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a b s t r a c t 

Considering the current advances in experimental capabilities in fluid mechanics and the advances in 

computing power and numerical methods in computational fluid mechanics, a question that naturally 

arises is whether the two sets of techniques are approaching a level of sophistication sufficiently high to 

deliver results on turbulent flows in realistic geometries that are comparable. The purpose of this paper 

is to give elements of answers to this question by considering the so-called von Kármán flow where the 

fluid in a cylindrical container is driven by two counter-rotating impellers. We compare in the mentioned 

flow the torque and the flow topology obtained by experiments, direct numerical simulations (DNS), and 

large eddy simulations (LES) at various Reynolds numbers ranging from R e = O(10 2 ) to R e = O(10 5 ) . In 

addition to validating the proposed LES model, the level of agreement that is observed between the nu- 

merical and the experimental data shows that the degree of accuracy of each of these techniques is 

reaching a threshold beyond which it is possible to use each of them with high confidence to explore 

and better understand turbulence in complex flows at R e = O(10 5 ) and beyond. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The equations modeling the motion of incompressible homo- 

eneous fluids are well-established. Denoting by u the three- 

imensional velocity field, p the pressure, ρ the (constant) den- 

ity, f the forcing, and ν the kinematic viscosity, the incompress- 

ble Navier-Stokes equations take the following form: 

 t u + u ·∇u = − 1 

ρ
∇ p + ν�u + f , (1) 

∇ ·u = 0 . (2) 

t is known since the pioneering work of Reynolds that after proper 

escaling of the equations by L and U , some characteristic length 
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nd velocity scales, the Navier-Stokes equations only depend on 

ne parameter: the Reynolds number R e := LU/ν . The above sys- 

em of balance equations is simple to formulate, but this apparent 

implicity is deceiving since the Navier-Stokes system is the source 

f the notoriously hard problem commonly referred to as turbu- 

ence [1] . 

Over the years, two competing strategies have been used to 

dvance the understanding of turbulence: numerical simulations 

nd laboratory experiments. The constant progresses made in com- 

uter technology, computing techniques, and imaging softwares 

ave pushed the limits of applicability of both numerical simu- 

ations and laboratory experiments. For instance, the availability 

f larger parallel computers and progresses made in parallel lin- 

ar algebra libraries now allow Direct Numerical Simulation (DNS) 

nd turbulence models, like Large Eddy Simulation (LES), to han- 

le larger Reynolds numbers and to perform longer time statis- 

ics. Recent algorithmic progresses made on penalty methods now 

llow to use Fourier techniques to simulate complex geometries, 

https://doi.org/10.1016/j.compfluid.2020.104750
http://www.ScienceDirect.com
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Fig. 1. Experimental setup with H the distance between the inner faces of the disks, 

R the cylinder radius, f i the frequency of each disk. Impellers with 8 blades are 

called TM87. The arrows show the rotation direction for the CONTRA configuration. 

Fig. 2. TM87 impellers (8 blades) with radius R t and angle | α| = 72 ◦ . The support- 

ing disks are in the background, the blades are in the foreground, the shafts are 

behind the supporting disks. 
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hereby unlocking the power of highly performant spectral meth- 

ds. Similarly, technological progresses over the years have steadily 

ncreased experimental capabilities. For instance, the use of CCD 

ameras combined with the continuous increase of the perfor- 

ance of computers have made digital particle image velocimetry 

 very accurate tool, which is now widely available. Particle im- 

ge velocimetry (PIV) gives access to all the velocity components 

n laboratory experiments. 

A natural question that comes to mind is whether we are at 

 point where numerical techniques and laboratory experiments 

ave reached a common ground where both techniques can be 

sed at the same time to investigate the same complex flow, at the 

ame values of the control parameter, and be either compared to 

ach other or used to complement each other in order to advance 

he theory of turbulence. One goal of this paper is to give elements 

f answer to this question. The other two goals of the paper are to 

alidate the performance of two numerical techniques: (i) an en- 

ropy viscosity LES technique and (ii) a pseudo-penalty technique 

o simulate moving boundaries. Comparisons between LES (and/or 

NS) simulations and experimental results have already been con- 

ucted on similar setups [2–4] , but the experimental data used 

herein were obtained from the literature. Instead here we produce 

oth experimental and numerical results in the very same config- 

ration. 

In the present paper we focus our attention on the so-called 

on Kármán flow which consists of a fluid in a cylindrical container 

riven by a pair of counter-rotating impellers. The turbulence gen- 

rated in this setup is neither isotropic, nor homogeneous, and is 

herefore an example of turbulence in a complex geometry that 

s rarely discussed in the turbulence literature. To account for the 

oving impellers driving the fluid in the numerical simulations, 

e adapt the pseudo-penalty method by [5] to a mixed finite el- 

ment/Fourier approximation setting. We also adopt an entropy- 

iscosity-based LES technique to handle large Reynolds numbers. 

e demonstrate in this paper that in this setting the combination 

f the pseudo-penalty method and the entropy-viscosity-based LES 

odel allows us to reach levels of accuracy that are comparable 

o laboratory experiments. By carefully comparing global and local 

ndicators of turbulence at similar values of R e , we show that the 

umerical simulations and the laboratory experiments agree with 

ach other for Reynolds numbers ranging from R e = O(10 2 ) up to 

 e = O(10 5 ) . Moreover, the numerical simulations reproduce dif- 

erent bifurcated states of the turbulent flows (i.e., turbulent states 

hat break symmetries and coexist at the same high Reynolds 

umber) that are experimentally observed. 

The paper is organized as follows. In Section 2 we describe the 

on Kármán flow together with the relevant control parameters. 

he numerical methods used to approximate the Navier-Stokes 

quations with moving solid obstacles are described in Section 3 . 

e also briefly describe in this section the entropy viscosity stabi- 

ization model that allows us to approximate large Reynolds num- 

er flows with coarse meshes. Section Section 4 introduces the ex- 

erimental setup and additional parameters that characterize von 

ármán flows. Comparisons between the experimental results and 

he numerical simulations are done in Section 5 . One highlight of 

his section is Fig. 15 where we compare experimental measure- 

ents of the global energy dissipation in the considered setup 

ith numerical simulations in the range R e ∈ [10 , 10 5 ] . Concluding 

emarks are reported in Section 7 . 

. Setup description 

The von Kármán (VK) flow is produced by the stirring of a fluid 

ontained in a cylindrical tank. This setup has been extensively 

tudied using various fluids such as glycerol, water, air, helium gas, 

uperfluid helium, etc. [6–11] , since it is a canonical configuration 
2 
or the investigation of turbulence in a confined geometry. The ra- 

ius and height of the cylindrical vessel are denoted R and H v , re-

pectively. The stirring is done with two counter-rotating impellers 

hat are separated by a distance denoted H . A schematic represen- 

ation of the experimental setup is shown in Fig. 1 and a sketch of 

he impellers is shown in Fig. 2 . The impellers may rotate at dif- 

erent signed frequencies f 1 and f 2 . In the present paper, we focus 

ur attention on the cases where the two impellers are counter- 

otating at the same frequency, i.e., f i := | f 1 | = | f 2 | and f 1 = − f 2 .

ooking at Fig. 1 , we adopt the following conventions: the verti- 

al axis is oriented upward, and we use the right-hand rule to 

efine the sign of rotations about the vertical axis. For instance, 

or the situation shown in Fig. 1 the bottom impeller rotates in 
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he positive direction and the top impeller rotates in the nega- 

ive direction; that is 0 ≤ f 2 = − f 1 . This operating condition is re-

erred to in the rest of the paper with the adjective CONTRA. Sim- 

larly when − f 1 = f 2 ≤ 0 , we say that the configuration is ANTI.

otice that the CONTRA and the ANTI operating conditions pro- 

uce different flows since the blades are curved as shown in Fig. 2 .

he convention adopted in Fig. 2 is that the supporting disk is in 

he background, the blades are in the foreground, and the shaft 

s behind the supporting disk. In this figure, the bottom impeller 

orks in the CONTRA condition when it rotates counter-clockwise, 

nd it works in the ANTI condition when it rotates clockwise. The 

NTI flow regime is characterized by a larger level of fluctuations 

nd larger energy dissipation than the CONTRA regime; as will be 

hown below, it is also subject to a spontaneous symmetry break- 

ng bifurcation of the mean flow topology. 

