
Journal of Scientific Computing (2021) 88:30
https://doi.org/10.1007/s10915-021-01543-7

ORIG INAL RESEARCH

Numerical Methods for a Diffusive Class of Nonlocal
Operators

Gabriela Jaramillo1 · Loic Cappanera1 · Cory Ward1

Received: 2 November 2020 / Revised: 27 May 2021 / Accepted: 2 June 2021 / Published online: 14 June 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
In this paperwe develop a numerical schemebased on quadratures to approximate solutions of
integro-differential equations involving convolution kernels, ν, of diffusive type. In particular,
we assume ν is symmetric and exponentially decaying at infinity. We consider problems
posed in bounded domains and inR. In the case of bounded domains with nonlocal Dirichlet
boundary conditions, we show the convergence of the scheme for kernels that have positive
tails, but that can take on negative values. When the equations are posed on all of R, we
show that our scheme converges for nonnegative kernels. Since nonlocal Neumann boundary
conditions lead to an equivalent formulation as in the unbounded case, we show that these
last results also apply to the Neumann problem.

Keywords Nonlocal diffusion operator · Integro-differential equations · Finite difference
method · Numerical approximation · Convergence analysis

Mathematics Subject Classification 41A55 · 45A05 · 45J05 · 45P05 · 65R20

1 Introduction

In this paperwe are interested in developing numerical algorithms for approximating nonlocal
evolution processes of the form

ut (x, t) =
∫
R

(u(y, t) − u(x, t))ν(x, y) dy + f (x), x ∈ Ω ⊂ R, (1.1)
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where ν(x, y) = ν(|x−y|) is a symmetric, extended (no compact support), and exponentially
decaying function of diffusive type, which is not necessarily positive.

Integro-differential equations like the one above appear, for example, as model equations
for diffusion processes that occur over fast time scales. They can be derived by first consid-
ering a reaction diffusion system, and then using a Green’s function to approximate the fast
variable in terms of the slow variables. The result is a nonlocal equation (or system) involv-
ing a convolution kernel. This kernel describes a dispersion processes that lies somewhere
between regular diffusion, as expressed by the Laplace operator, and anomalous diffusion,
modeled for instance using the Fractional Laplacian. More precisely, when viewed as prob-
ability density functions for a random walk, the kernels considered here have finite second
moment. Generally, this implies that the process has a characteristic length scale, and one
might be tempted to switch the convolution kernel for the Laplace operator with an appro-
priate diffusion constant. However, as has been shown (see for example [7,24,29,39,40]) this
simplification misses the true character of the fast diffusion process and precludes one from
finding interesting behavior, like for example chimera states [39].

Other examples of systems that can be described using equation (1.1) come from popu-
lation dynamics [13,34,38], and oscillating chemical reactions [28,39,45]. Variations of the
above integro-differential equation also appear in other physical systems where nonlocal
effects are important. For instance, the references [3,8,9,17,37] explore a nonlocal contin-
uum model for phase transitions, and in [11] a model for the evolution of a particle system is
presented. Peridynamic models also give rise to integro-differential equations like the ones
studied here, although in this case the convolution kernel is often assumed to have compact
support. These models have been the subject of large study and are one of the driving forces
behind the development of numerical schemes for nonlocal models, [6,10,14,36,41–44,47–
49]. Finally, extensions of the above equation in which the integral operator is nonlinear,
are also typical of neural field models. In this case, the linearization about the homogenous
steady state has the form of Eq. (1.1), see for example [4,12,25] and [15]. Of course, the
literature presented here is not exhaustive and is just meant to give a general idea of the
breadth of applications that use nonlocal models.

Although in most applications the set Ω represents a physical domain that is bounded,
when the phenomenon of interest occurs at small spatial scales compared to the size of
this domain, it is reasonable to pose the equation on all of R. This is the case for example
when showing existence of traveling waves in predator prey models [16], or existence of
target patterns solutions in oscillating chemical reactions [32]. On the other hand, when
both scales are comparable and Ω is considered to be a bounded subset of R, boundary
conditions need to be formulated carefully. Given that the model is now described by an
integro-differential equation, it is not enough to prescribe the value of the solution or its
derivatives at the boundary. Instead, boundary conditions take the form of volume constraints,
see [19,20]. Indeed, in various applications volume constraints can provide an equivalent
notion to Dirichlet and Neumann boundary conditions that, moreover, is consistent with the
assumptions made in deriving evolution equations of the form (1.1). See also the discussion
in Appendix A.

In both cases, bounded and unbounded Ω , one is interested in validating and guiding the
mathematical analysis using numerical simulations. Currently, one approach to approximate
Eq. (1.1) is to use an exponential time difference scheme, [33]. This consists in picking a
large domain, applying the Fourier transform to the spatial variable, and then using an RK4
method to advance the time steps while computing any nonlinearities in real space. One of
the disadvantages of this approach is that the implied periodic boundary conditions are not
always desired. Moreover, computations can become costly if one also needs a small spatial

123



Journal of Scientific Computing (2021) 88 :30 Page 3 of 40 30

discretization to resolve small scale phenomena. Alternatively, if the kernel ν(x, y) has as its
Fourier symbol a fractional polynomial, then it is possible to precondition the equation with
an appropriate differential operator and obtain as a result a PDE, see for example [35]. One
can then proceed to solve the problem using finite differences, and impose local Dirichlet or
Neumann boundary conditions. The main draw back from this approach is that the type of
convolution kernels one can consider is restricted.

Thegoal of this paper is to propose a numericalmethodbasedonquadratures for computing
steady states, ∫

R

(u(x, t) − u(y, t))ν(|x − y|) dy = f (x), x ∈ Ω ⊂ R. (1.2)

which, in contrast to the methods mentioned above, accounts for nonlocal boundary condi-
tions. In particular, we provide schemes for approximating solutions to (1.2) when

i) Ω ⊂ R is a bounded interval and we know the value of the solution in Ωc.
ii) Ω = R and we assume the algebraic decay of the solution.
iii) Ω ⊂ R is a bounded interval and we know the algebraic decay of the solution and the

nonlocal flux from Ωc into Ω .

Our scheme is adapted from [30], where the authors look at item (i) in the particular case
when ν(|x − y|) is the integral kernel associated with the Fractional Laplacian, (−Δ)α/2,
0 < α < 2.Ourmain contribution is to extend this scheme and provide a proof of convergence
for all three problems (i)–(ii)–(iii) for a larger range of kernels, meaning kernels that satisfy
Hypotheses 3.2 and 3.3 and that are therefore exponentially decaying and do not have compact
support. Moreover, in the case of problems with nonlocal Dirichlet boundary conditions,
kernels are allowed to take negative values.

Notice that the properties exhibited by our kernels are in direct contrast to those considered
in most of the literature pertaining to the numerical approximation of nonlocal equations.
Indeed, most numerical schemes deal with either the integral form of the fractional Laplacian,
[1,2,21,22,30] or with nonlocal operators involving kernels that are positive and compactly
supported [18,20,23,46,47]. In addition, since the problems considered here are posed on the
whole real line, there are additional difficulties not encountered when looking at bounded
domainswith, for example,Dirichlet boundary conditions, or at problems that involve positive
kernels with compact support. Mainly the issue to be addressed is how to approximate the
solution outside the computational domain. On the other hand, from a theoretical point of
view it is not immediately clear that solutions exist and are unique when problem (1.2) is
posed on all of R. The second main contribution of this paper is to adapt previous results
from [32] to show that the assumption of algebraic decay for solutions to Eq. (1.2) leads
to a well posed problem, provided that the right hand side, f , also has sufficient decay and
satisfies some compatibility conditions (zero mean and zero first moment).

Our results are organized as follows. In Sect. 2, we present the different nonlocal diffusion
problems and boundary conditions that are considered in this paper. Details on the derivation
of the Eq. (1.1), as amodel for population dynamic, and how nonlocal Dirichlet andNeumann
boundary condition can be naturally defined are provided in Appendix A. In Sect. 3, we prove
that the nonlocal problem (1.2) is well posed if the equation is defined on a particular class
of weighted Sobolev spaces. In particular, we derive conditions on the right hand side, f ,
that guarantee existence of a unique solution. These results hold for a large class of kernels,
and for problems defined either on the whole real line or on bounded domains with nonlocal
Neumann boundary condition. In this section we also state conditions that guarantee the
problem is well posed when considering nonlocal Dirichlet boundary conditions. In Sect. 4
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we adapt the methods from [30] to the problems (i), (ii) and (iii). The convergence of the
numerical schemes is established in Sect. 5. Unlike most schemes proposed in literature,
the convergence of the Dirichlet problem is established for kernels that can take negative
values assuming the kernel has a positive tail. Finally, in Sects. 6.1, 6.2, and 6.3 we provide
examples for cases (i), (ii), and (iii), respectively.

2 Nonlocal DiffusionModel and Boundary Conditions

As mentioned in the introduction, the derivation of Eqs. (1.1) and (1.2) has been done in
various contexts, see again for example [5,19,20,27]. In the case of diffusion problems, the
key idea is to extend the concept of flux across a boundary to a version of flux that includes
short as well as long range movement of particles. This extension is explained in detail in
references [19,20]. For completeness, in Appendix A we summarize some of the results of
the above references, and use an example from populations dynamics to derive Eq. (1.1).

In this paper, we concentrate on the 1-dimensional steady state problem with nonlocal
diffusion operator L of the form:

L ∗ u =
∫
R

(u(x, t) − u(y, t))ν(x, y)) dy,

where the kernel ν is assumed to be symmetric, meaning that ν(x, y) = ν(|x − y|), and
exponentially decaying.We study three types of problems that are either defined on a bounded
domainΩ with nonlocal Dirichlet or Neumann boundary conditions, or defined on the whole
real line R. These problems can be described as follows:

– Dirichlet boundary conditions

L ∗ u = f for x ∈ Ω,

u = g for x ∈ Ωc,
(DP)

– Neumann boundary conditions

L ∗ u = f for x ∈ Ω,

L ∗ u = fc for x ∈ Ωc,
(NP)

– problem defined on whole real line

L ∗ u = f for x ∈ R. (RP)

The main goal of this paper is to show that the above problems are well posed, and to
introduce numerical methods that approximate the solutions to these problems. We note
that non stationary problems can also be solved with the method presented in Sect. 4.2 by
incorporating a time stepping scheme such as an RK-4 method.

