

𝛻𝜌k+1
𝓁 +

(
𝜕Sv

𝜕𝜌v

)n

𝛻𝜌k+1
v +

(
𝜕Sv

𝜕𝜌a

)n

𝛻𝜌k+1
a

))
− 𝛻 ⋅ ((xk+1

g,𝓁 (𝜌
2
𝓁)

k+1𝜆k
𝓁 + xk+1

g,v (𝜌k+1
v )2𝜆k

v)g),

where (𝜌𝜆)∗, k+1
t = 𝜌k+1

𝓁 𝜆k
𝓁 + 𝜌k+1

v 𝜆k
v + 𝜌k+1

a 𝜆k
a.

• Update the viscosities, relative permeabilities and saturations of the liquid and vapor phases.

• Compute the L2 norm of pk+1
𝓁 − pk

𝓁 , sk+1
a − sk

a and zk+1
g − zk

g.

• If the above norms are smaller than a given tolerance, set by the user, all the variables and fluid

properties at time tn + 1 are updated using the values at iteration k + 1.

• Else, variables and fluid properties at iteration k are updated with their values at iteration k + 1

and the above process is repeated.

As mentioned in Section 1, one can notice that the algorithm is independent of phase appearance

and disappearance effects, since liquid and vapor phase saturations are not primary variables.

4 FULL DISCRETIZATION WITH DISCONTINUOUS GALERKIN
FINITE ELEMENT

We describe the spatial discretization, using DG finite element, of the algorithm introduced in

Section 3. The weak formulation presented here is consistent with the subiteration scheme of

Section 3.3.
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4.1 Domain discretization

Let h be a conforming mesh of the domain Ω where the mesh size is denoted by h. Let Γh be the set

of all interior faces. The diameter of each face e is denoted by he. To each face e ∈ Γh, we associate a

normal vector ne.

In the following, we also use the operator {⋅} defined as the weighted average of a function on an

interior face and the operator [⋅] defined as the difference between the traces of a function from the

neighboring elements of an interior face. The weights involved in the average operator {⋅} are computed

with the formula introduced in Ern and coworkers [13]. For completeness, we recall the formula of the

weighted average for a diffusion term of the form −𝛻 ⋅(A𝛻f ) with A a scalar. Let e be an interior face.

We denote by Ai, Ao, respectively 𝛻f i and 𝛻f o, the values of A, respectively 𝛻f , on the inner and outer

interface of e. The weighted average formula reads:

{A𝛻f ⋅ ne} = 𝜔iAi𝛻fi ⋅ ne + 𝜔oAo𝛻fo ⋅ ne, (4.1)

where the weighted average 𝜔i and 𝜔o are defined as follows:

𝜔i =
Ao

AiAo
, 𝜔o = Ai

AiAo
. (4.2)

In our scheme below, we apply this weighted average to diffusion-like terms and the diffusion

coefficient depends on physical properties such as densities, relative permeabilities and so on.

4.2 Approximation spaces

The liquid pressure, aqueous saturation and variable zg are approximated in the following discontinuous

finite element space:

Xh = {v; v∣K ∈ P1(K),∀K ∈ h}, (4.3)

with the piecewise Lagrange function as basis function of the DG finite element space. The total Darcy

velocity, defined by ut =−(𝜌𝜆)t𝛻p𝓁 , and the aqueous velocity, defined by ua =−𝜅abs𝛻p𝓁 , are projected

on the Raviart–Thomas space RT0 [31]. These projected velocities are used in the approximation of

the variables Sa and zg as described in the Sections 4.4 and 4.5. We refer to [14] for details on the

projection method on these finite element spaces.

4.3 Liquid pressure weak formulation

The liquid pressure pk+1
𝓁 is the solution of the following weak formulation for all 𝜙 ∈ Xh:

1

𝜏
Atime

p𝓁 (pk+1
𝓁 , 𝜙) + Avol

p𝓁 (p
k+1
𝓁 , 𝜙) + Abdy

p𝓁 (pk+1
𝓁 , 𝜙) + Aint

p𝓁 (p
k+1
𝓁 , 𝜙) = 0, (4.4)

where Atime
p𝓁 is the term associated to the time derivative, Avol

p𝓁 represents the other volume terms, Abdy
p𝓁

the boundaries terms and Aint
p𝓁 the interface terms of the liquid pressure weak formulation. They are

defined as follows:

Atime
p𝓁 (pk+1

𝓁 , 𝜙) =
∑

K∈h
∫K

(𝜕p𝓁 (𝜙
k𝜌k

t )(pk+1
𝓁 − pk

𝓁) + 𝜙k𝜌k
t − 𝜙n𝜌n

t )𝜙, (4.5)

Avol
p𝓁 (p

k+1
𝓁 , 𝜙) = −

∑
K∈h

∫K
(𝜌𝑞)∗, k+1

t 𝜙,+
∑

K∈h
∫K

(𝜌𝜆)kt 𝛻pk+1
𝓁 ⋅ 𝛻𝜙

+
∑

K∈h
∫K

(𝜌k
v𝜆

k
v𝛻pk

c,v − 𝜌k
a𝜆

k
a𝛻pk

c,a − ((𝜌2
𝓁)

k𝜆k
𝓁 + (𝜌2

v)k𝜆k
v + (𝜌2

a)k𝜆k
a)g) ⋅ 𝛻𝜙 (4.6)



CAPPANERA AND RIVIÈRE 11

Abdy
p𝓁 (pk+1

𝓁 , 𝜙) = −
∑
e∈Γp

D

∫e
(𝜌𝜆)kt 𝛻pk+1

𝓁 ⋅ ne𝜙 +
∑
e∈Γp

D

𝛾p𝓁h−1
e ∫e

(pk+1
𝓁 − pbdy,n+1

𝓁 )𝜙

+
∑
e∈Γp

D

𝜃p𝓁∫e
(𝜌𝜆)kt 𝛻𝜙 ⋅ ne(pk+1

𝓁 − pbdy,n+1

𝓁 )

−
∑
e∈Γp

D

∫e
𝜌k

v𝜆
k
v𝛻pk

c,v ⋅ ne𝜙 +
∑
e∈Γp

D

∫e
𝜌k

a𝜆
k
a𝛻pk

c,a ⋅ ne𝜙

+
∑
e∈Γp

D

∫e
((𝜌2

𝓁)
k𝜆k

𝓁 + (𝜌2
v)k𝜆k

v + (𝜌2
a)k𝜆k

a)g ⋅ ne𝜙 +
∑
e∈Γp

N

∫e
jNp 𝜙, (4.7)

Aint
p𝓁 (p

k+1
𝓁 , 𝜙) = −

∑
e∈Γh

∫e
{(𝜌𝜆)kt 𝛻pk+1

𝓁 ⋅ ne}[𝜙] +
∑
e∈Γh

𝛾p𝓁h−1
e ∫e

[pk+1
𝓁 ][𝜙]

+
∑
e∈Γh

𝜃p𝓁 ∫e
{(𝜌𝜆)kt 𝛻𝜙 ⋅ ne}[pk+1

𝓁 ]

−
∑
e∈Γh

∫e
{𝜌k

v𝜆
k
v𝛻pk

c,v ⋅ ne}[𝜙] +
∑
e∈Γh

∫e
{𝜌k

a𝜆
k
a𝛻pk

c,a ⋅ ne}[𝜙]

+
∑
e∈Γh

∫e
{((𝜌2

𝓁)
k𝜆k

𝓁 + (𝜌2
v)k𝜆k

v + (𝜌2
a)k𝜆k

a)g ⋅ ne}[𝜙]. (4.8)

The penalty parameter 𝛾p𝓁 is a positive number. The variable 𝜃p𝓁 is an integer equal to either −1

(Symmetric Interior Penalty Galerkin), 0 (Incomplete Interior Penalty Galerkin) or 1 (Nonsymmetric

Interior Penalty Galerkin). It is set to zero in the following. The term (𝜌q)*, k+1 is computed with the

densities at subiteration k and the source term at the time iteration n + 1.