In the entire paper, all the velocity fields are non dimension- 

lized using the typical forcing velocity V 0 := 2 πRf i based on the 

adius of the cylinder and the rotation frequency of the impellers. 

he control parameter of the VK flow is the Reynolds number , de- 

ned as: 

 e := 2 π f i R 

2 ν−1 . (3) 

nless explicitly specified otherwise, all the lengths are now ex- 

ressed in units of the cylinder radius R . 

. Numerical approximation method 

The simulations corresponding to the VK experimental setup 

ave been done using a code henceforth referred to as SFEMaNS 

for Spectral/Finite Elements code for Maxwell and Navier-Stokes 

quations). This section describes the algorithm we have adopted 

o represent the moving solid obstacles like the counter-rotating 

mpellers shown on Fig. 2 . The convergence of the method is 

emonstrated with analytical tests. We also describe the LES model 

e use to compute large Reynolds number flows on grids that are 

ot fine enough to represent the viscous dissipation scales. 

.1. Frame of work: The code SFEMaNS 

SFEMaNS uses a hybrid spatial discretization combining spec- 

ral and finite elements. In a nutshell the approximation in space is 

one by using a Fourier decomposition in the azimuthal direction 

nd the continuous Hood-Taylor Lagrange element P 1 − P 2 (linear 

pproximation for pressure and quadratic approximation for the 

elocity in the meridian section). All the discrete functions A are 

ritten in the generic form: 

 (r, θ, z, t) = A 

0 , cos 
h 

(r, z, t) + 

M ∑ 

m =1 

A 

m, cos 
h 

(r, z, t) cos (mθ ) 

+ 

M ∑ 

m =1 

A 

m, sin 
h 

(r, z, t) sin (mθ ) , (4) 

ith ( r, θ , z ) the cylindrical coordinates, t the time and M the num-

er of Fourier modes considered. The functions A 

m, cos 
h 

and A 

m, sin 
h 

elong to a finite element space (piecewise linear approximation 

or pressure and piecewise quadratic approximation for the ve- 

ocity). The approximation in time is done by using a pressure- 

orrection method described in [12] . The moving counter-rotating 

mpellers are accounted for by using a pseudo-penalty technique 

escribed in [5] . The full algorithm is detailed in Section 3.2 . Mod-

lo the computations of nonlinear terms with the fast Fourier 

ransform, the linear problems at each time step for each Fourier 

ode in the meridian section are uncoupled and are thereby 

arallelized by using the message passing interface. The solution 
3 
f each linear problem in the meridian section is further paral- 

elized by using graph partitioning techniques from the METIS li- 

rary [13] and subroutines from the portable extensible toolkit for 

cientific computation library (PETSc) [14] , for the linear algebra. 

FEMaNS has been thoroughly validated on numerous manufac- 

ured solutions and against other hydrodynamic codes [15–18] . 

.2. Algorithm to enforce moving domains 

Since the impellers move with opposite angular velocities, it 

s impossible to find a frame of reference where the fluid do- 

ain is time-independent. This problem is addressed by combining 

nto a single computational domain the counter-rotating impellers, 

solid (t) , and the fluid domain, 	fluid (t) . Using the cylindrical co- 

rdinate system ( r, θ , z ) about the vertical axis with the convention 

hat the vertical axis is oriented upwards, we then define the indi- 

ator function of the fluid domain, χ , as follows: 

(r, θ, z, t) = 

{
1 if (r, θ, z) ∈ 	fluid (t) 
0 if (r, θ, z) ∈ 	solid (t) . 

(5) 

s shown in [19] , the problem can be reformulated in the global 

omputational domain by adding a penalty term of the form 

1 − χ)(u − u obst ) /α on the left-hand side of the momentum 

q. (1) where α is a user-dependent penalty parameter and u obst 

he velocity of the disks and the blades given by: 

 obst (r, θ, z) = 

{
−sgn ( f 2 ) r e θ if z > 0 , 

sgn ( f 2 ) r e θ if z ≤ 0 , 
(6) 

ith sgn( f 2 ) equal to 1 if f 2 > 0, 0 if f 2 = 0 , and −1 otherwise.

 significant difficulty with this formulation when working with 

he Fourier approximation is that the term χu involves FFTs and 

hereby cannot be made implicit. An elegant solution to this prob- 

em has been proposed in [5] . It is showed therein that the prob-

em can also be reformulated by solving the following balance 

quations: 

1 − χ) 
u − u obst 

α
− 1 

R e 
�u + ∇ p = χ(−∂ t u − ( ∇ ×u ) ×u + f ) , (7a) 

 ·u = 0 , (7b) 

here u is the velocity field, p is the pressure field, f is the forcing

erm introduced in Eq. (1) and α is a penalty parameter. The key 

dea in [5] is the observation that replacing α by τ , with τ the 

ime step used to discretize the time derivative ∂ t u , gives a scheme 

hat is stable and does not involve the term χu on the left-hand 

ide. 

The system (7) is approximated in time by using a pressure- 

orrection method. For any time-dependent function v ( t ), we de- 

ote by v n the approximation of v at time t n = nτ . The velocity is

pdated by using the following time-stepping scheme: 

3 u 

n +1 

2 τ
− 1 

R e 
�u 

n +1 = −∇ p n + (1 − χn +1 ) 
3 u 

n +1 
obst 

2 τ

+ χn +1 

(
4 u 

n − u 

n −1 

2 τ
− ∇ ( 

4 ψ 

n − ψ 

n −1 

3 

) 

)
+ χn +1 

(
−( ∇ ×u 

∗,n +1 ) ×u 

∗,n +1 + f 
n +1 

)
, (8) 

here u 

∗,n +1 = 2 u 

n − u 

n −1 . Then, the pressure increment ψ 

n +1 is 

btained by solving the following Poisson problem: 

ψ 

n +1 = 

3 

2 τ
∇ ·u 

n +1 . (9) 

inally, the pressure is updated as follows: 

p n +1 = p n + ψ 

n +1 − 1 

R 

∇ ·u 

n +1 . (10) 

e 
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Table 1 

L 2 -norm of the errors on the velocity and outer pressure at 

time t = 0 . 1 and rates of convergence. The mesh size h is set 

to 5 ×10 −3 in P 2 . 

time step τ u ( L 2 -error) rate p ( L 2 -error) rate 

10 −3 6.16E-3 - 8.55E-3 - 

5 ×10 −4 4.40E-3 0.49 6.10E-3 0.49 

2 . 5 ×10 −4 3.14E-3 0.49 4.36E-3 0.48 

10 −4 1.90E-3 0.55 2.64E-3 0.55 

5 ×10 −5 1.12E-3 0.76 1.51E-3 0.81 
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Table 2 

L 2 -norm of the errors on the velocity and outer pressure at 

time t = 0 . 1 and rates of convergence. The time step is set to 

0.4 h 2 with h the mesh size in P 2 . 

mesh size h u ( L 2 -error) rate p ( L 2 -error) rate 

0.05 1.91E-2 - 3.05E-2 - 

0.025 1.23E-2 0.63 1.72E-2 0.83 

0.0125 5.67E-3 1.12 8.10E-3 1.09 

0.005 2.51E-3 0.89 3.45E-3 1.23 

0.0025 5.31E-4 2.24 6.14E-4 2.49 
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he adaptation of the pseudo-penalty technique to pressure- 

orrection methods relies on the observation that the pressure in- 

rement ψ also needs to be penalized by the function χ in (8) to 

et a stable scheme. A proof of the stability of the algorithm with 

 obs = 0 is established in [20] . 