Remark 2.1 Notice that in the case when the flux is prescribed, the equations for the steady
state takes the form

L ∗ u = f̄ (x) x ∈ R,

where

f̄ (x) =
{

f (x) for x ∈ Ω,

fc(x) for x ∈ Ωc.
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3 Weighted Spaces andWell-Posedness

In this section we recall the results from [31] where it is shown that under certain assumptions
on the kernel ν(x, y), operators defined by Eq. (1.2) are Fredholm operators. These results
rely on a special class of weighted Sobolev spaces, which we recall first before stating the
assumptions on ν(x, y) and f (x). Our goal for this section is to show that the equation,

L ∗ u = f (x) x ∈ R, (3.1)

is well posed.

3.1 Notation andWeighted Sobolev Spaces

For s ∈ N ∪ {0}, p ∈ (1,∞), and γ ∈ R, we let Ms,p
γ (R) denote the space of locally

summable, s times weakly differentiable functions u : R → R endowed with the norm

‖u‖Ms,p
γ (R) =

s∑
j=0

‖∂ j
x u‖L p

j+γ (R) where ‖u‖L p
γ (R) = ‖(1 + |x |2)γ /2u‖L p(R).

It is clear that for values of γ > 0 these spaces impose a certain level of algebraic decay,
whereas for values of γ < 0 functions are allowed to grow algebraically. This definition
also allows for the following embeddings: Ms,p

γ (R) ⊂ Ms,p
σ (R) provided γ > σ , and

Ms,p
γ (R) ⊂ Mk,p

γ (R) if s > k.
Notice that we can extend the above definition to non integer values of s by interpolation

and to negative values of s by duality. For values of p ∈ (1,∞) these spaces are also
reflexive, so that (Ms,p

γ (R))∗ = M−s,q
−γ (R), where p and q are conjugate exponents. The

pairing between f ∈ L p
γ (R) and an element in the dual space g ∈ Lq

−γ (R) is given by the
usual integral

〈 f , g〉 =
∫
R

f g dx .

In addition, if p = 2 then the spaces Ms,2
γ (R) are Hilbert spaces with inner product

( f , g) =
s∑

j=0

∫
R

∂
j
x f ∂ j

x g(1 + |x |2)( j+γ ) dx .

The following lemma describes the algebraic decay of functions belonging to M1,p
γ for

positive values of the parameter γ .

Lemma 3.1 Given γ > 0, a function f ∈ M1,p
γ (R) satisfies | f (x)| ≤ ‖ f ′‖L p

γ+1
|x |1/q−(γ+1)

as |x | → ∞.

Proof Since γ > 0 we may write | f (x)| ≤ ∫ x
∞ | f ′(y)(1 + y2)(γ+1)/2|(1 + y2)−(γ+1)/2 dy.

The result then follows from Hölder’s inequality. 
�
Notation: In this paper we will also use the symbolWs,p

γ (R) to denote the space of locally
summable, s times weakly differentiable functions that are bounded under the norm

‖u‖Ws,p
γ (R) =

s∑
j=0

‖(1 + |x |2)γ /2∂
j
x u‖L p(R).
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In the case when p = 2 we will also write Hs
γ (R) = Ws,2

γ (R). Furthermore, we will use

〈, 〉 to denote the pairing between an element in Mk,p
γ (R) and its dual M−k,q

−γ (R), and (, ) to
denote the inner product on the Hilbert spaces Mk,2

γ (R).

3.2 Nonlocal Diffusive Operators on the Real Line

In this sectionwe let L(k) denote the Fourier symbol of the operatorL . Ourmain assumptions
are

Hypothesis 3.2 The domain of the multiplication operator, L(k), can be extended to a strip in
the complex plane,Ω = R× (−ik0, ik0) for some sufficiently small and positive k0 ∈ R, and
on this domain the operator is uniformly bounded and analytic. Moreover, there is a constant
km ∈ R such that the operator L(k) is invertible with uniform bounds for |Rek| > km.

Note that because L(k) is analytic its zeros are isolated. We can therefore assume that:

Hypothesis 3.3 The multiplication operator L(k) has a zero, k∗, of multiplicity m which we
assume is at the origin. Therefore, the symbol L(k) admits the following Taylor expansion
near the origin.

L(k) = α(−ik)m + O(km+1), for k ∼ 0 α = ±1.

Remark 3.4 In this paper we will consider the particular case when m = 2, so that this
last assumption specifies that the operator behaves very much like the Laplacian for small
wavenumbers, giving its diffusive character.

Remark 3.5 Given that ν(x, y) = δ(x − y) − L , the analyticity of the symbol L(k) implies
that ν(x, y) is exponentially localized. Similarly, because L(k) has a zero of multiplicity m
at the origin, then the first m − 1 moments of the kernel δ(x − y) − ν(x, y) must be zero,
while the m-th moment must be bounded.

As was shown in [31], under the above hypotheses the convolution operator L is a
Fredholmoperator in an appropriateweighted space. Thismeans in particular that the operator
has a closed range and a finite dimensional kernel and cokernel. Here we define the cokernel
of an operator as the kernel of its adjoint.

The results presented in [31] apply to more general operators defined over L2(R, Y ),
where Y is a separable Hilbert space, and that commute with the action of translations on
L2(R, Y ). Here we consider the case when Y = R and summarize the results from [31] in
this next theorem.

Theorem 1 Let p ∈ (1,∞) with q its conjugate exponent, and let γ ∈ R be such that
γ +m+1/p /∈ {1, . . . ,m}. Suppose as well that the convolution operatorL : Mm,p

γ (R) →
Wl,p

γ+m(R) satisfies Hypotheses 3.2 and 3.3. Then, with appropriate value of the integer l, the
operator is Fredholm and

– for γ < 1 − m − 1/p it is surjective with kernel spanned by Pm;
– for γ > −1 + 1/q it is injective with cokernel spanned by Pm;
– for j − 1 − m + 1/q < γ < j + 1 − m − 1/p , where j ∈ N, 1 ≤ j < m, its kernel is

spanned by Pm− j and its cokernel is spanned by P j .

Here Pm is the m-dimensional space of all polynomials with degree less than m.
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The above results follows from Lemma 3.6 and Proposition 3.7, which show that under the
above hypotheses the convolution operators considered here can bewritten as the composition
of an invertible operator and a Fredholm operator. These results can also be found in [31].

Lemma 3.6 Let the multiplication operator L(k) satisfy Hypothesis 3.2-3.3. Then L(k)
admits the following decomposition:

L(k) = ML(k)LNF (k) = LNF (k)MR(k),

where LNF (k) = (−ik)m/(1 ± ik)l , while ML/R(ξ) and their inverses are analytic and
uniformly bounded on Ω .

Proposition 3.7 Let m and l be non negative integers, and p ∈ (1,∞) with q its conjugate
exponent. Then, the operator

(1 ± ∂x )
−l∂mx : Mm,p

γ (R) −→ Wl,p
γ+m(R)

is Fredholm for γ + m + 1/p /∈ {1, . . . ,m}. In particular,

– for γ < 1 − m − 1/p it is surjective with kernel spanned by Pm;
– for γ > −1 + 1/q it is injective with cokernel spanned by Pm;
– for j − 1 − m + 1/q < γ < j + 1 − m − 1/p , where j ∈ N, 1 ≤ j < m, its kernel is

spanned by Pm− j and its cokernel is spanned by P j .

For γ + m + 1/p ∈ 1, . . . ,m the operator does not have a closed range. Here Pm is the
m-dimensional space of all polynomials with degree less than m.

Heuristically, the main reason why operators of the form (1± ∂x )
−�∂mx are not Fredholm

in regular Sobolev spaces is because they have a zero eigenvalue embedded in their essential
spectrum. In particular, this means that one can use the corresponding eigenfunction to
construct Weyl sequences and consequently show that the operator does not have closed
range.

For example, consider the one dimensional Laplacian ∂2x : H2(R) −→ L2(R). Its
nullspace is spanned by {1, x}, and although these functions are not in H2(R), one can
use them to construct Weyl sequences. For example, let un = χ(|x |/n), where χ(|x |) is a
smooth radial function equal to one when |x | < 1, and equal to zero when |x | > 2. Notice
that this sequence does not converge in H2(R). However ‖∂2x un‖L2 → 0 as n → ∞, showing
that the operator does not have a closed range.

The reason for considering ∂2x : Ms,2
γ (R) −→ L2

γ+2(R) is that by picking large positive

values of γ , and thus imposing algebraic decay, one no longer has the result ‖∂2x un‖L2
γ+2

→ 0.

On the other hand, by picking negative values of γ and allowing algebraic growth, the
sequence un = χ(|x |/n) no longer converges to an element in the domain Ms,2

γ (R).
In this paper we will restrict ourselves to functions f (x) in weighted Sobolev spaces,

L p
γ (R), that impose a high degree of algebraic decay. As a result our convolution operators

will have a two dimensional cokernel spanned by at most {1, x} (since we are assuming
m = 2).

The goal for us is to reformulate the problem so that we deal with an invertible operator.
This means that we will look at the following system

L ∗ u + a1L ∗ P1(x) + a2L ∗ P2(x) = f (x) x ∈ R, (3.2)

where f (x) ∈ L p
γ (R) is given, u(x) and ai ∈ R, with i ∈ {1, 2}, represent the variables

we want to solve for, and L ∗ Pi (x) ∈ C∞(R), are functions that span the cokernel of our
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operator. In particular we require

〈L ∗ P1, 1〉 =
∫
R

L ∗ P1(x) dx = 1 〈L ∗ P1, x〉 =
∫
R

L ∗ P1(x) · x dx = 0

〈L ∗ P2, 1〉 =
∫
R

L ∗ P1(x) dx = 0 〈L ∗ P2, x〉 =
∫
R

L ∗ P2(x) · x dx = 1

For example, one may pick P1(x) = (1/2) log(cosh(x)) and P2(x) = ∂x P1(x) =
(1/2) tanh(x).