4.4 Aqueous saturation weak formulation

The aqueous saturation Sk+1
a is the solution of the following formulation for all 𝜙 ∈ Xh:

1

𝜏
Atime

Sa
(Sk+1

a , 𝜙) + Avol
Sa
(Sk+1

a , 𝜙) + Abdy

Sa
(Sk+1

a , 𝜙) + Aint
Sa
(Sk+1

a , 𝜙) = 0, (4.9)

where Atime
Sa

, Avol
Sa

, Abdy

Sa
and Aint

Sa
are respectively the time derivative term, other volume terms, the

boundaries terms and the interface terms of the aqueous saturations weak formulation. They are defined

as follows:

Atime
Sa

(Sk+1
a , 𝜙) =

∑
K∈h

∫K
(𝜙k+1𝜌k+1

a Sk+1
a − 𝜙n𝜌n

aSn
a)𝜙, (4.10)

Avol
Sa
(Sk+1

a , 𝜙) = −
∑

K∈h
∫K

𝜌k+1
a 𝜆k

a

(
𝜕pc,a

𝜕Sa

)k

𝛻Sk+1
a ⋅ 𝛻𝜙 −

∑
K∈h

∫K
𝜌k+1

a 𝜆k
a

(
𝜕pc,a

𝜕Sv

)k

𝛻Sk
v ⋅ 𝛻𝜙

−
∑

K∈h
∫K

(
𝜌k+1

a
𝜅k

a

𝜇k
a

uk+1
a + (𝜌k+1

a )2𝜆k
ag
)
⋅ 𝛻𝜙 −

∑
K∈h

∫K
𝜌k+1

a qn+1
a 𝜙, (4.11)

Abdy

Sa
(Sk+1

a , 𝜙) =
∑
e∈ΓS

D

∫e
𝜌k+1

a 𝜆k
a

(
𝜕pc,a

𝜕Sa

)k

𝛻Sk+1
a ⋅ ne𝜙 +

∑
e∈ΓS

D

𝛾sa h−1
e ∫e

(Sk+1
a − Sbdy,n+1

a )𝜙

−
∑
e∈ΓS

D

𝜃Sa∫e
𝜌k+1

a 𝜆k
a

(
𝜕pc,a

𝜕Sa

)
k𝛻𝜙 ⋅ ne(Sk+1

a − Sbdy,n+1
a )
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+
∑
e∈ΓS

D

∫e
𝜌k+1

a 𝜆k
a

(
𝜕pc,a

𝜕Sv

)k

𝛻Sk
v ⋅ ne𝜙

+
∑
e∈ΓS

D

∫e

(
𝜌k+1

a
𝜅k

a

𝜇k
a

uk+1
a + (𝜌k+1

a )2𝜆k
ag
)
⋅ ne𝜙 +

∑
e∈ΓS

N

∫e
jNS 𝜙, (4.12)

Aint
Sa
(Sk+1

a , 𝜙) =
∑
e∈Γh

∫e

{
𝜌k+1

a 𝜆k
a

(
𝜕pc,a

𝜕Sa

)k

𝛻Sk+1
a ⋅ ne

}
[𝜙] +

∑
e∈Γh

𝛾sa h−1
e ∫e

[Sk+1
a ][𝜙]

−
∑
e∈Γh

𝜃Sa ∫e

{
𝜌k+1

a 𝜆k
a

(
𝜕pc,a

𝜕Sa

)k

𝛻𝜙 ⋅ ne

}
[Sk+1

a ]

+
∑
e∈Γh

∫e

{
𝜌k+1

a 𝜆k
a

(
𝜕pc,a

𝜕Sv

)k

𝛻Sk
v ⋅ ne

}
[𝜙]

+
∑
e∈Γh

∫e

{(
𝜌k+1

a
𝜅k

a

𝜇k
a

uk+1
a + (𝜌k+1

a )2𝜆k
ag
)
⋅ ne

}
[𝜙], (4.13)

where 𝛾sa > 0 is a penalty parameter and ua the projection of 𝜅abs𝛻pk+1
𝓁 on the Raviart–Thomas space

RT0. The integer 𝜃Sa can be set to −1, 0, 1. In the rest of the paper, we set 𝜃Sa = 1.

4.5 Gas fraction zg weak formulation

The variable zk+1
g is the solution of the following formulation for all 𝜙 ∈ Xh:

1

𝜏
Atime

zg
(zk+1

g , 𝜙) + Avol
zg
(zk+1

g , 𝜙) + Abdy
zg

(zk+1
g , 𝜙) + Aint

zg
(zk+1

g , 𝜙) = 0, (4.14)

with Atime
zg

, respectively Avol
zg

, Abdy
zg

and Aint
zg

, the time derivative term, respectively the other volume

terms, the boundaries and interface terms, of zg weak formulation. They are defined by:

Atime
zg

(zk+1
g , 𝜙) =

∑
K∈h

∫K
(𝜙k+1𝜌

∗, k+1
t zk+1

g − 𝜙n𝜌∗,nt zn
g)𝜙, (4.15)

Avol
zg
(zk+1

g , 𝜙) =
∑

K∈h
∫K

xk+1
g,v 𝜌k+1

v 𝜆k
v

(
𝜕pc,v

𝜕Sv

)k
((

𝜕Sv

𝜕zg

)+, k

𝛻zk+1
g +

(
𝜕Sv

𝜕zg

)−, k

𝛻zk
g + Ak

Sv

)
⋅ 𝛻𝜙

−
∑

K∈h
∫K

(
Fk

g +
(
𝜕Fg

𝜕zg

)k

(zk+1
g − zk

g)

)
u∗, k+1

t ⋅ 𝛻𝜙

−
∑

K∈h
∫K

(xk+1
g,𝓁 𝜌

k+1
𝓁 qn+1

𝓁 + xk+1
g,v 𝜌k+1

v qn+1
v )𝜙

−
∑

K∈h
∫K

(xk+1
g,𝓁 (𝜌

2
𝓁)

k+1𝜆k
𝓁 + xk+1

g,v (𝜌k+1
v )2𝜆k

v)g ⋅ 𝛻𝜙, (4.16)