Notice that the velocity and the pressure are solutions of the 

avier-Stokes equations in the region where χ = 1 , i.e., in the fluid 

omain 	fluid (t) . In the region where χ = 0 , i.e., in 	solid (t) , the

omentum equation reduces to 3 u n +1 

2 τ − 1 
R e 

�u 

n +1 = −∇ p n + 

3 u n +1 
obst 

2 τ ; 

o first order in τ , the solution to this linear Stokes problem 

s u = u obst + O( τR e ) . The presence of a boundary layer of thick-

ess O(( τR e ) 
1 
2 ) near the solid-fluid interface limits the global con- 

ergence rate in time to 1 
2 , but when the Reynolds number is 

arge enough the convergence rate in time becomes 3 
2 as the time 

tep τ scales like R e 
−1 / 2 

, see Section 1 . So the higher the kinetic 

eynolds number the smaller the term 

τ
R e 

, i.e., the more accurate 

he method. Another method was used in [3,21,22] based on the 

irect-forcing approach proposed by [23] where boundary body 

orces allow the imposition of boundary conditions on interfaces 

ot coinciding with the computational grid. 

.3. Manufactured tests 

To illustrate the convergence properties of the algorithm, we 

onsider a set of manufactured solutions ( χ , u , p ) with a relative

mall Reynolds number R e = 100 . The domain of computation 	 is 

et to { (r, θ, z) | 0 . 2 ≤ r ≤ 1 ; 0 ≤ θ ≤ 2 π ; −1 ≤ z ≤ 1 } and the solu-

ions considered are defined as follows: 
 

 

 

 

 

 

 

 

 

 

 

χ(r, θ, z, t) = 1 r≥0 . 5 , 

u r (r, θ, z, t) = (2 r − 1) 2 sin (z + t) 1 r≥0 . 5 , 

u θ (r, θ, z, t) = 0 , 

u z (r, θ, z, t) = (2 − 1 
r 
)(6 r − 1) cos (z + t) 1 r≥0 . 5 

+(r − 0 . 5) sin (2 θ ) 1 r≥0 . 5 , 

p(r, θ, z, t) = r 2 z 3 cos (t) + r cos (θ ) , 

(11) 

he source term f in the momentum Eq. (8) is computed accord- 

ngly. It involves the first five Fourier modes, meaning M = 4 with 

 defined in Eq. (4) . 

To investigate the convergence properties of the algorithm, we 

erform two sets of tests. First we focus on the time convergence 

f the method by analyzing results obtained with a fixed mesh size 

 equal to 5 ×10 −3 . Then we study the global convergence of the al-

orithm by setting τ = 0 . 4 h 2 and by performing tests on five differ-

nt grids of mesh size h ∈ {0.05, 0.025, 0.0125, 0.005, 0.0025}. The 

ests are performed using M = 4 , meaning that only the Fourier 

odes m ∈ {0, 1, 2, 3, 4} are computed. 

Table 1 displays the L 2 -norm of the error on the velocity and 

he L 2 -norm of the error on the pressure with a fixed mesh size

nd time step τ ∈ { 10 −3 , 5 ×10 −4 , 2 . 5 ×10 −4 , 10 −4 , 5 ×10 −5 } . The ob-

erved convergence rate is larger than or equal to 1 
2 which is ex- 

ected since the Reynolds number is not large ( R e = 100 ). The re-

ults shown in Table 2 are performed with τ = 0 . 4 h 2 . As the er-

or is dominated by the time error, which is of order 1 , we ex-
2 

4 
ect the global convergence rate to be equal to 1. Indeed, the dis- 

layed L 2 -norms of the error on velocity and L 2 -norm of the error 

n the pressure are compatible with the rate O(h ) . We note that 

he method has also been validated in [20] against classical test 

ases such as the flow past a sphere at various Reynolds numbers. 

.4. LES Scheme: Entropy viscosity stabilization 

To avoid the accumulation of energy at the grid scale at high 

eynolds numbers when the grid is not fine enough to resolve the 

olmogorov scale, we use a LES-like technique called entropy vis- 

osity. This method, developed in [24–26] , consists of adding a lo- 

al artificial viscosity made proportional to the residual of the ki- 

etic energy balance. This artificial viscosity is added on the right- 

and side of (7a) in the form ∇ · ( νE ∇u ). This induces a nonlin-

ar diffusion proportional to the local energy imbalance that in 

urn allows the unresolved scales to be better accounted for. The 

ethod has its roots in the notion of suitable weak solutions in- 

roduced by [27] and which has been shown by [28] to be the only 

easonable notion of solution currently available for the 3D Navier- 

tokes equations. 

We now give some technical details on the computation of the 

ntropy viscosity. Since the approximation mixes finite elements 

nd Fourier approximation, we construct a three-dimensional 

esh by considering the tensor product of the finite element 

esh in the meridian section with the uniform azimuthal one- 

imensional mesh induced by the Fourier approximation. Denoting 

y M the number of complex azimuthal Fourier modes, the mesh 

ize in the azimuthal direction at the radius r is 2 π r/ (2 M − 1) .

or each two-dimensional finite element cells K , we denote by 

 K = min ( min x ∈ K 2 π r 
2 M−1 , diam (K)) . Assuming that n ≥ 2, we define 

he residual of the momentum equation as follows: 

es n NS = 

u 

n − u 

n −2 

2 τ
+ (u 

n −1 · ∇ ) u 

n −1 

− 1 

R e 
�u 

n −1 + ∇ p n −1 − f 
n −1 

. (12) 

his residual is then computed at each time step and over every 

esh cell in the real space. The local artificial viscosity is defined 

n each cell K by: 

n 
R | K = 

h 

2 
K ‖ Res n NS · u 

n ‖ L ∞ (D K ) 

‖ u 

n ‖ 

2 
L ∞ (D K ) 

. (13) 

here D K is the patch composed of the cells sharing one face with 

he cell K in the real space. The quantity νn 
R | K is expected to be as 

mall as the consistency error in smooth regions and to be large 

n the regions where the Navier-Stokes equations are not well re- 

olved. To be able to run with CFL numbers of order O(1) , we fi-

ally define the entropy viscosity as follows: 

n 
E| K = min 

(
c max h K ‖ u 

n ‖ L ∞ (D K ) , c e ν
n 
R | K 

)
, (14) 

here c max = 

1 
8 and c e is a tunable constant O(1) . In the following

e set c e = 1 . Thus defined, and given that we use P 2 polynomials

o approximate the velocity, the entropy viscosity scales like O(h 3 ) 

K 
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genuine challenge to reproduce numerically this configuration. 
n smooth regions and scales like O(h K ) in regions with very large 

radients. 

This LES technique has been validated with c max = 

1 
8 and c e = 1 

n [29] for flows in precessing cylinders and in [30] for turbu- 

ent flows in a flexible pipe (notice that the parameter α, defined 

herein in equation (2.13), is equal to c e / 2 ). We have used this

ethod in [31] to perform high Reynolds number computations in 

 magnetohydrodynamics version of the von Kármán experiment. 

. Tools and flow description 

We describe in this section the different diagnostic tools, the 

on Kármán flow, the experimental setup and the numerical pa- 

ameters that we use. 