The above discussion leads to the following proposition.

Proposition 3.8 Given γ > −1 + 1/p, the convolution operator L with Fourier symbol
L(k) = ML(k)(ik)2/(1 + k2) and defined as

L : M2,p
γ (R) × R × R −→ W 2,p

γ+2(R)

(u, a1, a2) �→ L ∗ (u + a1P1 + a2P2)

is invertible, and therefore well defined.

We also have the following corollary, which gives conditions on the right hand side of
Eq. (3.1) that guarantee existence of solutions. This result is a consequence of the previous
proposition and Lemma 3.1.

Corollary 3.9 Let s ∈ Z ∪ [2,∞), and p ∈ (1,∞) with q its conjugate exponent. Consider
the convolution operatorL , with Fourier symbol L(k) = ML(k)(ik)2/(1+ k2), and defined
as

L : Ms,p
γ (R) −→ Ws,p

γ+2(R)

u �−→ L ∗ u.

Suppose γ > −1+ 1/q, then the equationL ∗ u = f has a unique solution, with |u(x)| <

C |x |1−1/p−(γ+1) for large |x |, provided the right hand side f (x) ∈ Ws,p
γ+2(R) satisfies

〈 f , 1〉 = 0 and 〈 f , x〉 = 0.

Remark 3.10 Notice that by Lemma 3.1, if the function f ∈ W 2,p
γ+2(R), then for large |x | we

have that | f (x)| < ‖ f ′‖L p
γ+2

|x |1/q−(γ+3), where p and q are conjugate exponents.

Remark 3.11 If in addition to Hypotheses 3.2 and 3.3, the kernel ν(x) ∈ L2(R), and the
Eq. (3.1) is posed on a bounded domain, then

L ∗ u = u(x) −
∫
R

ν(|x − y|)u(y) dy = u(x) −
∫

Ω

ν(|x − y|)u(y) dy,

defines an operator L : L2(Ω) → L2(Ω) which is a compact perturbation of the identity.
This follows since the integral in the above expression corresponds to a Hilbert-Schmidt
operator. As a result, problem (DP) has a unique solution.

Remark 3.12 The above results can be extended to operators L defined on lattices. The
discussion follows again from the results presented in [31], it is summarizes in appendix B
for completeness.
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4 A Numerical Method for Nonlocal Diffusive Operators

In this section, we extend the discretization scheme presented in Huang and Oberman’s paper
[30] so it is valid for problems with more general kernels defined on the whole real line. In
particular, the method presented here applies to equations of the form

L ∗ u(x) =
∫
R

(u(x) − u(x − y))ν(y) dy = f (x) x ∈ R (4.1)

where ν(y) is an exponentially localized kernel, so that the Fourier symbol L(k) satisfies
Hypotheses 3.2 and 3.3 with m = 2. In terms of the moments of ν(y), these assumptions
lead to ∫

R

ν(y) dy = 1 ,

∫
R

ν(y)y dy = 0. (4.2)

Additionally, in order to bound the local truncation error in the numerical schemes, we also
make the following assumptions∫

R

ν(y)y2 dy < ∞ ,

∫
R

ν(y)y4 dy < ∞ , u ∈ C4(R). (4.3)

In Remark 2.1, we noted that Eq. (4.1) also encompasses problems posed on a bounded
domain with nonlocal Neumann boundary conditions. Thus, the results presented in this
section also apply to this type of situations. Similarly, the result presented here also apply to
Dirichlet boundary problems where the Eq. (4.1) is considered on a bounded domainΩ ⊂ R.

Remark 4.1 The numerical schemes introduced in the following two sections are shown to
have an order of convergence O(h2), where h is the spatial discretization. These results hold
in the case of functions u ∈ C4. This assumption can be relaxed if one uses kernels with
better integrability properties, in which case one can still show that the method converges to
order O(h2), even for functions u ∈ C2. This means that in the case of a solution u, or data
f , which are not smooth enough or discontinous this convergence rate cannot be expected.
This is illustrated in Sect. 6.3.

4.1 Discretization of the Operator

As a first step, we set up a numerical grid defined by xi = ih, i ∈ Z and h > 0. We then split
Eq. (4.1) into a (possibly) singular part and a tail:

L ∗ u(x) =
∫ h

−h
[u(x) − u(x − y)]ν(y) dy +

∫
|y|≥h

[u(x) − u(x − y)]ν(y) dy.

We denote the first and second integral by LS ∗ u(x) and LT ∗ u(x), respectively.

4.1.1 Discretization of the Singular Integral

We first rewrite the singular integral, considering it as a Cauchy P.V.:

LS ∗ u(x) =
∫ h

−h
[u(x) − u(x − y)]ν(y) dy

:= lim
ε→0

∫ h

ε

[u(x) − u(x − y)]ν(y) dy +
∫ −ε

−h
[u(x) − u(x − y)]ν(y) dy
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=
∫ h

0
[2u(x) − u(x + y) − u(x − y)]ν(y) dy.

The last equality follows from changing variables, z = −y, in the second integral and using
the evenness of ν.

Assuming u ∈ C4, we can use Taylor’s Theorem and expand u(x − y), u(x + y) to obtain
that the above integral is

−u′′(x)
∫ h

0
y2ν(y) dy − u(4)(ξ1)

12

∫ h

0
y4ν(y) dy,

where ξ1 ∈ (x − h, x + h) is chosen appropriately to ensure that the equality holds. We can
also rewrite u′′(x), using a Taylor expansion, to get its second order finite difference formula:

−
[
u(x + h) − 2u(x) + u(x − h)

h2
+ u(4)(ξ2)

12
h2

] ∫ h

0
y2ν(y) dy − u(4)(ξ1)

12

∫ h

0
y4ν(y) dy.

Simplifying this result, we have

LS ∗ u(x) = −
[
u(x + h) − 2u(x) + u(x − h)

]
f1(h) − u(4)(ξ2)

12
f2(h) − u(4)(ξ1)

12
f3(h)

where

f1(h) = 1

h2

∫ h

0
y2ν(y) dy, f2(h) = h2

∫ h

0
y2ν(y) dy, f3(h) =

∫ h

0
y4ν(y) dy.

For a specific grid point xi , we can rewrite the above formula as follows:

LS ∗ u(xi ) =
[
u(xi ) − u(xi−1)

]
f1(h) +

[
u(xi ) − u(xi+1)

]
f1(h) − u(4)(ξ2)

12
f2(h)

− u(4)(ξ1)

12
f3(h).

4.1.2 Discretization of the Tail Integral

Let T (x) be the hat function

T (x) :=
{
1 − |x |

h if |x | ≤ h,

0 otherwise.

Then we can interpolate any function f (x) on all of R as follows:

P f (y) :=
∞∑

j=−∞
f (x j )T (y − x j ).

Note that this is just piecewise polynomial interpolation,wherewe’ve chosen the interpolating
polynomials to be the linear (Lagrange) polynomials on their given domain [xi , xi+1].

Letting f (y) = u(xi ) − u(xi − y) and plugging its interpolation into the tail integral we
get

LT ∗ u(xi ) =
∫

|y|≥h
f (y)ν(y) dy
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≈
∫

|y|≥h
P f (y)ν(y) dy

=
∞∑

j=−∞

[
(u(xi ) − u(xi − x j ))

∫
|y|≥h

T (y − x j )ν(y) dy

]
.

Because the hat function T is zero almost everywhere, the latter integral is actually defined
on finite interval and, as we will show later, it can be computed easily. Finally, because this
is a polynomial interpolation, it can be shown that

LT ∗ u(xi ) :=
∫

|y|≥h
P f (y)ν(y) dy + O

(
h2

∫ ∞

h
|ν(y)| dy

)
.

4.1.3 Discretization of the Nonlocal Operator

Let

f1(h) = 1

h2

∫ h

0
y2ν(y) dy, f3(h) =

∫ h

0
y4ν(y) dy,

f2(h) = h2
∫ h

0
y2ν(y) dy, f4(h) = h2

∫ ∞

h
|ν(y)| dy,

(4.4)

then using the above results and the relations xi−1 = xi − x1, xi+1 = xi − x−1, we can write

L ∗ u(xi ) =LS ∗ u(xi ) + LT ∗ u(xi )

=
∞∑

j=−∞

(
[u(xi ) − u(xi − x j )]w j

)

+ O

(
f2(h)

)
+ O

(
f3(h)

)
+ O

(
f4(h)

)
, (4.5)

where

w j =

⎧⎪⎨
⎪⎩
0 if j = 0,

f1(h) + ∫
|y|≥h T (y − x j )ν(y) dy if j = ±1,∫

|y|≥h T (y − x j )ν(y) dy otherwise.

(4.6)

Note that whenever j = 0, we have that u(xi ) − u(xi − x j ) = 0 and hence we can define
w0 arbitrarily.

Remark 4.2 From Eq. (4.5) we can conclude that the order of the scheme presented in this
section is given by

min

{
O

(
f2(h)

)
+ O

(
f3(h)

)
+ O

(
f4(h)

)}
.

4.2 Numerical Methods on a Finite Lattice

Having found a discretization of the nonlocal operator that is also valid on the whole real line,
we now focus on to its practical application. Namely, while the scheme approximates the
nonlocal equations for any x ∈ Ω , where Ω can be a bounded or unbounded subset of R, it
still requires the calculation of an infinite number of weights, w j . In this section, we discuss
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how to modify the scheme such that only a finite number of weights need to be calculated as
well as a few nontrivial integrals.