Abdy
zg

(zk+1
g , 𝜙) = −

∑
e∈Γp

D

∫e
xk+1

g,v 𝜌k+1
v 𝜆k

v

(
𝜕pc,v

𝜕Sv

)k
((

𝜕Sv

𝜕zg

)+, k

𝛻zk+1
g +

(
𝜕Sv

𝜕zg

)−, k

𝛻zk
g + Ak

Sv

)
⋅ ne𝜙

+
∑
e∈Γp

D

∫e

(
Fk

g +
(
𝜕Fg

𝜕zg

)k

(zk+1
g − zk

g)

)
u∗, k+1

t ⋅ ne𝜙
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+
∑
e∈Γp

D

∫e
(xk+1

g,𝓁 (𝜌
2
𝓁)

k+1𝜆k
𝓁 + xk+1

g,v (𝜌k+1
v )2𝜆k

v)g ⋅ ne𝜙 +
∑
e∈Γp

D

𝛾zg h−1
e ∫e

(zk+1
g − zbdy,n+1

g )𝜙

+
∑
e∈Γp

D

𝜃zg∫e
xk+1

g,v 𝜌k+1
v 𝜆k

v

(
𝜕pc,v

𝜕Sv

)k(
𝜕Sv

𝜕zg

)+, k

𝛻𝜙 ⋅ nezk+1
g +

∑
e∈ΓZ

N

∫e
jNz 𝜙, (4.17)

Aint
zg
(zk+1

g , 𝜙) = −
∑
e∈Γh

∫e

{
xk+1

g,v 𝜌k+1
v 𝜆k

v

(
𝜕pc,v

𝜕Sv

)k
((

𝜕Sv

𝜕zg

)+, k

𝛻zk+1
g +

(
𝜕Sv

𝜕zg

)−, k

𝛻zn
g + Ak

Sv

)
⋅ ne

}
[𝜙]

+
∑
e∈Γh

𝛾zg h−1
e ∫e

[zk+1
g ][𝜙]+

∑
e∈Γh

𝜃zg ∫e

{
xk+1

g,v 𝜌k+1
v 𝜆n

v

(
𝜕pc,v

𝜕Sv

)k(
𝜕Sv

𝜕zg

)+, k

𝛻𝜙 ⋅ ne

}
[zk+1

g ]

+
∑
e∈Γh

∫e

{(
Fk

g +
(
𝜕Fg

𝜕zg

)k

(zk+1
g − zk

g)

)
u∗, k+1

t ⋅ ne

}↑

[𝜙]

+
∑
e∈Γh

∫e
{(xk+1

g,𝓁 (𝜌
2
𝓁)

k+1𝜆k
𝓁 + xk+1

g,v (𝜌k+1
v )2𝜆k

v)g ⋅ ne}[𝜙], (4.18)

where 𝛾zg > 0 is a penalty parameter, u∗, k+1
t is the projection of −(𝜌k+1

𝓁 𝜆k
𝓁 + 𝜌k+1

v 𝜆k
v + 𝜌k+1

a 𝜆k
a)𝛻pk+1

𝓁
on the Raviart–Thomas space RT0 and 𝜃zg an integer in −1, 0, 1. We set 𝜃zg = 1 in the following. The

above weak formulation also introduces the variable Ak
Sv

defined as follows:

Ak
Sv
=
(

𝜕Sv

𝜕xg,𝓁

)k

𝛻xk+1
g,𝓁 +

(
𝜕Sv

𝜕xg,v

)k

𝛻xk+1
g,v +

(
𝜕Sv

𝜕Sa

)k

𝛻Sk+1
a

+
(
𝜕Sv

𝜕𝜌𝓁

)k

𝛻𝜌k+1
𝓁 +

(
𝜕Sv

𝜕𝜌v

)k

𝛻𝜌k+1
v +

(
𝜕Sv

𝜕𝜌a

)k

𝛻𝜌k+1
a ,

and the upwind operator {⋅}↑ defined in the following section.

4.6 Upwind scheme

To facilitate the transport of phases by the total Darcy velocity ut, an upwind scheme is used to approx-

imate fluxes across interfaces for the term

(
Fk

g +
(

𝜕Fg

𝜕zg

)k
(zk+1

g − zk
g)
)

u∗, k+1
t ⋅ ne. Let us fix an interior

face e that is shared by two mesh elements Ki and Ko such that ne is outward of Ki. For readibility, we

denote the fluxes as follows

D = Fk
g +

(
𝜕Fg

𝜕zg

)k

(zk+1
g − zk

g), Dgrav = xg,𝓁𝜌
2
𝓁𝜆𝓁 + xg,v𝜌

2
v𝜆v.

The upwind value

{(
Fk

g +
(

𝜕Fg

𝜕zg

)k
(zk+1

g − zk
g)
)

u∗, k+1
t ⋅ ne

}↑

across the face e is then computed

as follows:{(
Fk

g +
(
𝜕Fg

𝜕zg

)k

(zk+1
g − zk

g)

)
u∗, k+1

t ⋅ ne

}↑

=
⎧⎪⎨⎪⎩

1

2
D|||Ki

((u∗, k+1
t )|Ki + (u∗, k+1

t )|Ko) ⋅ ne if 𝜉 ≥ 0,

1

2
D|||Ko

((u∗, k+1
t )|Ki + (u∗, k+1

t )|Ko) ⋅ ne if 𝜉 < 0.

where

𝜉 = ((Dut + Dgravg)|Ki + (Dut + Dgravg)|Ko) ⋅ ne (4.19)
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5 STUDY OF ALGORITHM’S CONVERGENCE PROPERTIES

In this section we use manufactured solutions to test the convergence properties of our scheme, that

we have implemented within the DUNE framework [32–35] We introduce a set of solutions of a

three-phase black oil problem on a two dimensional domain. Two sets of fluids properties are consid-

ered. The first case uses fluids with the same densities and viscosities. It allows us to show the benefits

of using the subiteration scheme introduced in Section 3.3. The second test shows the correct behavior

of the algorithm with phases of different densities and viscosities. The parameters, such as the time

and density, involved in the numerical tests are all expressed in International System of Units (SI).