.1. Diagnostic tools 

.1.1. Time averages 

Since we are going to regularly invoke time averages, for any 

ime dependent quantity A : [0 , T ] → R 

n we define: 

 A 〉 = 

1 

T 

∫ T 

0 

A (τ )d τ . (15) 

oreover, given an experimental time series ( A k ) 1 ≤ k ≤ N measured 

t a fixed point in the inertial frame of reference of the laboratory, 

e define the inertial discrete time average as follows: 

 A 〉 ◦ = 

1 

N 

N ∑ 

k =1 

A k . (16) 

otice that when the flow is time-dependent this definition im- 

lies averaging the characteristics of the quantity A not only in 

ime but also with respect to the azimuth. Using the cylindrical 

oordinates ( r, θ , z ), this corresponds to extracting the time aver- 

ge of the angular Fourier mode m = 0 of A ( r, θ , z, t ). 

.1.2. Energy dissipation and torque 

The power that is injected inside the VK flow and that is even- 

ually transformed into heat by viscous effects can be estimated 

rom the two torques C 1 and C 2 that are exerted on the top and

he bottom impellers, respectively; the injected power in question 

s given by the expression P inj = 2 π f i (| C 1 | + | C 2 | ) . In the statisti-

ally stationary regime, the mean input power equals the mean 

issipation power. A useful diagnostic of the dissipation power can 

hen be derived using a non-dimensional number P ∗ as follows: 

 

∗ = 

〈 P inj 〉 
2 ρR 

5 (2 π f i ) 3 
, (17) 

here we recall that ρ is the density of the fluid. A non- 

imensionalized torque can also be defined as 

 p = 

〈| C 1 | + | C 2 |〉 
2 ρR 

5 (2 π f i ) 2 
. (18) 

otice that K p = P ∗. 

In the experiment, the torque measurements at each impeller 

re performed using either the engines or torque meters. The 

orque applied to the top shaft is denoted C 1 , and the torque ap-

lied to the bottom shaft is denoted C 2 . Following the procedure 

escribed in [32] , the torques are calibrated using measurements 

t different mean frequencies, so as to remove spurious contribu- 

ions from genuine offsets or mechanical frictions. The torque mea- 

urements give the power dissipation. 

Numerically, we can compute the dimensionless torque K p as 

ollows: 

K p = 

1 

2 

∫ 
	

| (r ×f s ) · e z | d	, (19) 

solid 

5 
here f s is the non-dimensional body force that induces the solid 

otation of the impellers. The force f s can be written as ∇ ·(pI −
 e 
−1 ∇ u ) , where u and p are any smooth extensions of the ve- 

ocity and the pressure in the solid. Notice that the term f s and 

he source term f in the Navier-Stokes Eq. (1) are unrelated. In 

he sequel f is set to zero. The fluid is driven by the movement of

he counter-rotating impellers, represented by the pseudo-penalty 

ethod, and not by an exterior forcing f . Using the notation from 

5) and (6) , we deduce from the expression of the discrete momen- 

um balance (8) that the torque at time t n +1 is given by 

 p = 

3 

4 

∫ 
	

r(1 − χ) sgn ( f 2 z) 
u 

n +1 − u obst 

τ
·e θ d	, (20) 

here sgn is the sign function introduced in (6) . 

.2. The von Kármán flow 

.2.1. Symmetries 

When the two impellers counter-rotate at the same frequency, 

.e., when f 1 = − f 2 , the VK setup is symmetric with respect to any

otation of angle π about any axis in the equatorial plane that 

rosses the rotation axis. This type of symmetry is henceforth re- 

erred to as R π -symmetry [33] , and acts as follows in cylindrical 

oordinates: 

 π

( 

u r 

u θ

u z 

) 

(r, θ, z) ≡
( 

u r 

−u θ

−u z 

) 

(r, −θ, −z) (21) 

In the absence of blades on the supporting disks, the setup 

s also axisymmetric. At very low Reynolds numbers, the instan- 

aneous velocity field obeys these symmetries. At large Reynolds 

umbers, the time averaged velocity is statistically axisymmetric 

ut can experience breaking of the R π -symmetry in certain condi- 

ions as we will report below. 

.2.2. Mean flow topology 

The topology of the time-averaged and azimuthally-averaged 

ean flow (in short mean flow) is simple and depends on whether 

he forcing conditions are CONTRA or ANTI: 

1. The CONTRA mean flow is divided into two toroidal re- 

circulation cells separated by an azimuthal shear layer. In 

a vertical plane containing the axis of rotation, the corre- 

sponding mean velocity field is symmetric under R π (i.e., 

〈 u r (r, −z) 〉 = 〈 u r (r, z) 〉 , 
〈 u θ (r, −z) 〉 = −〈 u θ (r, z) 〉 , 〈 u z (r, −z) 〉 = −〈 u z (r, z) 〉 ) and there is 

a strong shear layer in the middle. 

2. The ANTI mean flow has two possible geometries depending on 

the Reynolds number and the shape of the impellers. (1) The 

flow can have the same geometric symmetries as the CONTRA 

mean flow. (2) The flow can have a bifurcated geometry result- 

ing from the merging of the two toroidal counter-rotating re- 

circulation cells into a single cell (see [7] and [8] ). In this case, 

the mean velocity field in any vertical plane containing the axis 

of rotation is no longer invariant under R π . The mean flow is 

then mainly composed of one cell in the vertical direction with 

a strong shear layer at the impeller that rotates in the direc- 

tion opposite to the orthoradial mean flow. This bifurcated state 

only exists for Reynolds numbers that are large enough (see 

[7] ) and for impellers that are fitted with blades that are suffi- 

ciently curved, which is the case of the TM87 impellers studied 

in the present paper. This turbulent bifurcation results in mul- 

tistability between the two turbulent flow states, with possible 

complex dynamics between them (see [34–36] ). It is therefore a 
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Table 3 

Experimental parameters: kinetic Reynolds number R e , flow type, kinematic viscosity ν , rota- 

tion frequency f . 

R e 10 2 10 3 3 × 10 5 3 × 10 5 3 × 10 5 

Flow type CONTRA CONTRA CONTRA ANTI symmetric ANTI bifurcated 

ν( m 

2 s −1 ) 4 . 3 ×10 −4 4 . 3 ×10 −4 1 . 0 ×10 −6 1 . 0 ×10 −6 1 . 0 ×10 −6 

f (Hz) 0.68 6.8 5.0 5.0 5.0 

Table 4 

Numerical parameters for the computations: kinetic Reynolds number R e , flow type, numerical 

model DNS or LES, timestep τ , mesh size in the blade region h min , mesh size at the outer 

boundary h max (the meridian mesh is non-uniform), number of grid points in the P 2 meridian 

mesh n df , number of real Fourier modes, number of processors. 

R e 10 2 10 3 10 5 10 5 10 5 

Flow type CONTRA CONTRA CONTRA ANTI symmetric ANTI bifurcated 

Model DNS DNS LES LES LES 

τ 2 . 5 ×10 −3 2 . 5 ×10 −3 1 . 25 ×10 −3 1 . 25 ×10 −3 10 −4 

h min 2 ×10 −2 5 ×10 −3 5 ×10 −3 5 ×10 −3 2 . 5 ×10 −3 

h max 2 ×10 −2 10 −2 2 ×10 −2 2 ×10 −2 10 −2 

n df 7589 65,861 46,291 46,291 193,051 

modes 128 128 128 128 512 

nprocs 128 128 128 128 2048 
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Fig. 3. Shape of the impellers and the computational grid in (r,z) plane with 128 

Fourier modes, h max = 2 ×10 −2 and h min = 5 ×10 −3 . 

r  

p

m  

m

t

a

l

s

m

a

�

4

s

p

o

c

a

t

.3. Experimental implementation 

.3.1. Experimental setup 

The VK experimental setup used for the present study has been 

horoughly described in [7–10] . The fluid is confined inside a cylin- 

er of radius R = 100 mm, and put in motion by two rotating im- 

ellers of radius 92.5mm (see Fig. 1 and Fig. 2 ). We recall that

he lengths are non-dimensionalized with respect to the radius of 

he cylinder, R . The aspect ratio of the experiment is defined as 

he (non-dimensional) distance between the inner faces of the two 

isks supporting the blades, H = 1 . 8 . The turbulence properties 

anisotropy, fluctuations, dissipation) are influenced by the geome- 

ry of the impellers, their non dimensional radius R t , the oriented 

ngle α (see Fig. 2 ) and height h b of the blades, and the number n

f blades [37] . In the present paper, we consider mainly TM87 im- 

ellers, with n = 8 blades, h b = 0 . 2 , | α| = 72 ◦ and R t = 0 . 925 . Mix-

ures of water and glycerol with different dilution rates are used 

o change the viscosity of the fluid. The temperature is maintained 

onstant by means of heat exchangers. A summary of the experi- 

ental cases presented in this paper is given in Table 3 . 