First, letM be some even number such L = M
2 h and let LW = 2L = Mh. Define x j = jh

for−M ≤ j ≤ M . Now, unlike in the previous section, wewant to split the nonlocal operator
as

L ∗ u(xi ) =
∫ h

−h
[u(xi ) − u(xi − y)]ν(y) dy +

∫
h≤|y|≤LW

[u(xi ) − u(xi − y)]ν(y) dy

+ u(xi )
∫

|y|≥LW

ν(y) dy −
∫

|y|≥LW

u(xi − y)ν(y) dy.

Call these integrals (Ia), (Ib), (II), and (III) respectively. Note that integral (III) depends on
the specific point xi chosen.

Due to the local nature of the hat functions, we can repeat all of the arguments of Sect. 4.1
to write

(Ia) + (Ib) =
M∑

j=−M

(
[u(xi ) − u(xi − x j )]w j

)

+ O

(
f2(h)

)
+ O

(
f3(h)

)
+ O

(
f4(h)

)

where

w j =

⎧⎪⎨
⎪⎩
0 if j = 0,

f1(h) + ∫
h≤|y|≤LW

T (y − x j )ν(y) dy if j = ±1,∫
h≤|y|≤LW

T (y − x j )ν(y) dy if 1 < | j | ≤ M,

with the functions fk(h) defined in (4.4). Note also that the weights w j are still even here as
well.

Integral (II) doesn’t depend on u(x) and can be precomputed, and inmany cases of interest,
can be calculated analytically. Thus, for simplicity we define the constant A as

A =
∫

|y|≥LW

ν(y) dy. (4.7)

Lastly, integral (III) can also be precomputed depending on the specific problem under con-
sideration. This step is described in the following.

4.3 Dirichlet Problem

We begin here by considering the Dirichlet problem
{
L ∗ u(x) = f (x), x ∈ (−L, L),

u(x) = g(x), x ∈ (−L, L)c.
(4.8)

Note that LW is the smallest number such that u(xi − y) = g(xi − y) for all |y| ≥ LW and
all −M

2 + 1 ≤ i ≤ M
2 − 1. Hence, defining Bi = (I I I ) to highlight it’s dependence on i ,

we have

Bi =
∫

|y|≥LW

g(xi − y)ν(y) dy. (4.9)
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Since ν and g are given functions, the integral Bi can be calculated analytically. Dropping
the big O terms, our numerical scheme for the Dirichlet problem is given by

M∑
j=−M

(
[ui − ui− j ]w j

)
+ Aui − Bi = f (xi ), (4.10)

for −M
2 + 1 ≤ i ≤ M

2 − 1. Note that u± M
2

= g(x± M
2
) and so the boundary points, i = ±M

2 ,
do not need to be solved for.

4.4 Whole Real Line Problem

In this section we consider the problem posed on the whole real line

L ∗ u(x) = f (x), x ∈ R. (4.11)

Since ν(x) and f (x) are given explicitly it may be possible in some cases to discern the
asymptotic decay rate of the solution u(x). For example, if u(x) decays exponentially to
zero then it should be possible to ignore the integral (III) by choosing L sufficiently large.
This approximation is essentially the Dirichlet problem previously considered where we take
g(x) = 0 (on a sufficiently large domain).

On the other-hand, if the solution u(x) decays too slowly (e.g. algebraically) to zero then
ignoring the integral (III) could lead to large errors (or require extremely large domain sizes).
To get around this issue, we assume that the asymptotic decay rate of u(x) is known, i.e.
u(x) ∼ g(x).We note that the decay rate of g(x) needs to satisfy the bound fromcorollary 3.9.
Then to get a good approximation of the integral (III), we may assume

u(x) ≈
{
u(L)

g(x)
g(L)

, x ≥ L,

u(−L)
g(x)
g(−L)

, x ≤ −L.
(4.12)

Essentially this just assumes the decay rate is a good approximation of the solution outside
the interval [−L, L].

The advantage of this formulation, compared to the Dirichlet problem, is that we only
assume the decay of the solution to be known. It allows us to use smaller values of L to get a
given order of accuracy compared to the Dirichlet problem which assumes that the solution
u(x) vanished for large values of x . Thus, the Dirichlet method is either adequate for problem
with exponentially decaying solution or requires large value of L when the solution decays
algebraically.

Thus the integral (III) can be approximated as

(III) =
∫

|y|≥LW

u(xi − y)ν(y) dy

≈ u(L)

g(L)

∫
|y|≥LW

g(xi − y)ν(y) dy

≈ u(−L)

g(−L)

∫ −LW

−∞
g(xi − y)ν(y) dy + u(L)

g(L)

∫ ∞

LW

g(xi − y)ν(y) dy

= u(−L)B1
i + u(L)B2

i

= u− M
2
B1
i + u M

2
B2
i ,
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where

B1
i =

∫ −LW

−∞
g(xi − y)

g(−L)
ν(y) dy, B2

i =
∫ ∞

LW

g(xi − y)

g(L)
ν(y) dy. (4.13)

We now see that the integrals B1
i and B2

i can be calculated analytically. This is slightly
different from the Dirichlet problem we considered before as u(−L) and u(L) are now
unknowns and must be solved for in the numerical scheme itself. With that said, we can write
the complete scheme as

M∑
j=−M

(
[ui − ui− j ]w j

)
+ Aui − u− M

2
B1
i − u M

2
B2
i = f (xi )

for all −M
2 ≤ i ≤ M

2 and it’s understood that whenever |i − j | > M
2 we replace ui− j with

the approximation (4.12). Notice that the range of allowed i values has increased to account
for the fact that u− M

2
and u M

2
are now unknowns.

4.5 Neumann Problem

Here we consider the Neumann problem{
L ∗ u(x) = f (x), x ∈ (−L̃, L̃),

L ∗ u(x) = fc(x), x ∈ (−L̃, L̃)c,

where the solution is assumed to decay algebraically, meaning that the Eq. (4.12) is satisfied
for a given g and L > L̃ > 0. Recall that this is equivalent to solving the whole real line
problem

L ∗ u(x) = f̄ (x), x ∈ R

where

f̄ (x) =
{
f (x), x ∈ (−L̃, L̃),

fc(x), x ∈ (−L̃, L̃)c.

Hence, since we’ve already developed a numerical method which solves the problem on the
whole real line, we can apply it verbatim to also solve Neumann problems.

5 Proofs of Convergence

In this section we established the convergence of the numerical schemes introduced in the
previous section, meaning the schemes approximating the solution of problems of the type
(DP), (RP) and (NP).

5.1 Dirichlet

Consider again the Dirichlet scheme

M∑
j=−M

(
[ui − ui− j ]w j

)
+ Aui − Bi = f (xi )

123



Journal of Scientific Computing (2021) 88 :30 Page 15 of 40 30

for −M
2 + 1 ≤ i ≤ M

2 − 1. In this section we will write this system in matrix form and
then derive bounds on the eigenvalues of the corresponding matrix. Together with the local
truncation error derived earlier, this will show the scheme converges.

In addition to assumptions (4.2) and (4.3), we will also assume in this section that ν(y) is
an arbitrary L1(R) function, taking positive or negative values, such that for all sufficiently
large values of L we have that the tails are strictly positive:

∫
|y|>2L

ν(y) dy > 0. (5.1)

This hypothesis will be sufficient to show that the scheme is stable.

5.1.1 Stability

To write the scheme in matrix form, we focus first on the summation and, for ease of presen-
tation, we let uk := u(xk). We then have

M∑
j=−M

(
[ui − ui− j ]w j

)
= ui

M∑
j=−M

w j −
M∑

j=−M

ui− jw j

= ui

M∑
j=−M

w j −
∑

|i− j |≤ M
2 −1

ui− jw j −
∑

|i− j |> M
2 −1

ui− jw j .

Note that in the last sum of the second line we have ui− j = gi− j . Keeping in mind that i is
a fixed constant here, it reads

M∑
j=−M

(
[ui − ui− j ]w j

)

= ui

M∑
j=−M

w j −
j=i+ M

2 −1∑
j=i− M

2 +1

ui− jw j −
i− M

2∑
j=−M

gi− jw j −
M∑

j=i+ M
2

gi− jw j .

Renaming the above quantities as follows

c1 =
M∑

j=−M

w j , c2i =
i− M

2∑
j=−M

gi− jw j , c3i =
M∑

j=i+ M
2

gi− jw j ,

we get

M∑
j=−M

(
[ui − ui− j ]w j

)
= ui c

1 − c2i − c3i −
j=i+ M

2 −1∑
j=i− M

2 +1

ui− jw j

= ui c
1 − c2i − c3i −

M
2 −1∑

k=− M
2 +1

ukwi−k .
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The last equality is obtained by the change of variables k = i− j . Letting û denote the vector⎡
⎢⎢⎣
u− M

2 +1
...

u M
2 −1

⎤
⎥⎥⎦ ,

we can rewrite the above equation in matrix form as

c1û − c2 − c3 − ŵû,

where c2, c3 are vectorized versions of c2i , c
3
i and ŵ is the matrix given by

⎡
⎢⎢⎢⎣

w0 w−1 . . . w−M+2

w1 w0 . . . w−M+3
...

...
. . .

...

wM−2 wM−3 . . . w0

⎤
⎥⎥⎥⎦ .

Note that since w− j = w j the matrix is symmetric and in fact Toeplitz. We can then write
the numerical scheme for the Dirichlet problem as

c1û − c2 − c3 − ŵû + Aû − B = f̂

or, equivalently,

(c1 I − ŵ + AI )û = f̂ + c2 + c3 + B.

Letting N = c1 I − ŵ + AI , we note that N is symmetric and Toeplitz as well.
Following the work of [26], we now derive bounds on the eigenvalues of N . Define the

symmetric, Toeplitz matrix S as the matrix whose first row is given by[
0 −wM−2 −wM−3 . . . −w2 −w1

]
or, more explicitly,

S =

⎡
⎢⎢⎢⎣

0 −wM−2 . . . −w1

−wM−2 0 . . . −w2
...

...
. . .

...

−w1 −w2 . . . 0

⎤
⎥⎥⎥⎦ .