5.1 Manufactured solutions and test set up

The following tests aim to approximate the set of manufactured solutions defined as follows:

p𝓁(t, x, y) = (2 + 𝑥𝑦2 + x2 sin(t + y)), (5.1)

S𝓁(t, x, y) =
2 − x2y2

4
, (5.2)

Sv(t, x, y) =
3 − cos(t + x)

8
, (5.3)

Sa(t, x, y) =
1 + 2x2y2 + cos(t + x)

8
, (5.4)

where the variable zg can be shown to be equal to:

zg(t, x, y) =
3 − cos(t + x)

8
. (5.5)

The computational domain is the unit square Ω= [0, 1]2. The porosity of the domain is constant

equal to 0.2 everywhere. The phase relative permeabilities, respectively the capillary pressures, are

defined as follows [36, 37]:

𝜅𝑎𝑏𝑠 = 1, 𝜅𝓁 = S𝓁(S𝓁 + Sa)(1 − Sa), 𝜅v = S2
v , 𝜅a = S2

a. (5.6)

pc,v =
3.9

ln(0.01)
ln(1 − Sv + 0.01), pc,a = 6.3

ln(0.01)
ln(Sa + 0.01). (5.7)

We note that for this example, mass transfers are not considered so we set:

xg,𝓁 = 0, xo,𝓁 = 1, xg,v = 1, xo,v = 0. (5.8)

Once the phases densities and viscosities are set, the term sources ql, qv and qa are computed

accordingly. The convergence tests are performed on a set of six uniform grids with respective mesh

size h ∈ {0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625}. The convergence properties are evaluated by using

a time step 𝜏 that is set proportional to h or h2 with a final time T = 1. As our scheme is first order in

time and space, we expect the convergence rate in the L2 norm to be of order one when 𝜏 = h and order

two with 𝜏 = h2.

5.2 Tests with three components of equal densities and viscosities

We consider a fluid composed of phases that share the same densities and the same viscosities, all set

equal to one. We compare in Table 1 the results obtained with our algorithm when the subiteration
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TABLE 1 Convergence tests with components of equal densities and viscosities. The mesh size is denoted by h and the
number of degrees of freedom per unknown by ndf . The time step 𝜏 is set to the mesh size h. Tolerance of subiteration
scheme set to 10−7 when used

L2-norm of error Liquid pressure Aqueous saturation Gas fraction zg

h ndf Error Rate Error Rate Error Rate

No subiteration

0.2 25 3.16E−03 – 3.01E−02 – 4.86E−02 –

0.1 100 9.69E−04 1.71 8.30E−03 1.86 1.45E−02 1.74

0.05 400 5.10E−04 0.93 6.13E−03 0.44 4.02E−03 1.85

0.025 1,600 3.04E−04 0.75 4.16E−03 0.56 1.31E−03 1.62

0.0125 6,400 1.74E−04 0.80 2.43E−03 0.78 7.33E−04 0.84

With subiteration

0.2 25 2.68E−03 – 4.23E−02 – 4.35E−02 –

0.1 100 5.11E−04 2.39 1.24E−02 1.77 1.41E−02 1.63

0.05 400 1.20E−04 2.09 3.72E−03 1.74 4.02E−03 1.81

0.025 1,600 4.13E−05 1.54 1.12E−03 1.73 9.48E−04 2.08

0.0125 6,400 2.75E−05 0.59 3.47E−04 1.69 2.40E−04 1.98

scheme, introduced in Section 3.3, is either disabled or enabled with a tolerance set to 10−7. These

computations were done with a time step 𝜏 set to the mesh size h. The relative errors displayed when the

subiteration scheme is disabled are consistent with an algorithm of order one. When the subiteration

scheme is used, the rate of convergence is often close to two and the relative errors associated to the

three unknowns p𝓁 , Sa and zg are better than the relative errors obtained without subiteration.

We conclude that it is preferable to use the subiteration scheme when the time step follows a

Courant–Friedrichs–Lewy (CFL) like condition where 𝜏 is proportional to h. More information on

CFL can be found in [38].

5.3 Tests with three components of different densities and viscosities

We consider the same solutions and settings introduced previously except that we set the densities

and viscosities as follows:

𝜌l = 3, 𝜌v = 1, 𝜌a = 5, (5.9)

𝜇l = 0.75, 𝜇v = 0.25, 𝜇a = 0.5. (5.10)

Due to the approximation of the time derivative in the zg equation, the problem is approximated

with the subiteration scheme. Indeed at the first subiteration, the term
𝜙k+1𝜌k+1

t zk+1
g

𝜏
uses the saturation

at time tn to approximate the quantity 𝜌k+1
t . As the term 𝜌t depends of the time, an error of order zero

is introduced in the first subiteration. It drives us to approximate this problem with the subiteration

scheme where the tolerance is set to 10−7. The results are displayed in Table 2. In this case, the relative

errors using a time step 𝜏 set to h/10 are very similar to the one where 𝜏 = h2/10 (up to 10–20%). It

indicates that the error is dominanted by an error in space. The rate of convergence tends to two in

both case which is consistant with the use of finite element of order one.

The results presented in this section show that our algorithm behaves as expected for three-phase

black oil problem involving variable fluid properties and capillary pressure effects. As mentioned in

Sections 5.2, the subiteration scheme greatly improves the approximations for time step of same order
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TABLE 2 Convergence tests with components of different densities and viscosities. Subiteration’s tolerance set to 10−7.
The mesh size is denoted by h the time step by 𝜏 and the degrees of freedom per unknown by ndf

L2-norm of error Liquid pressure Aqueous saturation Gas fraction zg

h ndf Error Rate Error Rate Error Rate

𝜏 = h/10

0.2 25 2.58E−03 – 4.53E−02 – 9.20E−02 –

0.1 100 1.02E−03 1.34 1.34E−02 1.76 3.02E−02 1.61

0.05 400 3.80E−04 1.42 3.99E−03 1.75 9.57E−03 1.66

0.025 1,600 1.20E−04 1.66 1.14E−03 1.81 2.83E−03 1.76

0.0125 6,400 3.16E−05 1.93 3.06E−04 1.90 7.64E−04 1.89

𝜏 = h2/10

0.2 25 2.67E−03 – 4.56E−02 – 9.34E−02 –

0.1 100 1.11E−03 1.27 1.36E−02 1.75 3.10E−02 1.59

0.05 400 4.29E−04 1.37 4.09E−03 1.73 9.98E−03 1.64

0.025 1,600 1.46E−04 1.56 1.19E−03 1.78 3.04E−03 1.71

than the mesh size. As a consequence, all the computations reported in the rest of the paper use the

subiteration scheme with a tolerance set to 10−3.

6 ACTION OF GRAVITY ON A WATER INJECTION PROBLEM

We study the effect of gravity in a two component-two phase injection problem, with no mass transfer

between the phases. The porous medium is a vertical rectangular column filled with oil in liquid phase.

The aqueous phase (water) is injected from the top horizontal face of the medium. As expected, our

results show that the presence of gravity can either increase or slow the front propagation of the wetting

phase, depending of its orientation in the vertical direction.