Both the torques and the mean flow topology are very sensitive 

o geometric parameters like the height and the curvature of the 

lades, the radius of the impellers, the aspect ratio, as discussed 

n [9,32,37–39] . Therefore to be able to reproduce numerically the 

xperiments, we have observed that it is essential that the geom- 

try of the setup be reproduced as accurately as possible in SFE- 

aNS. 

.3.2. Multi-scale velocity measurements 

The velocity measurements used in the present paper result 

rom two types of techniques: (i) Stereoscopic Particle Image Ve- 

ocimetry (SPIV) and (ii) Laser Doppler Velocimetry measurements 

LDV). 

The SPIV system provides the three components of the veloc- 

ty field in a meridian plane on a grid of typical size 90 × 70 

oints. The optical device can be adapted so that the horizontal 

nd the vertical distance between two measurement points can be 

ontrolled in the range [2 . 4 ×10 −3 , 2 . 4 ×10 −2 ] . The meridian section

hat can be explored is { (r, z) ∈ [0 , 1] ×[ −0 . 75 , 0 . 75] } . The time se-
6 
ies are composed of about 30 0 0 to 30 0 0 0 frames regularly sam-

led at 15Hz. The time average of time series of SPIV measure- 

ents is denoted 〈 . 〉 ◦, see (16) . Because of the constraints on the

easurements technique and the unsteadiness of the velocity pat- 

ern, such time-average automatically produces an azimuthal aver- 

ge, i.e., time averaging projects the measurements onto the angu- 

ar Fourier mode m = 0 . 

We have also performed a few Laser Doppler Velocimetry mea- 

urements. These measurements provide the mean azimuthal and 

ean vertical components of the velocity in a meridian plane on 

 grid composed of 11 × 17 points located at 0 ≤ r ≤ 10 �r with 

r = 0 . 1 and −8�z ≤ z ≤ 8�z with �z = 0 . 1125 . 

.4. Summary of the numerical parameters 

The numerical parameters that have been used in the various 

imulations reported in this paper are listed in Table 4 . The com- 

utations are done only in the TM87 configuration. 

The spatial resolution in the meridian plane and in azimuth 

f DNS simulations is set to match the Reynolds number, i.e., the 

omputational grid is refined as R e increases. The meshes are usu- 

lly coarser for LES runs than for DNS runs. Fine meshes are used 

o simulate the ANTI bifurcated flow since very thin shear layers 
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Fig. 4. Stationary and axisymmetric experimental and DNS velocity field in the CONTRA configuration at R e = 10 2 : (a)-(d) radial component u r , (b)-(e) azimuthal component 

u θ , (c)-(f) vertical component u z . 
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re created in this case (see Fig. 13 (b)-(e) for 0.6 ≤ z ≤ 0.8). The

esh sizes h min and h max in Table 4 are the typical distance be- 

ween two grid points on the velocity mesh (i.e., the P 2 mesh). 

etween 128 to 512 real Fourier modes are typically used. The 

hape of the impellers and a computational grid are displayed in 

ig. 3 . The parallelization is done with one complex Fourier mode 

er processor, and the meridian plane is further divided among the 

rocessors by using a domain decomposition technique, the graph 

artitioning being done by METIS. The linear algebra in the merid- 

an section is handled by PETSc and the fast Fourier transforms 

re done with FFTW3. Depending on the spatial resolution and the 

eynolds number, one rotation period (one turn) requires between 

 to 63 wall-clock hours on the cluster IBM x3750-M4 from GENCI- 

DRIS. Each run does between 15 to 60 turns. The cumulated com- 
b

7 
uting time for the runs presented in this article is about 7 × 10 5 

PU hours on one processor. 

. Comparisons experiment vs. numerics 

In this section we compare experimental and numerical velocity 

rofiles in a meridian section of the cylindrical container at various 

eynolds numbers and in different operating conditions. The com- 

arisons are done on snapshots and on the time-averaged velocity 

elds. In order to have good quantitative comparisons, we always 

se the same colorbars for the experimental data and the numeri- 

al results. At the end of the section we also compare torque mea- 

urements with computations over a wide range of Reynolds num- 

ers. 
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Fig. 5. Time-averaged experimental and DNS velocity field ( m = 0 ) in the CONTRA configuration at R e = 10 3 : (a)-(d) radial component u r , (b)-(e) azimuthal component u θ , 

(c)-(f) vertical component u z . 
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.1. Flow topology at low Reynolds numbers 

We start by investigating the VK flow at low Reynolds numbers; 

.e., R e ≤ 10 3 . 

.1.1. Low Reynolds numbers: Steady-state regime 

At very low Reynolds numbers (ie R e < 5 ×10 2 ), the velocity 

eld is stationary. Moreover, the CONTRA and the ANTI operating 

onditions give very similar results. Therefore we do not show the 

wo cases but rather focus on the CONTRA operating mode. We 

how in Fig. 4 the three components of the stationary and axisym- 

etric velocity field at R e = 10 2 using the cylindrical coordinate 
8 
epresentation. We compare in panels (a) and (b) the experimen- 

al measurements of the radial component of the velocity with the 

omputational results. The comparisons for the azimuthal compo- 

ent are shown in panels (c) and (d). The comparisons for the axial 

omponent are shown in panels (e) and (f). The white zones in the 

xperimental fields correspond to areas where measurements were 

ot possible due to the presence of the blades. The resolution of 

he LDV measurements being much lower than the numerical re- 

ults, we have interpolated the numerical data on large pixels cor- 

esponding to the experimental resolution. This process allows for 

 better comparison between the experiments and the numerical 

imulations. Fig. 4 shows that the numerical data and the experi- 



L. Cappanera, P. Debue, H. Faller et al. Computers and Fluids 214 (2021) 104750 

Fig. 6. Radial profiles of u θ and u z for time-averaged experimental and DNS ve- 

locity field ( m = 0 ) in the CONTRA configuration at R e = 10 3 : 〈 u exp 〉 ◦ in solid line 

with errorbars, 〈 u m=0 〉 in dashed line at various z as indicated. The color convention 

applies to all the profiles in other figures. 
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ental results are very similar with slight differences close to the 

order of the experimental acquisition zone. 

.1.2. Low Reynolds numbers: Time-dependent regime 

The flow becomes time-dependent at R e = 500 . We compare in 

ig. 5 the experimental and the numerical time-averaged velocity 

elds in the CONTRA configuration at R e = 10 3 using the same pix- 

lization procedure as described above. Notice that this time we 

se the averaging operator 〈 · 〉 ◦ defined in (16) to average the 

xperimental data in time. For the numerical simulations, the av- 

raging is done in azimuth and in time; that is, we show the time 

verage of the Fourier mode m = 0 . 

Fig. 6 shows radial profiles of averaged azimuthal and ver- 

ical velocity components at z ∈ {−0 . 4 , 0 , 0 . 4 } . For the LDV ex-

erimental data, measurements are performed in one meridian 

ection. Since for all z ∈ Z := {−0 . 4 , 0 , 0 . 4 } the quantities u θ (r =
 , z) , u θ (r = 1 , z) and u z (r = 1 , z) must be equal to zero, we es-

imate the experimental error on u θ at z ∈ Z as follows: �θ (z) := 

ax {| u exp 

θ
(r = 0 , z) | , | u exp 

θ
(r = 1 , z) |} and the error on u z at z ∈ Z

s �z (z) := | u exp 
z (r = 1 , z) | . Our experience is that this estimate

f the experimental error is a better alternative to using the 

ariance of the temporal signals since the temporal signals are 

hort. 