Now define the block matrix C as

C =
[
N S
S N

]
,

and note that not only is C a symmetric, Toepltiz matrix but it is also circulant. Since it’s
circulant, the eigenvalues are given explicitly by

λ j =
2M−2∑
k=1

C1k z
k−1
j

= (c1 + A) − w1z j − w2z
2
j − · · · − wM−2z

M−2
j

− wM−2z
M
j − wM−3z

M+1
j − · · · − w1z

2M−3
j ,

where z j = exp(i 2π j
2M−2 ) and 0 ≤ j ≤ 2M − 3.
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Let μ1 and μM−1 denote the smallest and largest eigenvalues of N, respectively. Then
using the main result of [26] we can bound the eigenvalues of N by the eigenvalues of C .
Specifically, we have

( min
j even

λ j ) + (min
j odd

λ j ) ≤ 2μ1,

(max
j even

λ j ) + (max
j odd

λ j ) ≥ 2μM−1.

We then see that if we can derive a lower bound for all the λ j then this will also be a lower
bound for μ1. Noting that z2M−2

j = 1, we can write

λ j = (c1 + A) − w1z j − w2z
2
j − · · · − wM−2z

M−2
j

+ z2M−2
j (−wM−2z

−M+2
j − wM−3z

−M+3
j − · · · − w1z

−1
j )

= c1 + A −
M−2∑

k=2−M

wk z
k
j

=
M∑

k=−M

wk + A −
M−2∑

k=2−M

wk z
k
j .

If we now use the fact that w j = ν(hj)h+ O(h2) and h = 2L
M then we can rewrite the above

as

λ j =
∫ 2L

−2L
ν(x) dx + A −

∫ 2L

−2L
ν(x)ei

jπ
2L x dx + O(h)

= 1 −
∫ 2L

−2L
ν(x)ei

jπ
2L x dx + O(h)

= 1 −
∫ 2L

−2L
ν(x) cos(

jπ

2L
x) dx + O(h)

→ 1 −
∫ 2L

−2L
ν(x) cos(

jπ

2L
x) dx as h → 0.

Define Λ j = 1 − ∫ 2L
−2L ν(x) cos( jπ

2L x) dx and recall that ν can take negative values. We
note that since the λ j get arbitrarily close to theΛ j , it’s sufficient to show thatΛ j is bounded
away from zero for all j . In the special case that j = 0, we see that Λ0 = A > 0.

For j ≥ 1, denote the symbol of L as L̂ so that we can write

Λ j = L̂

(
jπ

2L

)
+

∫
|x |≥2L

ν(x) cos(
jπ

2L
x) dx

≥ L̂

(
jπ

2L

)
−

∫
|x |≥2L

ν(x) dx

≥ L̂

(
jπ

2L

)
− 2e−ηL

= M

(
jπ

2L

) (
jπ
2L

)2

1 +
(

jπ
2L

)2 − 2e−ηL
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≥ cM
( jπ)2

(2L)2 + ( jπ)2
− 2e−ηL

> 0,

where in the second line we’ve used that the tails are positive, in the third line we’ve used that
ν(x) is exponentially localized for large values of L , in the fourth line we use the lemma 3.6,
in the fifth line that M is bounded below by the positive constant cM , and in the sixth line that

it’s always possible to choose L large enough such that cM
( jπ)2

(2L)2+( jπ)2
− 2e−ηL is positive

for all j ≥ 1. To finish, note that cM
( jπ)2

(2L)2+( jπ)2
− 2e−ηL is an increasing function of j

so that Λ j is bounded below by cM
(π)2

(2L)2+(π)2
− 2e−ηL for all j ≥ 1. Defining Λmin =

min{A, cM
(π)2

(2L)2+(π)2
− 2e−ηL }, this immediately gives that μ1 ≥ Λmin > 0 and implies

the scheme is stable in the (grid) 2-norm.

5.1.2 Consistency

To get a precise bound on the local truncation error, note that since ν ∈ L1(R), we can apply
Holder’s Inequality to the integrals in Eq. (4.4). Doing so yields

| f2(h)| ≤ h4‖ν‖L1(R) , | f3(h)| ≤ h4‖ν‖L1(R) , | f4(h)| ≤ h2‖ν‖L1(R),

which shows that the local truncation error is at least O(h2).

5.1.3 Convergence

Changing notation slightly, letU (x) be the solution of the problem (DP), given by Eq. (4.8),
û be the solution of the corresponding discrete scheme above, and define Eh

i = U (xi ) − ûi
for all −M

2 + 1 ≤ i ≤ M
2 − 1. Denoting the local truncation error by LTE, we have

NEh = NU − Nû

= NU + c2 + c3 + B − Nû − c2 − c3 − B

= f̂ + LT E − f̂

= LT E .

Inverting the matrix N and applying the properties of grid norms gives

‖Eh‖2 ≤ ‖N−1‖2‖LT E‖2
≤ 1

Λmin
‖LT E‖2

≤
√
L

Λmin
‖LT E‖∞

Since LT E = O(h2) and Λmin doesn’t depend on h, we can take the limit as h → 0 on both
sides to conclude that Eh → 0, so that the scheme converges.
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5.2 Whole Real Line Problem

Consider again the scheme for the whole real line

M∑
j=−M

(
[ui − ui− j ]w j

)
+ Aui − u− M

2
B1
i − u M

2
B2
i = f (xi ),

for −M
2 ≤ i ≤ M

2 . As the resulting matrix equation isn’t symmetric, we will proceed in a
different way than the previous subsection to show that the scheme converges. To do this,
in addition to Eqs. (4.2) and (4.3), we will assume in this section that ν(y) is a nonnegative
L1(R) function such that for all sufficiently large values of L we have that the tails are strictly
positive:

∫
|y|>2L

ν(y) dy > 0. (5.2)

This contrasts with the Dirichlet problem in that we do not allow the kernel to take possibly
negative values.

Because of Corollary 3.9, we will assume that f has been chosen such that the solution
u(x) of the (UP) problem satisfies |u(x)| ≤ C

|x |q for all sufficiently large x and some constants

C, q > 0. We will then define the decay function as g(x) := 1
|x |q .

5.2.1 Stability

As before, we first focus on the matrix form of the discrete convolution term. We have

M∑
j=−M

(
[ui − ui− j ]w j

)

= ui

M∑
j=−M

w j −
M∑

j=−M

ui− jw j

= ui

M∑
j=−M

w j −
∑

|i− j |≤ M
2

ui− jw j −
∑

|i− j |> M
2

ui− jw j

= ui

M∑
j=−M

w j −
i+ M

2∑
j=i− M

2

ui− jw j −
i− M

2 −1∑
j=−M

ui− jw j −
M∑

j=i+ M
2 +1

ui− jw j

= ui

M∑
j=−M

w j −
i+ M

2∑
j=i− M

2

ui− jw j − u− M
2
|L|q

i− M
2 −1∑

j=−M

gi− jw j

− u M
2
|L|q

M∑
j=i+ M

2 +1

gi− jw j .
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Renaming the above quantities as follows

c1 =
M∑

j=−M

w j , c2i = |L|q
i− M

2 −1∑
j=−M

gi− jw j , c3i = |L|q
M∑

j=i+ M
2 +1

gi− jw j ,

we get

M∑
j=−M

(
[ui − ui− j ]w j

)
= ui c

1 − u− M
2
c2i − u M

2
c3i −

i+ M
2∑

j=i− M
2

ui− jw j

= ui c
1 − u− M

2
c2i − u M

2
c3i −

M
2∑

k=− M
2

ukwi−k .

The last equality is obtained by the change of variables k = i− j . Letting û denote the vector⎡
⎢⎢⎣
u− M

2
...

u M
2

⎤
⎥⎥⎦ ,

we can rewrite the above equation in matrix form as

c1û − u− M
2
c2 − u M

2
c3 − ŵû

= (
c1 I − [c2 0 . . . 0 c3] − ŵ

)
û,

where ŵ is the matrix given by⎡
⎢⎢⎢⎣

w0 w−1 . . . w−M

w1 w0 . . . w−M+1
...

...
. . .

...

wM wM−1 . . . w0

⎤
⎥⎥⎥⎦ ,

c2, c3 are just vectorized versions of c2i , c
3
i , and [c2 0 . . . 0 c3] has enough zero vectors to

make the multiplication well-defined. We can then write the numerical scheme for the whole
real line problem as(

c1 I + AI − [(c2 + B1) 0 . . . 0 (c3 + B2)] − ŵ
)
û = f̂

which we note is neither symmetric nor Toeplitz like the Dirichlet case.
Defining N := c1 I + AI − [(c2 + B1) 0 . . . 0 (c3 + B2)] − ŵ and Z := I − N , we

now want to show that the L∞ norm of Z is strictly less than one for all values of h. We will
then able to bound the L∞ norm of N−1 in terms of the norm of Z via the corresponding
Neumann series

N−1 =
∞∑
n=0

Zn .

Further, since

‖Z‖∞ = max
0≤k≤M

M∑
j=0

|Zkj |
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it’s enough to show that the L1 norm of each row is strictly less than one.
For simplicity, we first derive three inequalities which will be needed. To begin, note that

A + c1 =
∫

|y|≥LW

ν(y) dy +
M∑

j=−M

w j

=
∫

|y|≥LW

ν(y) dy +
M∑

j=−M

∫
h≤|y|≤LW

T (y − x j )ν(y) dy + 2 f1(h)

=
∫

|y|≥LW

ν(y) dy +
∫
h≤|y|≤LW

( M∑
j=−M

T (y − x j )

)
ν(y) dy + 2 f1(h)

=
∫

|y|≥LW

ν(y) dy +
∫
h≤|y|≤LW

ν(y) dy + 2 f1(h)

≤ 1,

where the last line is given by using that f1(h) ≤ ∫ h
0 ν(y) dy. Also, since |L|qg(y) ≤ 1 for

all |y| ≥ L it follows that

c2i ≤
i− M

2 −1∑
j=−M

w j , c3i ≤
M∑

j=i+ M
2 +1

w j

and, by using that the w j are even, that

M−k∑
j=−k

w j + c2− M
2 +k

+ c3− M
2 +k

≤ c1.