6.1 Problem setting

We consider a three-dimensional domain Ω= [0, 10]× [0, 10]× [0, 100]. The system is composed of

a liquid phase and an aqueous phase with the following properties:

𝜙 = 0.2, 𝜌𝓁 = 800, 𝜌a = 1000, 𝜇𝓁 = 10−3, 𝜇a = 8.9 × 10−4, (6.1)

𝜅𝓁 = S2
𝓁 , 𝜅a = S2

a, 𝜅abs = 6.24 × 10−13. (6.2)

The capillary pressure is based on the Brooks-Corey [39] model.

pc,a =

{
S−0.5

a × 105 if Sa > 0.05,

(1.5 − 10Sa) × 0.05−0.5 × 105 otherwise.
(6.3)

Initially, the medium is mainly filled with oil with an initial liquid saturation S𝓁 |(t = 0) = 0.9. Water

is injected from the top horizontal face via the following Dirichlet boundary condition:

Sa|z=100 = 0.1 + 0.67
(t∕105)3

1 + (t∕105)3
. (6.4)
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FIGURE 1 Snapshots of the liquid saturation profile for various gravities at the time T = 106. Ω= [0, 10]× [0, 10]× [0, 100]

with h= 1 [Color figure can be viewed at wileyonlinelibrary.com]

To let the water fills the container, the pressure is set to a linear profile in the vertical direction as

follows:

p𝓁|t=0 = 2 × 106 − 2(100 − z) × 104 (6.5)

This initial condition is used as a Dirichlet pressure boundary condition on the faces (z = 0) and

(z = 100). Homogeneous Neumann conditions are applied elsewhere. Mass transfer effect or source

terms are not considered such that the rate of injection of water mainly depends of the pressure profile

and the gravity that is set to:

g = (0, 0, gz)T . (6.6)

where gz is a real to set. The propagation speed of the water then depends of the quantity 𝛻p𝓁 − 𝜌ag
involved in the transport terms of Equation (3.3). We note that capillarity effect also plays a role in the

transport of the water.

6.2 Influence of gravity on front propagation

We study three cases where the vertical component gz of the gravity g is set to either −9.81, 0 and 9.81.

The case gz = 0 correspond to an injection problem without gravity effect while the case gz = 9.81

can be seen as a test with gravity effect modulo a change of frame for the vertical direction. The

computations presented in this section use a uniform grid with a mesh size h = 1 and a time step set

to 𝜏 = 104 (CFL∼ 0.14).

Figure 1 shows 3D snapshots of the liquid saturation for the three different cases at time T = 106.

As the pressure gradient is negative in the vertical direction, we recover that the front propagation is

accelerated for gz =−9.81, respectively reduced for g = 9.81, with respect to the computation without

gravity effect.

The time evolution of the aqueous saturation at the point (5, 5, 50) is displayed in Figure 2. The

saturation Sa reaches a level of 0.7 at the time T = 9 × 105 for g =−9.81, respectively T = 1.2 × 106

for g = 0 and T = 1.9 × 106 for g = 9.81. It shows that the water is propagating 1.33 times faster

with g =−9.81, respectively 1.58 times slower with g = 9.81, than with g = 0. As the magnitude of

the vertical component of the pressure gradient is roughly equal to two times 𝜌a × 9.81, disregarding

the effect of the capillary pressure would lead us to expect the injected water to fill the container 1.5

times faster with g =−9.81, respectively two times slower with g = 9.81, compared to the case without

gravity. The results obtained by our algorithm are coherent with this prediction.

http://wileyonlinelibrary.com
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FIGURE 2 Time evolution of the liquid saturation for various gravities at the point (5, 5, 50) [Color figure can be viewed at

wileyonlinelibrary.com]

7 MASS TRANSFER WITHIN A THREE-COMPONENT THREE-PHASE
SYSTEM

We test our numerical scheme with a flow problem involving mass transfer between the liquid and vapor

phases in a three-dimensional heterogeneous medium. Both gas and water are injected in a porous

medium initially saturated with oil in liquid phase. Depending of the local pressure, the gas component

can be found in liquid and/or vapor phase. The oil component is forced to remain in liquid phase

by setting xg,v = 1.

7.1 A mechanism of mass transfer

The set up considered in this section relies on the idea that gas tends to be in vapor phase under low

pressure and in liquid phase under high pressure. To study a problem involving mass transfer, we

introduce two threshold pressures p0
thr

= 2 × 108 and p1
thr

= 3 × 108 such that the gas component is

entirely in vapor phase for pressures lower than p0
thr

and entirely in liquid phase for pressures higher

than p1
thr

.

Following [30], the oil and gas mass fractions in the liquid phase depend on the liquid phase

pressure:

xo,𝓁 =
𝜌STD
𝓁

𝜌STD
𝓁 + 𝜌STD

v f (p𝓁)
, xg,𝓁 =

𝜌STD
v f (p𝓁)

𝜌STD
𝓁 + 𝜌STD

v f (p𝓁)
, (7.1)

where 𝜌STD
𝓁 = 100 and 𝜌STD

v = 800 are the liquid and vapor densities at standard conditions. Unlike

[30] where the volumetric gas fraction dissolved in the liquid phase f is defined as in [40], we consider

a function f that is an increasing function of p𝓁 made to be constant for pressures lower than p0
thr

and

higher than p1
thr

. The function f is defined as follows:

f (p𝓁) =
⎧⎪⎨⎪⎩

0 if p𝓁 < p0
thr

0.4
(

1.0 + p∗((p∗)2−3.0𝜀2)
−2.0𝜀3

)
if p0

thr
< p𝓁 < p1

thr

0.8 otherwise.

(7.2)

where p∗ = p𝓁−0.5(p1
thr
+p0

thr
)

2
and 𝜀 = p1

thr
−p0

thr

2
. Figure 3 displays the profile xg,𝓁 .

http://wileyonlinelibrary.com
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FIGURE 3 Profile of the gas mass fraction xg,𝓁 as a function of liquid phase pressure

7.2 Phases properties. Problem’s initial and boundary conditions

The domain of computation Ω is set to [0, 1,000]× [0, 100]× [0, 100]. The densities and viscosities

of the liquid, vapor and aqueous phases are:

𝜇a = 𝜇𝓁 = 10−3, 𝜇v = 10−4, 𝜌𝓁 =
𝜌STD
𝓁 + 𝜌STD

v f (p𝓁)
Bo

, 𝜌v =
𝜌STD

v

Bg
, 𝜌a = 1000. (7.3)

where f is defined by (7.2), Bg and Bo are the gas and oil formation volume factors introduced in [40].

We set Bg = 0.25 and Bo = 1. The porosity and relative permeabilities are:

𝜙 = 0.2, 𝜅𝓁 = S2
𝓁 , 𝜅v = S2

v , 𝜅a = S2
a. (7.4)

The porous medium is heterogeneous as the absolute permeability of the media is discontinuous.

𝜅abs =

{
6.24 × 10−13 if (x, y, z) ∈ [100, 200] × [30, 70] × [0, 100]
6.24 × 10−12 otherwise.

(7.5)

The capillary pressure are defined with a formula based on the one of Brooks-Corey [39] with

𝜆 = 2. It reads:

pc,v =

{
−S−0.5

v × A𝑝𝑐 if Sv > 0.05,

(−1.5 + 10Sv) × 0.05−0.5 × A𝑝𝑐 otherwise,
(7.6)

and

pc,a =

{
S−0.5

a × A𝑝𝑐 if Sa > 0.05,

(1.5 − 10Sa) × 0.05−0.5 × A𝑝𝑐 otherwise,
(7.7)

where Apc is set to 107.