The agreement between the numerical profiles and the exper- 

mental profiles is within the experimental errors. While the DNS 

rofiles are exactly symmetric with respect to z , the experimental 

ata are coarse and only approximately symmetric. In any case the 

omparison is satisfactory: the local maximum of | u θ | is located at 

 ≈ 0.8 for z = ±0 . 4 ; the change of sign of u z for z = ±0 . 4 occurs at

 ≈ 0.75. 

We now compare the CONTRA and the ANTI regimes at R e = 

0 3 . In Fig. 7 we compare the numerical results obtained in the 

ONTRA operating configuration with the numerical results ob- 

ained in the ANTI operating configuration. The flow patterns 

ook different. Close to the blades, the radial centrifugal com- 

onent of the velocity in the CONTRA case is stronger than in 

he ANTI configuration, but in the equatorial shear layer the ra- 

ial velocity component is more intense and focused in the ANTI 

egime. Note also that the azimuthal component of the veloc- 

ty is overall stronger in the ANTI than in the CONTRA regime. 

hese features persist at larger Reynolds numbers for the averaged 

elocities. 
9 
.2. Flow topology at high Reynolds numbers 

We now describe the flow topology at high Reynolds num- 

ers. The experimental data reported below have been obtained 

t R e = 3 ×10 5 and the LES computations have been done at R e = 

0 5 . Therefore the comparisons are performed at sligthly differ- 

nt Reynolds numbers. At these Reynolds numbers, the CONTRA 

onfiguration gives a solution that is highly turbulent but on av- 

rage the flow is organized into two cells that are invariant under 

he R π transformation. This structure is very robust with respect 

o the preparation of the flow. This is not the case for the ANTI 

onfiguration. The flow is also highly turbulent in this operating 

ode, but, depending on the preparation of the flow, one observes 

wo possible time-averaged states. One state is composed of two 

ells as in the CONTRA operating conditions, but the other one is 

omposed of one cell only. We have observed this bifurcation to 

ccur in the ANTI configuration at R e ∼ 10 4 (see Section 5.3 and 

ig. 15 for a detailed discussion). 

.2.1. CONTRA Operating mode 

We start by comparing the results for the CONTRA operating 

ode. We show in Fig. 8 the time and azimuthally averaged ve- 

ocity field at R e ∼ 10 5 . The simulation has been done by using the 

nal snapshot of a statistically converged simulation at R e = 10 4 as 

nitial data. About 20 turns have been performed at R e = 10 5 . 

Since the simple time averages over the 20 rotation periods 

f the LES computations are not long enough to be fully con- 

erged statistically, we show in Fig. 8 only the time average of 

he Fourier mode m = 0 of the velocity field. This corresponds to 

he experimental data mean operator 〈 · 〉 ◦ which only detects 

he Fourier mode m = 0 anyway. Notice that this time the image 

esolutions are now different; one sees the blades in the numeri- 

al simulations but these are not visible in the experiments. The 

lades start at r = 0 . 1 as shown in Fig. 2 . Also the SPIV allows

s to reach only r = 0 . 95 . This explains why we see a boundary

ayer in the LES simulation close to r = 1 in panel 8 (d) which is

ot captured by the SPIV measurements in the panel 8 (a) (white 

ixels indicate that there are no experimental data close to the 

oundary). Fig. 9 shows averaged radial profiles of the azimuthal 

nd the vertical velocity components at z ∈ {−0 . 4 , 0 , 0 . 4 } . For the

PIV experimental data, measurements are performed over an en- 

ire meridian plane, i.e., measurements are done simultaneously 

n two diametrically opposite meridian sections. The quantities 

isplayed are u 
exp 
z (r, z) = 

1 
2 (u z (r, 0 , z) + u z (r, π, z)) and u 

exp 

θ
(r, z) =

1 
2 (u θ (r, 0 , z) − u θ (r, π, z)) . The error bars for each component are

he variance of the temporal signals. This estimation of the experi- 

ental error is also used in Fig. 12 and Fig. 14 . The numerical pro-

les fit the error bar region of the experimental data. This suggests 

hat the difference in the Reynolds numbers (10 5 for the numeri- 

al simulations and 3 × 10 5 for the experiments) has a moderate 

mpact on the average profiles. Furthermore these profiles are sim- 

lar to the ones obtained at the much smaller R e = 10 3 : the local

aximum of | u θ | is around r = 0 . 8 at z = ±0 . 4 and the change of

ign of u z occurs at r ≈ 0.75 for z = ±0 . 4 . 

We compare in Fig. 10 experimental and computational snap- 

hots of the Cartesian components of the velocity field in a vertical 

lane passing through the axis. These figures clearly show that the 

ow is highly turbulent. Of course, these instantaneous snapshots 

re not identical but they share similar amplitudes and structures. 

.2.2. ANTI Operating mode: Symmetric solution 

We now show in Fig. 11 the time-averaged experimental and 

umerical velocity fields for the ANTI configuration. 

Here the experimental flow at R e = 3 ×10 5 is obtained by pro- 

ressively increasing the angular frequency of the impellers and 

aking sure that the two angular velocities are all the time exactly 
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Fig. 7. Time-averaged DNS velocity field (Fourier mode m = 0 ) in CONTRA and ANTI operating configurations at R e = 10 3 : (a)-(d) radial component u r , (b)-(e) azimuthal 

component u θ , (c)-(f) vertical component u z . 
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pposite. The preparation of the numerical simulations at R e = 10 5 

s also done by progressively increasing the Reynolds number and 

y always enforcing the two angular velocities to be exactly op- 

osite as explained in Section 5.2.1 . This process leads to a highly 

urbulent flow that is organized on average into two cells that are 

 π symmetric. The organization into two cells is clearly visible in 

anels 11 (c) and (f). Notice, though, that the CONTRA and ANTI 

ean flow fields are very different. The differences are particularly 

oticeable when comparing the radial component of the velocity 

n the panels 8 (a) and (d) with that in the panels 11 (a) and (d).

lso, by comparing the panels 8 (b) and (e) with the panels 11 (b)
10 
nd (e), we observe that the ANTI configuration produces stronger 

zimuthal components of the velocity than the CONTRA configu- 

ation. In the ANTI configuration the large values of the azimuthal 

omponent are concentrated near the lateral wall. Notice also that 

he radial and axial components of the velocity have smaller values 

han in the CONTRA configuration. 

Fig. 12 compares the experimental and numerical profiles for 

he symmetric ANTI configuration at high Rey–nolds numbers. 

gain the agreement is good since the numerical profiles are in- 

ide the error bar region of the experimental observations. The az- 

muthal profiles at z = ±0 . 4 show that the extrema are located at
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Fig. 8. Time and azimuthal averaged velocity field in the CONTRA configuration. R e = 3 ×10 5 for the experiments; R e = 10 5 for the computations: (a)-(d) radial component 

u r , (b)-(e) azimuthal component u θ , (c)-(f) vertical component u z . 
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 ≈ 0.95 in the boundary layer which the experimental SPIV can- 

ot resolve. The amplitudes of the extrema of u θ are twice those 

bserved in the CONTRA configuration. The change of sign of u z 
till occurs around r ≈ 0.75 for z = ±0 . 4 . 