Finally, define Pk(L) := ∫
|y|≥LW

(1 − |L|qg(x− M
2 +k − y))ν(y) dy and note that

Pk(L) =
∫

|y|≥LW

(
1 − |L|qg

(
x− M

2 +k − y
))

ν(y) dy

=
∫

|y|≥LW

(
1 − |L|q

|x− M
2 +k − y|q

)
ν(y) dy

≥
∫

|y|≥2LW

(
1 − |L|q

|x− M
2 +k − y|q

)
ν(y) dy

≥
∫

|y|≥2LW

(
1 − |L|q

|3L|q
)

ν(y) dy

=
(
1 − 1

3q

)∫
|y|≥2LW

ν(y) dy.

Defining Λmin(L) := (1 − 1
3q )

∫
|y|≥2LW

ν(y) dy, we note that Λmin is strictly positive and
independent of h. For reference, we list the three inequalities here as

c1 + A ≤ 1 (5.3)

M−k∑
j=−k

w j+c2− M
2 +k

+ c3− M
2 +k

≤ c1 (5.4)
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Pk ≥ Λmin. (5.5)

Returning to the the Z matrix, we have for the first row that

0 ≤
M∑
j=0

|Z0 j | ≤ |1 − c1 − A + c2− M
2

+ B1
− M

2
| +

M−1∑
j=1

|w j | + |c3− M
2

+ B2
− M

2
+ wM |

≤ |1 − c1 − A| + |c2− M
2

+ B1
− M

2
| +

M−1∑
j=1

|w j | + |c3− M
2

+ B2
− M

2
+ wM |

= 1 − c1 − A + c2− M
2

+ B1
− M

2
+

M∑
j=0

w j + c3− M
2

+ B2
− M

2

≤ 1 − A + B1
− M

2
+ B2

− M
2

= 1 −
∫

|y|≥LW

(
1 − |L|qg

(
x− M

2
− y

))
ν(y) dy

= 1 − P0

≤ 1 − Λmin,

where in the second line we used triangle inequality, in third we used inequality (5.3), in the
fourth inequality (5.4), and in the last line inequality (5.5). Similarly, for the last row of the
Z matrix we have

0 ≤
M∑
j=0

|ZMj | = |c2M
2

+ B1
M
2

+ wM | +
M−1∑
j=1

|w j | + |1 − c1 − A + c3M
2

+ B2
M
2
|

≤ c2M
2

+ B1
M
2

+
M∑
j=0

w j + 1 − c1 − A + c3M
2

+ B2
M
2

≤ 1 − A + B1
M
2

+ B2
M
2

= 1 −
∫

|y|≥LW

(1 − |L|qg(x M
2

− y))ν(y) dy

= 1 − PM

≤ 1 − Λmin,

where the inequalities (5.3), (5.4), and (5.5) were used in the sameway as before. By applying
the same argument, we have for any row in between the first and last

0 ≤
M∑
j=0

|Zkj |

= |c2− M
2 +k

+ B1
− M

2 +k
+ w−k |

+
M−k−1∑
j=−k

|w j | + |1 − c1 − A| + |c3− M
2 +k

+ B2
− M

2 +k
+ wM−k |

≤ c2− M
2 +k

+ B1
− M

2 +k
+

M−k∑
j=−k

w j + 1 − c1 − A + c3− M
2 +k

+ B2
− M

2 +k
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≤ 1 − A + B1
− M

2 +k
+ B2

− M
2 +k

= 1 − Pk

≤ 1 − Λmin.

Since the same bound applies to each of the sums, we must have that

‖Z‖∞ ≤ 1 − Λmin < 1.

We then have stability of the N matrix since

‖N−1‖∞ = ‖(I − Z)−1‖∞

= ‖
∞∑
n=0

Zn‖∞

≤
∞∑
n=0

‖Z‖n∞

≤
∞∑
n=0

(1 − Λmin)
n

= 1

Λmin
.

5.2.2 Consistency

The above argument establishes the numerical method is stable. We now need to bound the
local truncation error in order to get consistency. To this end, we’d like to show that∫

R

(u(xi ) − u(xi − y))ν(y) dy

=
M∑

j=−M

(
[ui − ũi− j ]w j

)
+ Aui − u− M

2
B1
i − u M

2
B2
i

+ O(h2) + O(|L|−q), (5.6)

where we’ve placed a tilde on the second term in the sum to remind the reader that if
|i − j | > M

2 then ũi− j = u(±L)|L|qgi− j .
We’ll do this in four steps. First, decompose the integral on the LHS into four pieces,

corresponding to each of the first four terms on the RHS respectively:
∫ 2L

−2L
(u(xi ) − u(xi − y))ν(y) dy + u(xi )

∫
|y|≥2L

ν(y) dy

−
∫ −2L

−∞
u(xi − y)ν(y) dy −

∫ ∞

2L
u(xi − y)ν(y) dy.

Second, note that if x ∈ [−L, L] and y ∈ (−2L, 2L)c then

|u(x − y) − u(±L)

g(±L)
g(x − y)| ≤ |u(x − y)| + |u(±L)

g(x − y)

g(±L)
|

≤ C

|x − y|q + C

|L|q
|L|q

|x − y|q
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≤ 2C

|x − y|q
≤ 2C

|L|q .

Next, by using the previous inequality we get

|
∫
y≥2L

u(xi − y)ν(y) dy − u M
2
B2
i |

=
∣∣∣∣
∫
y≥2L

u(xi − y)ν(y) dy −
∫

|y|≥2L

u(L)

g(L)
g(xi − y)ν(y) dy

∣∣∣∣
≤ 2C

|L|q
∫
y≥2L

ν(y) dy,

and something similar for the corresponding pair. If we nownote that u(xi )
∫
|y|≥2L ν(y) dy =

Aui , then we have the preliminary bound

u(xi )
∫

|y|≥2L
ν(y) dy −

∫ −2L

−∞
u(xi − y)ν(y) dy −

∫ ∞

2L
u(xi − y)ν(y) dy

= Aui − u− M
2
B1
i − u M

2
B2
i + O(|L|−q).

Finally, consider the last remaining integral
∫ 2L
−2L(u(xi ) − u(xi − y))ν(y) dy. We have

∣∣∣∣
∫ 2L

−2L
(u(xi ) − u(xi − y))ν(y) dy −

M∑
j=−M

(
[ui − ũi− j ]w j

)∣∣∣∣

≤
∣∣∣∣
∫ 2L

−2L
(u(xi ) − u(xi − y))ν(y) dy −

M∑
j=−M

(
[ui − ui− j ]w j

)∣∣∣∣

+
∣∣∣∣

M∑
j=−M

(
[ui − ui− j ]w j

)
−

M∑
j=−M

(
[ui − ũi− j ]w j

)∣∣∣∣

=
∣∣∣∣
∫ 2L

−2L
(u(xi ) − u(xi − y))ν(y) dy −

M∑
j=−M

(
[ui − ui− j ]w j

)∣∣∣∣

+
∣∣∣∣

M∑
j=−M

(
[ui− j − ũi− j ]w j

)∣∣∣∣.

With regards to the last line, note that for fixed L we’ve already shown in the Dirichlet
problem section that the first term is O(h2); as long as we take h → 0 before changing L ,
this first term will be identically zero. By using our inequality above, the second term can be
bounded as

∣∣∣∣
M∑

j=−M

(
[ui− j − ũi− j ]w j

)∣∣∣∣ ≤ 2C

|L|q
∫ 2L

−2L
ν(y) dy,

which we note is independent of h.
Collecting results, this shows Eq. (5.6) holds true and the scheme is consistent for all

sufficiently large L . Further, for all sufficiently large L , as h → 0 we have that the pointwise
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error term is bounded above by

2C

|L|q
∫

|y|≥2L
ν(y) dy + 2C

|L|q
∫ 2L

−2L
ν(y) dy

= 2C

|L|q .

5.2.3 Convergence

Let U (x) be the solution of the problem (UP), given by Eq. (4.11), û be the solution of the
corresponding discrete scheme above, and define Eh

i = U (xi ) − ûi for all −M
2 ≤ i ≤ M

2 .
Denoting the local truncation error by LTE, we have

NEh = NU − Nû

= f̂ + LT E − f̂

= LT E .

Inverting the matrix N and applying the properties of grid norms gives

‖Eh‖∞ ≤ ‖N−1‖∞‖LT E‖∞

≤ 1

Λmin
‖LT E‖∞.

Since LT E = O(h2) + O(|L|−q) and Λmin doesn’t depend on h, we can take the limit as
h → 0 on both sides to conclude that

lim
h→0

‖Eh‖∞ ≤ 1

Λmin

2C

|L|q .

Notice however that because the bound for the smallest eigenvalue of matrix N ,Λmin, decays
exponentially with L , the convergence of our scheme as L goes to infinity is not established.
Nonetheless, our numerical examples show that for fixed L the algorithm does converge at
order O(h2), which is to be expected when h2 > L−q . We suspect that because the right hand
side, f , decays algebraically and satisfies the compatibility conditions 〈 f , 1〉 = 〈 f , x〉 = 0,
just like in the analytical setting (seeSect. 3), the solution avoids smallwavenumbers, allowing
for the convergence of the scheme for large values of L .

6 Numerical Illustrations

Here we consider a series of examples to illustrate the usefulness of our numerical schemes.

6.1 Dirichlet Problem

Consider the Dirichlet problem{
L ∗ u(x) = f (x), x ∈ (−L, L),

u(x) = sech(x), x ∈ (−L, L)c,
(6.1)

with

ν(y) = 1

2
e−|y|, f (x) = sech(x) − 1

2
e−x log(1 + e2x ) − 1

2
ex log(1 + e2x ) + xex .
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Then by direct calculation, we have that

f1(h) = 1

2
h−2

[
2 − e−h(h2 + 2h + 2)

]
= h

6
+ O(h2),

f2(h) = 1

3
h5 + O(h6) , f3(h) = 1

5
h5 + O(h6) , f4(h) = 2h2 + O(h3).