The reservoir is initially saturated with liquid, meaning (S𝓁 , Sv, Sa)|t = 0 = (1, 0, 0), and the initial

pressure is set to:

p𝓁|t=0 = 4.0 × 108 − 105x. (7.8)

We note that under these conditions, the initial liquid phase is composed of roughly 9% of gas

and 91% of oil. Water is injected by enforcing the following Dirichlet boundary conditions on the
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FIGURE 4 Time evolution of the phases distribution at different locations (x, y, z). The quantity Sa is represented by the

lower line and the quantity Sv + Sa is represented by the upper line

variable Sa:

Sa|(x=0) =
t3

10(1 + t3)
, (7.9)

with t = t × 10−5 where the time is denoted by t. The liquid phase pressure in the reservoir is then

slowly reduced by setting:

p𝓁|(x=0)∪(x=103) = 4.0 × 108 − 105x − 2.0 × 108 t3

1 + t3
. (7.10)

It allows us to inject a fluid composed of gas or a mixture gas–oil depending of the pressure

magnitude. It is done by imposing the following conditions on the saturation S𝓁:

S𝓁|x=0 =
⎧⎪⎨⎪⎩

1 − Sa|x=0 if p𝓁 > 3 × 108,

1 − Sa|x=0 − (2.7 − 9p𝓁|x=0 × 10−9) if 2 × 108 < p𝓁|x=0 < 3 × 108,

0 otherwise.

(7.11)

We note that Sa tends to 0.1 as p𝓁 gets closer to 2 × 108 which makes the above boundary condition

continuous in time. The corresponding Dirichlet condition on the variable zg can be deduced from

Equations (2.3) and (3.2). Homogeneous Neumann conditions are applied to p𝓁 ,Sa and zg elsewhere.

7.3 Numerical results

We study the above setting with a uniform grid of mesh size h= 10 and a time step 𝜏 = 103 s, meaning

0.012 day (CFL∼ 0.624). As the computational time grows, we expect the liquid phase to disappear for

the benefit of a vapor-aqueous system composed of gas and water with Sv = 0.9 and Sa = 0.1. Indeed, for

large time the pressure magnitude becomes smaller than 2× 108. As a consequence the fluids injected

are gas and water with respective saturation Sv = 0.9 and Sa = 0.1. Figure 4 displays the time evolution

of the phase distribution at the locations (50, 50, 50) and (85, 50, 50). We recover the expected behavior

as the liquid phase disappears with time while the aqueous saturation grows to 10% (see lower black

lines). Moreover, the plot shows that the vapor and aqueous phases are propagating faster in the region

of higher mobility. We also note that the evolution of the phase distributions is smoother with time as

no discontinuity of the media’s permeability is encountered.
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(a) (b)

FIGURE 5 Profile of the mass fraction xgl along the line (y= 50) ∩ (z= 50) at different times T [Color figure can be viewed

at wileyonlinelibrary.com]

(a) (b)

FIGURE 6 Profile of the pressures along the line (y= 50) ∩ (z= 50) at different times T. (a) p𝓁 in blue, (b) pv in green, (c) pa

in red [Color figure can be viewed at wileyonlinelibrary.com]

During the early transient regime, meaning t≤ 2× 105 s (i.e., 2.3 days) such that
t3

1+t3 ≤ 0.9, the

system is mainly composed of liquid and vapor phases. While the vapor phase is exclusively composed

of gas, due to imposing xg,𝓁 = 1, Figure 5 shows that the liquid phase is a mixture of oil and gas. As

time increases, the fraction of gas in the liquid phase tends to zero. This component disappearance

happens first in area close to the region x= 103. It is consistent with the boundary conditions imposed

to the liquid pressure as p𝓁|x= 1,000 goes under 2× 108 before p𝓁|x= 0. Figure 6 displays the profile

of the pressures on the same line and at the same times used to represent xg,𝓁 in Figure 5. It shows

that the liquid pressure becomes smaller than 2× 108 for x≥ 800 at time T = 1.39 days and at time

T = 2.43 days for x≥ 200. These results are consistent with the profile of xg,𝓁 where this mass fraction

is zero for x≥ 200 at time T = 2.43 days and for x≥ 800 at time T = 1.39 days.

In Figure 7, we display snapshots of the liquid saturation to show the influence of the low mobility

region in the transport of the injected components. We recall that the low mobility area is represented

by the region [100, 200]× [30, 70]× [0, 100]. It has an absolute permeability 10 times smaller than in

the rest of the reservoir. Figure 7a shows that the injected phases are not flooding the low permeability

region as the liquid phase remains high there. As the time incrases, the injected phases manage to

recover a homogeneous vertical front of propagation as shown in Figure 7b near the plan (x= 300).

8 RANDOM DISTRIBUTION OF ABSOLUTE PERMEABILITY

We investigate the robustness of our algorithm for problem involving highly heterogeneous media.

The three-phase three-component set up consists of injecting a mixture of gas and water in a reservoir

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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(a) (b)

FIGURE 7 Snapshots of the liquid saturation profile at various times T [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Distribution of the random permeability 𝜅rand. The effective permeability is multiplied by 𝜅ref = 6.24× 10−13

[Color figure can be viewed at wileyonlinelibrary.com]

mainly filled with oil. The absolute permeability is made highly heterogeneous by generating it ran-

domly on each grid cell with a ratio of magnitude of order 103. The dimension of the reservoir, denoted

by Ω, is set to [0, 100]× [0, 10]× [0, 10].

8.1 Injection with an absolute permeability generated randomly

The three phase fluids system considered has the same physical properties than the test of Section 7 up

to one exception: we set f = 0. We recall that f was previously defined in Equation (7.2). Setting this

function to zero means that xg,𝓁 = 0 such that mass transfer does not occur. We refer to Equations (7.3)

and (7.4) for a definition of the porosity and the fluids densities, viscosities and permeabilities. The

absolute permeability of the reservoir is defined as follows:

𝜅abs(x, y, z) = 𝜅rand𝜅ref (8.1)

where 𝜅ref is set to 6.24× 10−13. The function 𝜅rand is a piecewise constant function that takes value in

[1, 103]. Its values on the grid’s cells are generated randomly. Figure 8 displays the three-dimensional

distribution of 𝜅rand in the domain Ω. A two dimensional representation, in the plane (y= 5), is also

shown. It confirms that the absolute permeability considered in this test is highly heterogeneous in

the whole domain. The capillary pressures are defined as in Section 7 where the coefficient Apc is set

to 106.