.2.3. ANTI Operating mode: Bifurcated solution 

We now focus on the bifurcated flow for the ANTI configura- 

ion. This solution is obtained by preparing the flow in a non- 
11 
ymmetric way. In the experiment, the angular frequencies of the 

op and the bottom impellers are not increased simultaneously. For 

ome time one of the impellers rotates faster than the other one. 

hen, eventually, exact counter-rotation is prescribed and main- 

ained. This produces a symmetry breaking that allows the flow 

o explore another solution branch that is not invariant under 

 π . For the numerical simulations we proceed as follows. We 

se a snapshot of the ANTI configuration at R e = 10 4 as initial 
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Fig. 9. Radial profiles of u θ and u z for the time-averaged experimental and LES velocity fields ( m = 0 ) in the CONTRA configuration at R e = 3 ×10 5 for the experiment and 

R e = 10 5 for the computation: 〈 u exp 〉 ◦ in solid line with errorbars, 〈 u m=0 〉 in dashed line. Color labels are defined in Fig. 6 . 

Fig. 10. Instantaneous velocity fields in the CONTRA configuration in a vertical plane passing through the axis. Top row: experiments at R e = 3 ×10 5 ; bottom row: numerical 

simulations at R e = 10 5 ; same colorbars. Left column: u x ; central column: u y ; right column: u z . Horizontal axis: x ; vertical axis: z . 
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ata. We perform 15 rotation periods at R e = 5 ×10 4 in the ANTI 

onfiguration, but we reduce the angular velocity of the top im- 

eller by setting f 1 = − 1 
2 f 2 with the Reynolds number defined 

ith respect to the angular velocity of the bottom impeller only. 

hen we do 10 more rotation periods with f 1 = 0 , f 2 being un-
12 
hanged. After 10 rotation periods, the structure of the mean flow 

hifts from two recirculation cells to a single recirculation cell. 

he angular velocity of the top impeller is then increased so as 

o match the angular velocity of the bottom impeller: 5 rotation 

eriods are done with f 1 = − f 2 . Finally the Reynolds number is 
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Fig. 11. Time and azimuthal averaged velocity field in the symmetric ANTI configuration. Experiments at R e = 3 ×10 5 ; numerical simulation at R e = 10 5 : (a)-(d) radial com- 

ponent u r , (b)-(e) azimuthal component u θ , (c)-(f) vertical component u z . 

13 
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Fig. 12. Radial profiles of u θ and u z for the time-averaged experimental and LES velocity fields ( m = 0 ) in the symmetric ANTI configuration at R e = 3 ×10 5 for the experiment 

and R e = 10 5 for the computation: 〈 u exp 〉 ◦ in solid line with errorbars, 〈 u m=0 〉 in dashed line. Color labels are defined in Fig. 6 . 
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ncreased to R e = 10 5 and 12 periods are done at this Reynolds 

umber. 

We show in Fig. 13 the averaged velocity fields in a meridian 

ection at R e = 10 5 for the LES computations and at R e = 3 ×10 5 for

he experiments. We clearly see that the mean flow is composed 

f one large recirculation cell only, which is very different from the 

ymmetric case. Here again, the numerical results agree reasonably 

ell with the experimental observation despite the SPIV’s being 

lind to the impellers and to the boundary layer at r = 1 . 

This statement is supported by inspecting the radial profiles 

hown on Fig. 14 . The profiles of the azimuthal component of the 

elocity from the numerical and from the experimental data do 

ot coincide precisely but they have similar shapes; we observe in 

articular that u θ is mostly negative at the three vertical heights 

 ∈ {−0 . 4 , 0 , 0 . 4 } . The agreement on the vertical component of the

elocity is significantly better; the vertical profiles are almost in- 

ariant with respect to z . The behavior of u θ and u z indicates that

nly one cell is present and that it is the bottom impeller that im- 

oses its sense of rotation. 

.3. Torque vs. R e 

We now compare the measurements and the numerical com- 

utations of the non-dimensional torque K p defined in (18) . (Re- 

all that K p also measures the dissipation power as discussed in 

ection 4.1.2 .) All the results are reported in one single graph 

hown in Fig. 15 . We show there the experimental measurements 

nd the numerical estimations of K p as a function of the Reynolds 

umbers over the range R e ∈ [10 , 10 6 ] . The grey symbols, crosses

nd stars correspond to measurements. The circles correspond 

o numerical simulations; empty circles are for DNS simulations 

nd yellow-filled circles are for LES simulations. We observe three 

lateaus at large Reynolds numbers. The blue line (bottom hori- 

ontal line) corresponds to data from the CONTRA configuration, 

he red line (middle horizontal line) corresponds to data from the 

ymmetric flow in the ANTI configuration, and the green line (top 

orizontal line) corresponds to data from the bifurcated flow in the 

NTI configuration. 

For R e ≤ 4 ×10 2 the CONTRA configuration (blue symbols) and 

he ANTI configuration (red symbols) give the same torque, both 

n the numerical simulations and in the experiments. The two 

urves split at R e ∼ 4 ×10 2 . The torque for the CONTRA configura- 

ion seems to decrease monotonously with respect to the Reynolds 

umber over the entire range of Reynolds numbers and to con- 

erge to an asymptotic value K 

∞ 

cont 
∼ 0 . 05 at very large values of
14 
 e . After reaching a minimum in the range R e ∈ [5 ×10 2 , 5 ×10 3 ] ,

he torque for the ANTI configuration grows again after R e = 10 3 

nd seems to converge towards an asymptotic value K 

2 , ∞ 

anti 
∼ 0 . 14 at 

ery large values of the Reynolds number. These asymptotic values 

f the torque coincide with experimental measurements in liquid 

odium ( R e ∼ 10 7 ) and in superfluid Helium, see [36] and [40] . 

The bifurcation in the ANTI configuration discussed in 

ection 5.2.2 and Section 5.2.3 occurs around R e ≈ 10 4 . The bifur- 

ated ANTI solution is composed of one recirculation cell rotating 

omewhat in phase with one of the impellers [7,38] . The bifurcated 

NTI flow dissipates far more energy than its symmetric counter- 

art. The probable cause for this higher energy dissipation rate is 

hat the velocity undergoes very large shears in the vicinity of the 

op impeller as can be seen in Fig. 13 (e). Actually this simulation 

equires a finer meridian grid and a larger number of azimuthal 

odes than the symmetric ANTI flow. The mesh refinement in the 

eridian section is done locally in the vicinity of the top impeller 

see Table 4 ). The torque applied to the bifurcated ANTI flow seems 

o converge to the asymptotic value K 

1 , ∞ 

anti 
∼ 0 . 56 for large values of 

 e . 

Overall the experimental measurements and the numerical es- 

imations coincide up to 10 percents over the entire range of 

eynolds numbers explored and for the two forcing conditions, in- 

luding in the bifurcated case. The fact that we have been able 

o reproduce the bifurcated branch and to estimate accurately the 

orque (i.e., the dissipation power) at R e = 10 5 is quite remark- 

ble considering that we are using a LES model in this range. 

his means that the LES model dissipates the energy properly. The 

ethod stabilizes the computation without introducing excessive 

umerical dissipation; i.e., the energy is allowed to cascade freely 

nd is dissipated at the smallest mesh scale at the correct rate. To 

he best of our knowledge, it is the first time that numerical sim- 

lations reproduce such bifurcated branches of turbulent flows. 

. Energy spectra 

This section investigates the energy spectra of the numerical 

imulations done at R e = 10 5 using the LES model. The results are 

nterpreted in the context of the previous studies [8,40] . 