Using Remark 4.2, we should generically expect the scheme to converge at rate O(h2). In
this particular case, ν(y) has the antiderivatives

F(y) = 1

2
e−|y| , F ′(y) = −1

2
sign(y)e−|y| , F ′′(y) = 1

2
e−|y|.

After some manipulation, a straightforward calculation using integration by parts shows that
the weights w j can be calculated as follows (see also [30] where a similar calculation is
performed).

w j =

⎧⎪⎨
⎪⎩

f1(h) − F ′(x1) + 1
h [F(x2) − F(x1)], | j | = 1

1
h [F(x j+1) − 2F(x j ) + F(x j−1)], 1 < | j | < M

F ′(xM ) + 1
h [F(xM−1) − F(xM )], | j | = M

and w0 = 0. We also have that the integral A, defined in (4.7), can be directly computed and
is given by

A = e−LW .

The integral Bi , defined in (4.9), can also be calculated directly and is given by

Bi = 1

2
exi log(e−2LW + e2xi ) − exi xi + 1

2
e−xi log(e−2LW + e−2xi ) + e−xi xi .

We then have all the necessary quantities to implement the numerical scheme for the
Dirichlet problem introduced in Sect. 4.3. First note that the true solution of this problem
is in fact u(x) = sech(x); this can be confirmed by a straightforward integration. Figure 1a
shows a plot of the solution u(x) and the forcing function f (x). Figure 1b shows the L∞
error between the numerical solution and the true solution for varying values of L and h. We
see that for fixed L the scheme does indeed converge at an O(h2) rate.

6.2 Whole Real Line Problem

Consider the extended Dirichlet problem

L ∗ u(x) = f (x), x ∈ R

with kernel

ν(y) = 1

2
e−|y|.

As the quantities fk , w j and A have been computed in the previous section, to implement
the numerical scheme introduced in Sect. 4.4, we only need to compute the quantities B1

i
and B2

i that are defined in (4.13). For this, let us assume for the moment that

g(x) = 1

|x |p
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Fig. 1 a Plot of the solution u(x) = sech(x) and the corresponding forcing function f (x). b Plot of the L∞
error (in log-log scale) between the numerical solution and the true solution for varying values of h; each curve
represents a different choice in the domain size L

for some p > 0. We then have

B1
i = 1

g(−L)

∫ −LW

−∞
g(xi − y)ν(y) dy

= L p
∫ −LW

−∞
1

|xi − y|p
1

2
e−|y| dy

= L p
∫ −LW

−∞
1

(xi − y)p
1

2
ey dy

where the last equality is obtained by noting that xi > y for all y ∈ [−∞,−LW ]. Doing two
changes of variables and simplifying yields that the above is equal to

L p 1

2
exi

1

(LW + xi )p−1

∫ ∞

1

1

z p
e−(LW+xi )z dz.

This last integral is exactly of the form of the generalized exponential integral function Ep .
We note that this function can be computed quickly to a given accuracy and there are many
public codes for doing exactly this. Thus, we have

B1
i = L p 1

2
exi

1

(LW + xi )p−1 Ep(LW + xi ).

Likewise, it can be shown that

B2
i = L p 1

2
e−xi 1

(LW − xi )p−1 Ep(LW − xi ).

We’ve then shown that if there exists a solution u(x) that decays algebraically with order
p0 then the above numerical scheme should give a good approximation by setting p = p0 in
the definition of g. To demonstrate this, we will apply the above scheme to a known solution.
In particular, let

f (x) = 1

1 + x2
− 1

2

1

1 + (x − a)2
− 1

2

1

1 + (x + a)2
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for some constant a > 0 and note that∫ ∞

−∞
f (x) dx = 0 ,

∫ ∞

∞
x f (x) dx = 0.

Hence we know a corresponding solution u(x) will exist. In fact, for this particular problem,
it can be shown by direct substitution that

u(x) = f (x) −
∫ x

−∞

∫ w

−∞
f (y) dy dw

is a solution. Integrating directly gives

u(x) =
[

1

1 + x2
− 1

2

1

1 + (x − a)2
− 1

2

1

1 + (x + a)2

]

+ 1

2

[
log(x2 + 1) − 1

2
log

(
(x2 − a2)2 + 2(x2 + a2) + 1

)]

− 1

2
x

[
2 tan−1(x) − tan−1(x + a) + tan−1(x − a)

]
+

[
a

4
π − a

2
tan−1 (1 + x2 − a2

2a

)]
.

Letting a = 1, we have that

f (x) = − 3x2 − 2

x6 + x4 + 4x2 + 4

∼ − 3

x4

and by Taylor expanding about ∞ it can be shown that

u(x) ∼ 1

2x2

as |x | → ∞. Choosing p = 2, all quantities in the numerical scheme have been computed
and it can now be implemented. Figure 2a shows a plot of the true solution u(x) and the
forcing function f (x). Figure 2b, c show the L∞ error between the numerical solution and
the true solution for varying values of L and h. We see that for sufficiently large values of L
and h the scheme seems to converge at an O(h2) + O(L−2) rate as well.

We also want to test the sensitivity of the method to different choices of the decay rate of
g(x). In Fig. 3, we choose p = 3

2 and compute the error between the true solution and the
numerical solution for varying values of L and h. Similar to the p = 2 case in Fig. 2, we
see that the convergence rate still seems to be O(h2) + O(L−2), though it’s certainly more
sporadic. As expected, we notice that the error saturates faster in h (compare Figs. 2b and
3b), since it is dominated by an error in L due to the wrong choice of algebraic decay outside
the domain of computation [−L, L].

6.3 Neumann Problem

Here we consider the Neumann problem

L ∗ u(x) = f̄ (x), x ∈ R

where ν(x) = 1
2e

−|x | and

f̄ (x) =
{
x2 − 2

3 , x ∈ (−1, 1),
1
x4

, x ∈ (−1, 1)c.
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Fig. 2 a Plot of the algebraically decaying solution u(x) and the corresponding forcing function f (x). b Plot
of the L∞ error (in log-log scale) between the numerical solution and the true solution for varying values of
L; each curve represents a different choice in the spatial step size h. c Plot of the L∞ error (in log-log scale)
between the numerical solution and the true solution for varying values of h; each curve represents a different
choice in the domain size L . In all three panels we’ve taken p = 2

In this case, it can be shown that the corresponding solution is given by

u(x) =
{
x2 − (x2−3)(x−1)(x+1)

12 − 5
6 , x ∈ (−1, 1),

1
x4

− 1
6x2

, x ∈ (−1, 1)c.

Note that both f̄ and u(x) decay algebraically at the same rate as before; namely, f̄ ∼ 1
x4

and

u(x) ∼ 1
x2
. Hence, we can apply the numerical method from the previous section without

change. Further note that f̄ and u(x) are not continuous nor differentiable at x = ±1; see
Fig. 4a. In deriving the numerical schemes from previous sections, we implicitly used that
the solution u(x) was many times differentiable. This was done not only to derive formulas
but also to get the O(h2) truncation error. Since for this particular example differentiability
doesn’t hold, wemight expect that the order of convergence of the scheme is no longer O(h2).
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Fig. 3 a Plot of the L∞ error (in log–log scale) between the numerical solution and the true solution for
varying values of L; each curve represents a different choice in the spatial step size h. b Plot of the L∞ error
(in log-log scale) between the numerical solution and the true solution for varying values of h; each curve
represents a different choice in the domain size L . In both panels we’ve taken p = 3

2

Fig. 4 a Plot of the solution u(x) and the corresponding forcing function f (x). b L∞ error between the
numerical solution and the true solution for varying values of h. Each curve represents a different choice in
the computational domain L

Indeed, this is the case as Fig. 4b shows. Instead, it appears the scheme converges with rate
O(h) for the various values of L .

6.4 Comparison of the Boundary Conditions

In this sectionwe’d like to test how the different boundary conditions, and their corresponding
numerical schemes, compare in solving the problem on the whole real line. With this in mind
we consider the problem
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L ∗ u(x) = f (x), x ∈ R,

with kernel

ν(y) = 1

2
e−|y|,

and forcing function

f (x) = 1

1 + x2
− 1

2

1

1 + (x − a)2
− 1

2

1

1 + (x + a)2
,

with a = 1 for which we know the solution. Figure 5a shows the whole real line numerical
scheme where we’ve used the asymptotic decay rate of 1

x2
outside of (−L, L). Figure 5b

corresponds to the Dirichlet problem with homogeneous boundary conditions: g(x) = 0
outside (−L, L). Finally, Fig. 5c corresponds to the Neumann problem with homogeneous
boundary conditions, g(x) = 0 outside (−L, L). As the use of exact solutions to set bound-
ary conditions is not feasible and realistic for physical applications, we use homogeneous
conditions for the Dirichlet and Neumann problems. It allows us to compare the behavior of
the three schemes when the solutions is not exponentially decaying and that only its order of
algebraic decay is known for large x . Unlike cases with exponential decaying source terms,
where all the three methods converge similarly (data not shown), in the present case the
whole real line method is by far more accurate than either of the other two. For the Dirichlet
condition it’s because of the slow algebraic decay of the solution; on the domains considered
u(x) does not fall below 10−4, making this a lower bound on the error for any values of h.
For the Neumann problem it’s even worse because, in addition to the slow decay rate, we
have a discontinuity which is detectable to machine precision for all values of L considered.
Hence, decreasing h will not decrease the error because the discontinuity will not vanish.

6.5 Dirichlet Problemwith Not Strictly Positive Kernel

Consider the Dirichlet problem
{
L ∗ u(x) = f (x), x ∈ (−L, L),

u(x) = sech(x), x ∈ (−L, L)c,
(6.2)

with

ν(y) = 3

2
e−|y| − 2e−2|y|,

f (x) = 4 e−x + 1

cosh (x)
− 3 ln

(
e2 x + 1

)
e−x

2
+ 2 ex

(
2 tan−1 (ex) ex − π ex + 2

)

− 4 tan−1 (ex) e−2 x + 3 ex
(
2 x − ln

(
e2 x + 1

))
2

.