The reservoir is initially filled with a mixture of liquid and vapor phases by setting:

(S𝓁 , Sv, Sa)|t=0 = (0.9, 0.1, 0). (8.2)

The initial pressure is defined as follows:

p𝓁|t=0 = 2.0 × 107 − x × 105. (8.3)

Dirichlet boundary conditions that matches the liquid pressure initial condition are applied on the

faces (x = 0) and (x = 100). The following boundary conditions are enforced on the aqueous and vapor

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


CAPPANERA AND RIVIÈRE 23

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000

Ph
as

es

Time in s

Aqueous

Vapor

Liquid

FIGURE 9 Time evolution of the phases distribution at the point (40, 5, 5). The quantity Sa is represented by the lower line

and the quantity Sv + Sa is represented by the upper line. Ω= [0, 100]× [0, 10]× [0, 10] with h= 1

saturations:

Sa|(x=0) =
t3

10(1 + t3)
, Sv|(x=0) = 0.1 + 8t3

10(1 + t3)
(8.4)

with t = t × 10−2. The Dirichlet conditions imposed to the variable zg can be derived from

Equations (2.3) and (3.2). Homogeneous Neumann conditions are applied to p𝓁 , Sa and zg elsewhere.

The set up is approximated with a uniform grid of mesh size h = 1. The time step 𝜏 is set to 0.5

(CFL∼ 0.312). Figure 9 displays the time evolution of the phase distribution at the point (40, 5, 5).

The propagation of gas in the reservoir is represented by a smooth curve till water appears around the

time T = 2,000 s. At this instant, the vapor saturation has nearly reached its asymptotic value equal to

0.9. Thus, for time T ≥ 2,000 s the remaining liquid phase is replaced with water. This figure alone

could lead us to believe that the front propagation of gas and water in the media is acting similarly

than in a case with homogeneous media. However this local behavior does not reflect how the gas

and water propagate in the reservoir. To have a better understanding, we show in Figure 10 a thresh-

old of the three-dimensional profile of the aqueous saturation at different times. The minimum value

of the threshold is set to 0.01 and the maximum value to 0.1. We can notice the appearance of fin-

gering effect, phenomena that is known to occur in highly heterogeneous media see [15, 41–45].

Indeed, the front of propagation of the water component is not anymore a flat vertical surface and so

even after a large computational time. Due to the presence of high and low mobility regions, located

randomly in the reservoir, the injected water follows the direction that are more optimal to its prop-

agation which lead to the creation of little fingers. Similar behavior can be observed with the oil

component.

8.2 Random permeability with a channel of higher magnitude

We consider the same set up and numerical resolution than previously apart that the absolute

permeability is generated as follows:

𝜅abs(x, y, z) =

{
𝜅1

rand
𝜅ref if 3 ≤ z ≤ 7,

𝜅2
rand

𝜅ref otherwise,
(8.5)
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(a) (b)

FIGURE 10 Threshold of the aqueous saturations in a 3D rendering. Minimum value represented is Sa = 0.01 and maximum

value represented is Sa = 0.1 [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 11 Time evolution of the phases distribution at different points (x, y, z). (a) The quantity Sv is represented by the

black line. (b) the quantity Sa is represented by the lower line and the quantity Sv + Sa is represented by the upper line. Ω= [0,

1,000]× [0, 100]× [0, 100] with h= 10

where 𝜅ref is set to 6.24× 10−13. The functions 𝜅1
rand

and 𝜅2
rand

are piecewise constant functions that

takes value in [50, 1,050], respectively [1, 10]. This permeability is considered to create a region

of high mobility represented by the channel [0, 100]× [0, 10]× [3, 7]. Figure 11 displays the time

evolution of the phases distribution at the points (5, 5, 2) and (5, 5, 5). The vapor and aqueous phases

are propagating faster at the point (5, 5, 5) as it is inside the channel of higher mobility. Indeed, the

aqueous phase start to appear around the time 400 s at the point (5, 5, 5) while it does not appear after

4,000 s at the point (5, 5, 2). This difference is consistent with the difference of absolute permeability

that is in average 100 times larger in the channel than in the rest of the media.

Fingering effect similar to the one observed in the previous Section 8.1 can be observed as shown

in Figure 12. This figure displays the region where the aqueous saturation is in the interval [0.01, 0.1]

at the time 2,000 and 4,000 s. Small fingering effects can be seen near the two fronts of propagation,

one in the high mobility region and one near the face x = 0 outside the channel. Such effects could be

more accentuated by adding gravity effects or setting different order of magnitude for the aqueous and

liquid viscosity.

9 CONCLUSION AND PERSPECTIVES

We have introduced a new time and space discretization technique that uses a DG method to approx-

imate the three-phase and three-component black oil problem. The algorithm is based on the formu-

lations introduced in [12, 30]. The scheme allows for the occurrence of mass transfer between the

http://wileyonlinelibrary.com
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(a) (b)

FIGURE 12 Threshold of the aqueous saturations in a 3D rendering. Minimum value represented is Sa = 0.01 and maximum

value represented is Sa = 0.1 [Color figure can be viewed at wileyonlinelibrary.com]

liquid and vapor phases. It has been validated on numerous problems ranging from convergence tests

with manufactured solutions to more physical set up that involve gravity and phase disappearance.

The robustness of the algorithm has been checked on highly heterogeneous media where the absolute

permeability varies over three-order of magnitude. The benefits of using high order finite element is

currently being investigated for viscous fingering problem. Future studies are also engaged to show

the ability of our algorithm to approximate well production problem [47]. Qualitative and performance

comparisons between this technique and codes using different formulation or approximation method

on benchmarks [46] are being considered.
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APPENDIX A: NOMENCLATURE

TABLE A1 Nomenclature of physical variables. The phase i can
either represent the liquid phase (i= l), the vapor phase (i= v) or
the aqueous phase (i= a). The component j can either represent oil
(j= o), gas (j= g) or water (j=w)

Notation Physical quantity

𝜌i Density of the phase i

pi Pressure of the phase i

pc,v Vapor capillary pressure

pc,a Aqueous capillary pressure

xj,i Mass fraction of component j in phase i

𝜆i Mobility of the phase i

𝜇i Viscosity of the phase i

𝜅 i Relative permeability of the phase i

𝜅abs Absolute permeability

Si Saturation of phase i

zg Total fraction of gas

qi Source term related to the phase i

𝜙 Porosity

g Gravity

APPENDIX B: DETAILS ON THE COMPUTATION OF SOME PARTIAL DERIVATIVES

This appendix aims to provide information necessary for the correct implementation of the algorithm

described in Section 3. It focuses on describing how the variables
𝜕Fg

𝜕zg
and the partial derivatives of the

liquid and vapor saturations are computed.

B.1 Computation of 𝜕Fg

𝜕zg

To compute the derivative
𝜕Fg

𝜕zg
, we rewrite Fg as a function of zg. We assume that the relative perme-

ability 𝜅𝓁 , respectively 𝜅v and 𝜅a, is a differentiable function of S𝓁 and Sa, respectively of Sv and Sa.

https://doi.org/10.1002/num.22324
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We can write:

𝜅l = 𝜅𝓁(S𝓁 , Sa), 𝜅v = 𝜅v(Sv) and 𝜅a = 𝜅a(Sa). (B.1)

The definition of Fg can be rewritten as follows:

Fg = 𝜇a
xg,𝓁𝜇v𝜌𝓁𝜅𝓁(S𝓁 , Sa) + xg,v𝜇𝓁𝜌v𝜅v(Sv)

𝜇a𝜇v𝜌𝓁𝜅𝓁(S𝓁 , Sa) + 𝜇a𝜇𝓁𝜌v𝜅v(Sv) + 𝜇𝓁𝜇v𝜌a𝜅a(Sa)
.