.1. Spatial spectrum 

In 3D periodic numerical simulations it is common to compute 

he spatial energy spectrum as: 

( k ) = 

〈 ∫ 
u ( x , t) · u ( x + r , t) e i k ·r d r 

〉 
x ,t 

. (22) 
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Fig. 13. Time and azimuthal averaged velocity field in the bifurcated ANTI configuration. Experiments at R e = 3 ×10 5 ; numerical simulations at R e = 10 5 : (a)-(d) radial 

component u r , (b)-(e) azimuthal component u θ , (c)-(f) vertical component u z . 
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ince for isotropic flows E( k ) only depends on ‖ k ‖ , it is therefore

atural to consider: 

(k ) := 〈 E( k ) 〉 ‖ k ‖ = k . (23) 

e use the LES simulations at R e = 10 5 to estimate E ( k ). The value

f E ( k ) is computed from snapshots of the numerical velocity field

xtracted from the cube (− 1 
2 , 

1 
2 ) 

3 located at the center of the tank. 

he spectra are averaged over the snapshots. The energy spectrum 

 ( k ) is supposed to scale as k −
5 
3 in homogeneous isotropic turbu- 

ence. For the family of von Kármán flows considered in the paper, 
15 
40] suggests the universal scaling function E(k ) / ( ε
2 
3 η

5 
3 ) = f (kη) 

here ε = 

2 R 
πH K p and η = ( R e 

3 ε) −1 / 4 . Fig. 16 shows E(k ) / ( ε
2 
3 η

5 
3 )

or the three flow configurations. The low wavenumbers corre- 

pond to large scales and the large wavenumbers correspond to 

he inertial range. We observe that in the inertial range the spec- 

ra are in agreement with the k −5 / 3 law (see dotted line on Fig. 16 ).

ote that the ANTI bifurcated flow has much less energy than the 

ONTRA and symmetric ANTI flows in the low wavenumber region. 

ecall that the ANTI bifurcated flow is essentially composed of one 

ecirculation cell with a thin region where the velocity gradients 
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Fig. 14. Radial profiles of u θ and u z for the time-averaged experimental and LES velocity fields ( m = 0 ) in the bifurcated ANTI configuration at R e = 3 ×10 5 for the experiment 

and R e = 10 5 for the computation: 〈 u exp 〉 ◦ in solid line with errorbars, 〈 u m=0 〉 in dashed line. Color labels are defined in Fig. 6 . 

Fig. 15. Non-dimensional torque K p as a function of R e for different forcing con- 

ditions: blue is for the symmetric CONTRA branch, red for the symmetric ANTI 

branch, and green for the bifurcated ANTI branch. Circles are numerical simula- 

tions with TM87 (empty circles are for DNS and yellow-filled circles are for LES). 

The other symbols correspond to other experimental results: stars are TM87 exper- 

iments using a mix of glycerol and water and diamonds are TM87 experiments with 

water. Grey dots are TM60 experiments (same impellers but with 16 blades rather 

than 8) with a mix of glycerol and water from [38] . Dashed lines correspond to 

asymptotic values measured in liquid sodium ( R e ∼ 10 7 ) and in superfluid Helium 

4 at 2.3 ◦K obtained from the SHREK experiment. (For interpretation of the refer- 

ences to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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E

Fig. 16. Energy spectrum E ( k ) as a function of the wavenumber k for different forc- 

ing conditions at R e = 10 5 : blue is for the symmetric CONTRA branch, red for the 

symmetric ANTI branch, and green for the bifurcated ANTI branch. Dotted line cor- 

responds to k −
5 
3 . (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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a

re very large, see the region 0.6 ≤ z ≤ 0.8 in Fig. 13 . The slopes

f the lines fitting best these curves in the inertial zone are −1 . 7

or the CONTRA case (for 3 10 −3 ≤ kη ≤ 4 10 −2 ), −1 . 6 for the sym-

etric ANTI (for 3 10 −3 ≤ kη ≤ 4 10 −2 ), and −1 . 7 for the bifurcated

NTI case (for 2 10 −3 ≤ kη ≤ 1 10 −1 ). 

.2. Temporal spectra 

In addition to spatial spectra, one can also compute temporal 

pectra from time series of velocity measurements at a fixed point. 

ollowing [8] we select the following point x 0 (r = 0 . 9 , θ = 0 , z =
) in the computational domain. The power spectral density (PSD) 

s then defined as: 

( f ) = 

〈 ∫ 
u θ ( x 0 , t) u θ ( x 0 , t + s ) e −2 iπ f s d s 

〉 
. (24) 
16 
or the ANTI configuration and R e ≤ 6 . 5 ×10 3 , [8] observed the 

ower-law f −1 in the low-frequency regime (below the impeller 

requency f i ) and the power-law f −
5 
3 in the inertial range (above 

he impeller frequency f i ). Note that the power-law f −1 is difficult 

o observe because it requires very long statistics. Fig. 17 presents 

he PSD extracted from the numerical simulations at R e = 10 5 for 

he three flow configurations. Depending on the configuration, the 

ime integration window in (24) ranges from 10 to 20 rotation pe- 

iods. We observe in Fig. 17 three regions in the frequency do- 

ain: (i) There is a low frequency range corresponding to slow 

otions of the shear-layer in the CONTRA and symmetric ANTI 

ases; (ii) There is the intermediate inertial range. In this range 

he spectra behave like f −5 / 3 ; (iii) There is the large frequency 

ange corresponding to the dissipation zone. Slope fitting in the 

nertial range gives −1 . 7 for 1 ≤ f / f i ≤ 50 in the CONTRA case,

1 . 5 for 1 ≤ f / f i ≤ 50 in the symmetric ANTI case, and −1 . 7 for

.5 ≤ f / f i ≤ 125 in the bifurcated ANTI case. These slopes are in

greement with the Kolmogorov exponent. 
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Fig. 17. Power spectral density E ( f ) of u θ ( x 0 , t) for different forcing conditions at 

R e = 10 5 : blue is for the symmetric CONTRA branch, red for the symmetric ANTI 

branch, and green for the bifurcated ANTI branch. f is the analysis frequency and f i 
is the impeller rotation frequency. The dashed line shows the behavior f −

5 
3 in the 

inertial range. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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. Conclusion 

In this paper, we have compared experimental data and nu- 

erical simulations (DNS & LES) for a complex turbulent system 

hich is sometimes humorously referred to in the literature as 

he “French washing machine.” We have successfully reproduced 

umerically the different flow types observed experimentally in 

he CONTRA configuration and in the ANTI configuration. We have 

een able to reproduce the bifurcation observed at high Reynolds 

umbers in the ANTI regime: there is a turbulent symmetric so- 

ution whose temporal average consists of two recirculating zones 

hat are invariant under the R π transformation, and there is a bi- 

urcated solution whose temporal average consists of one recircu- 

ation cell only. We have focused our comparisons on two criteria: 

he torque value and the flow topology at various Reynolds num- 

ers. The qualitative comparisons of the flows show good agree- 

ents between the numerical simulations and the experiments, 

xcept near the edges of the experimental measurement area. The 

easurements and the numerical computations of the torque co- 

ncide over a wide range of Reynolds numbers for the three flow 

ypes. Obtaining similar outputs for criteria that are so depen- 

ent on forcing conditions makes the comparison a successful one. 

oreover spatial and temporal spectra computed at R e = 10 5 for 

he three configuration flows show an inertial range compatible 

ith the −5 / 3 Kolmogorov exponent characterizing fully turbulent 

ows. 

This study also proves the effectiveness of the proposed entropy 

iscosity stabilization as a LES model. The simulations reported in 

he paper validate the performance of the proposed model on a 

ighly anisotropic turbulent flow in a complex geometry that is 

ime-dependent with counter rotating motions that make the ge- 

metry complex in any referential. The entropy viscosity model in- 

olves two parameters c max and c e (see Section 3.4 ), but we have 

bserved that the following choice (c max , c e ) = (1 / 8 , 1) is robust

n the sense that it performs well independently of the problem. 

n contrast to other LES models, like the model of [41] which in- 

olves a parameter that needs to be tuned depending of the prob- 

em ( [42,43] ), the robustness of the entropy viscosity stabilization 
17 
ith respect to (c max , c e ) facilitates its use on a wide range of

roblems. 
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