As S𝓁 and Sv are functions of the variable zg, see Equations (3.13) and (3.14), we can compute the

derivative
𝜕Fg

𝜕zg
as follows:

𝜕Fg

𝜕zg
= xg,𝓁

𝜇2
a𝜇𝓁𝜇v𝜌𝓁𝜌v

(
𝜅v(Sv)

𝜕𝜅𝓁
𝜕S𝓁

(S𝓁 , Sa)
𝜕S𝓁
𝜕zg

− 𝜅𝓁(S𝓁 , Sa)𝜅′
v(Sv)

𝜕Sv
𝜕zg

)
)
+ 𝜇a𝜇𝓁𝜇

2
v𝜌a𝜌𝓁𝜅a(Sa)

𝜕𝜅𝓁
𝜕S𝓁

(S𝓁 , Sa)
𝜕S𝓁
𝜕zg

(𝜇a𝜇v𝜌𝓁𝜅𝓁(S𝓁 , Sa) + 𝜇a𝜇𝓁𝜌v𝜅v(Sv) + 𝜇𝓁𝜇v𝜌a𝜅a(Sa))2

+ xg,v

𝜇2
a𝜇𝓁𝜇v𝜌𝓁𝜌v

(
𝜅𝓁(S𝓁Sa)𝜅′

v(Sv)
𝜕Sv
𝜕zg

− 𝜅v(Sv)
𝜕𝜅𝓁
𝜕S𝓁

(S𝓁 , Sa)
𝜕S𝓁
𝜕zg

)
+ 𝜇a𝜇

2
𝓁𝜇v𝜌a𝜌v𝜅a(Sa)𝜅′

v(Sv)
𝜕Sv
𝜕zg

(𝜇a𝜇v𝜌𝓁𝜅𝓁(S𝓁 , Sa) + 𝜇a𝜇𝓁𝜌v𝜅v(Sv) + 𝜇𝓁𝜇v𝜌a𝜅a(Sa))2
.

We note that the term
𝜕Sv

𝜕zg
can be replaced by − 𝜕S𝓁

𝜕zg
in the above formula. It reads:

𝜕Fg

𝜕zg
=

𝜇2
a𝜇𝓁𝜇v𝜌𝓁𝜌v(xg,𝓁 − xg,v)

(
𝜅v(Sv)

𝜕𝜅𝓁

𝜕S𝓁
(S𝓁 , Sa) + 𝜅𝓁(S𝓁)𝜅′

v(Sv)
)

𝜕S𝓁
𝜕zg

(𝜇a𝜇v𝜌𝓁𝜅𝓁(S𝓁 , Sa) + 𝜇a𝜇𝓁𝜌v𝜅v(Sv) + 𝜇𝓁𝜇v𝜌a𝜅a(Sa))2

+
𝜇a𝜇𝓁𝜇v𝜌a

(
xg,𝓁𝜇v𝜌𝓁

𝜕𝜅𝓁

𝜕S𝓁
(S𝓁 , Sa) − xg,v𝜇𝓁𝜌v𝜅

′
v(Sv)

)
𝜕S𝓁
𝜕zg

𝜅a(Sa)

(𝜇a𝜇v𝜌𝓁𝜅𝓁(S𝓁 , Sa) + 𝜇a𝜇𝓁𝜌v𝜅v(Sv) + 𝜇𝓁𝜇v𝜌a𝜅a(Sa))2
. (B.2)

B.2 Derivatives of the saturations S𝓁 and Sv with respect to zg

The quantities
𝜕S𝓁
𝜕zg

and
𝜕Sv

𝜕zg
can be derived from Equations (3.13) and (3.14):

𝜕S𝓁

𝜕zg
=

−𝜌𝓁𝜌v(xg,v − xg,𝓁)(1 − Sa) − 𝜌a(𝜌vxg,v − 𝜌𝓁xg,𝓁)Sa

((xg,v − zg)𝜌v + (zg − xg,𝓁)𝜌𝓁)2
, (B.3)

𝜕Sv

𝜕zg
=

𝜌𝓁𝜌v(xg,v − xg,𝓁)(1 − Sa) + 𝜌a(𝜌vxg,v − 𝜌𝓁xg,𝓁)Sa

((xg,v − zg)𝜌v + (zg − xg,𝓁)𝜌𝓁)2
. (B.4)

The terms
𝜕Sv

𝜕zg

+
and

𝜕Sv

𝜕zg

−
used in Equation (3.10) are defined as follows:(
𝜕Sv

𝜕zg

)+

=
𝜌𝓁𝜌v(xg,v − xg,𝓁)(1 − Sa) + 𝜌a𝜌vxg,vSa

((xg,v − zg)𝜌v + (zg − xg,𝓁)𝜌𝓁)2
, (B.5)

(
𝜕Sv

𝜕zg

)−

=
−𝜌a𝜌𝓁xg,𝓁Sa

((xg,v − zg)𝜌v + (zg − xg,𝓁)𝜌𝓁)2
. (B.6)

B.3 Other partial derivatives involving the saturation Sv

The terms
𝜕Sv

𝜕xg,𝓁
,

𝜕Sv

𝜕xg,𝓁
,
𝜕Sv

𝜕𝜌𝓁
,
𝜕Sv

𝜕𝜌v
and

𝜕Sv

𝜕𝜌a
used in Equation (3.10) can be derived from Equation (3.14). We

have:
𝜕Sv

𝜕xg,𝓁
=

𝜌𝓁(𝜌v(1 − Sa)(zg − xg,v) + 𝜌aSazg)
((xg,v − zg)𝜌v + (zg − xg,𝓁)𝜌𝓁)2

, (B.7)
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𝜕Sv

𝜕xg,v
=

−𝜌v(𝜌𝓁(−1 + Sa)(xg,𝓁 − zg) + 𝜌aSazg)
((xg,v − zg)𝜌v + (zg − xg,𝓁)𝜌𝓁)2

, (B.8)

𝜕Sv

𝜕𝜌𝓁
=

−(xg,𝓁 − zg)(𝜌v(1 − Sa)(xg,v − zg) − 𝜌aSazg)
((xg,v − zg)𝜌v + (zg − xg,𝓁)𝜌𝓁)2

, (B.9)

𝜕Sv

𝜕𝜌v
=

−(xg,v − zg)(𝜌𝓁(1 − Sa)(zg − xg,𝓁) + 𝜌aSazg)
((xg,v − zg)𝜌v + (zg − xg,𝓁)𝜌𝓁)2

, (B.10)

𝜕Sv

𝜕𝜌a
=

Sazg

(xg,v − zg)𝜌v + (zg − xg,𝓁)𝜌𝓁
. (B.11)