Then by direct calculation, we have that

f1(h) = 1

h2
[e−2 h

(
2 h2 + 2 h + 1

)
2

− 3 e−h
(
h2 + 2 h + 2

)
2

+ 5

2

] = −1

6
h + O(h2),

f2(h) = −1

6
h5 + O(h6) , f3(h) = − 1

10
h5 + O(h6) , f4(h) = 1

2
h2 + O(h3).

Hence, we should generically expect the scheme to converge at rate O(h2).
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Fig. 5 L∞ error (in log-log scale) between the numerical solution and the true solution for varying values of
L; each curve represents a different choice in the spatial step size h. a Shows the results when the algebraic
decay is taken into account. b Corresponds to homogeneous Dirichlet boundary conditions. c Corresponds to
homogeneous Neumann boundary conditions where we’ve taken L̃ = L

2

In this particular case, ν(y) has the antiderivatives

F(y) = 3

2
e−|y| − 1

2
e−2 |y| , F ′(y) = −sign (y)

(
3

2
e−|y| − e−2 |y|

)
,

F ′′(y) = 3

2
e−|y| − 2e−2|y|,

so that now all of the w j can be calculated. We also have that the integral A can be directly
computed and is given by

A = 3e−2LW − 2e−4LW .
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Fig. 6 a Plot of the solution u(x) = sech(x) and the corresponding forcing function f (x). b Plot of he L∞
error (in log–log scale) between the numerical solution and the true solution for varying values of h; each
curve represents a different choice in the domain size L

The integral Bi can also be calculated directly and is given by

Bi =4 e−2 xi tan−1
(
e−L exi

)
− 4 e−L−xi + 3 e−xi

(
2 xi + ln

(
e−2 L + e−2 xi

))
2

− 3 exi
(
2 xi − ln

(
e−2 L + e2 xi

))
2

− 4 exi
(
e−L − tan−1

(
e−L e−xi

)
exi

)
.

We then have all the necessary quantities to implement the numerical scheme for the
Dirichlet problem. First note that the true solution of this problem is in fact u(x) = sech(x);
this can be confirmed by a straightforward integration. Figure 6a shows a plot of the solution
u(x) and the forcing function f (x). Figure 6b shows the L∞ error between the numerical
solution and the true solution for varying values of L and h. We see that for fixed L the
scheme does indeed converge at an O(h2) rate.

7 Conclusion

In this paper we consider integro-differential equations that model the evolution process of
quantities that experience a nonlocal form of dispersion. In particular, we look at diffusion
processes that are modeled using convolution kernels that do not have compact support and
decay exponentially at infinity. We develop algorithms for finding the steady states of these
systems.

In contrast to previous methods which assume local boundary data, our numerical method
accounts for the correct nonlocal nature of the boundary conditions. We present three numer-
ical schemes addressing the case of nonlocal Dirichlet boundary conditions (DP), Neumann
boundary conditions (NP), and the whole real line problem (RP).

When the equation is posed on the whole real line, we show that a unique solution exists,
provided the right hand side decays at least algebraically and has zeromean and first moment.
More importantly, the result shows that there is a relation between the decay of the right hand
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side and the decay of the solution. This information is then used to approximate the solution
outside the computational domain and thus develop a scheme for RP.

Since nonlocal Neumann boundary conditions require us to approximate the solution
outside a bounded domain, the numerical schemes for NP and RP are almost identical. In
both cases the scheme boils down to inverting a matrix equation. We are able to show using a
Neumann series that this matrix is invertible provided the convolution kernel is nonnegative.
This also proves the convergence of the scheme.

For the Dirichlet problem, we consider kernels that can take on negative values, but that
have positive tails. We show, using the theory of Toeplitz matrices, that this is enough to
prove the convergence of the our numerical scheme. This is an improvement over previous
results which are based on maximum principles and therefore require nonnegative kernels
with compact support.

Finally, for applications where the model equations are posed on the whole real line, there
is always a question of what are the best boundary conditions one can use to approximate
solutions. Here we present a numerical scheme that does not require explicit boundary con-
ditions. However, we do find that in certain circumstances, mainly when the right hand side
decays exponentially, theDirichlet problem provides amore efficientmethod for approximat-
ing the whole real line problem. First, because one can reduce the size of the computational
domain, and secondly one does not have to approximate the solution outside this domain,
i.e. setting the solution to zero gives a good approximation.
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A Nonlocal Flux, Gauss Theorem, and an Example

In this section we summarize results presented in [19,20], which generalize the concept of
flux to include short as well as long range movement of particles. Then, in Subsection A.3 we
use a very general and well known population model as an example of how this generalized
version of flux, together with conservation of mass, gives rise to Eq. (1.1). Similar derivations
have been done in [5].

As already pointed out in the introduction variations of Eq. (1.1) have been introduced in
other contexts. Herewe restrict ourselves to the populationmodel, sincewe believe it provides
a simple example where one can apply the notion of nonlocal Neumann boundary conditions
presented in [19,20]. For more information about other nonlocal models, the review paper
by Fife [27] provides a good starting point for the case.

A.1 Nonlocal Flux

To give an intuitive notion of what constitutes a nonlocal flux, we first recall the traditional
definition of this term. In physical applications flux represents the rate of motion per unit area
of a quantity u (fluid, concentration, number of particles) across some boundary. Implicit in
this definition is the assumption that the transport of this quantity happens at small scales.
However, in certain applications transport can occur over long, as well as short, spatial
scales. Consider for example an area of vegetation with seeds that can travel close to as well
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as far from their originating organisms thanks to wind currents. In this case flux is no longer
proportional to a local quantity, like u (transport equation) or the gradient of u (diffusion
equation), but instead should be expressed through a nonlocal operator.

We can make these ideas more precise by looking again at our vegetation example. For
simplicity assume for now that we only have one organism at position y, whose seeds are
entering a field Ω . Suppose as well that we have a function φ(x, y, t) that tells us the
proportion of seeds from position y /∈ Ω that fall in location x ∈ Ω per unit time. Then the
flow of seeds from y into region Ω is given by the integral∫

Ω

φ(x, y, t) dx .

More generally, one can construct a function ψ(x, y, t) such that∫
Ω

ψ(x, y, t) dx,

represents a nonlocal flux density. Then, the expression∫
Ω1

∫
Ω2

ψ(x, y, t) dx dy

gives us the net nonlocal flux from region Ω1 into region Ω2. If this expression is positive
then indeed we have net flux from Ω1 into Ω2. On the other hand, if this quantity is negative,
then the net flow occurs in the reverse direction.

For the above definition to be consistent with our intuition of how flux should behave, one
imposes an action-reaction principle. Given two distinct domains Ω1, Ω2 we would like for
the nonlocal flux from Ω1 into Ω2 to be equal in magnitude, but of opposite sign, as the the
nonlocal flux from Ω2 into Ω1, i.e.∫

Ω1

∫
Ω2

ψ(x, y, t) dx dy +
∫

Ω2

∫
Ω1

ψ(y, x, t) dy dx = 0.

It is straightforward to check that this holds provided ψ is antisymmetric in x and y, that
is ψ(x, y, t) = −ψ(y, x, t). Notice that this condition also implies that there are no self
interactions, meaning that ∫

Ω

∫
Ω

ψ(x, y, t) dx dy = 0.

A.2 Nonlocal Gauss’Theorem

Given a bounded domain Ω , Gauss’ Theorem relates the total flux across the boundary ∂Ω ,
in terms of a volume integral over the domain, Ω . More precisely, if F represents a smooth
vector field and n the unit normal to Ω , then∫

Ω

∇ · F dV =
∫

∂Ω

F · n dS.

In the nonlocal case, the action-reaction principle provides an analogue toGauss’ Theorem
since it relates the flux from Ωc into Ω in terms of an integral over Ω ,∫

Ωc

∫
Ω

ψ(x, y, t) dx dy =
∫

Ω

∫
Ωc

−ψ(x, y, t) dx dy.
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A.3 Derivation Equation with Population Dynamics Example

To illustrate our point suppose we are interested in the evolution of a population that is able
to move short as well as long distances. Let u(x, t) denote the density of this population
at time t and location x , and let Ω ⊂ R

n be a bounded domain. Then m = ∫
Ω
u(x, t) dx

represents the total number of individuals in Ω at time t .
Assume as well that the fraction of the population that flows from x to y depends on

the distance between these two points and is proportional to the density at point x . More
precisely, at time t the flow from x ∈ Ω to y ∈ Ωc is is given by the product u(x, t)ν(x, y),
where we also assume that the kernel ν(x, y) = ν(|x − y|) is symmetric and exponentially
decaying. Then, the flow from the point x ∈ Ω to the domain Ωc is given by the integral∫

Ωc
u(x, t)ν(|x − y|) dy,

and the total flow out of Ω can be represented by the expression∫
Ω

∫
Ωc

u(x, t)ν(|x − y|) dy dx .

Similarly, the flow from Ωc into the point x ∈ Ω can be written as∫
Ωc

u(y, t)ν(|x − y|) dy
so that the total flow into Ω is∫

Ω

∫
Ωc

u(y, t)ν(|x − y|) dy dx .

Combining these two expressions we find that the net flow, Q, of the population in/out of
the domain Ω is given by

Q = −
∫

Ω

∫
Ωc

u(x, t)ν(|x − y|) dy dx +
∫

Ω

∫
Ωc

u(y, t)ν(|x − y|) dy dx

Q =
∫

Ω

∫
Ωc

−(u(x, t) − u(y, t))ν(|x − y|) dy dx .

Q =
∫

Ω

∫
Rn

−(u(x, t) − u(y, t))ν(|x − y|)︸ ︷︷ ︸
=ψ(x,y,t)

dy dx .

where the last line follows from the flow density function ψ(x, y, t) being antisymmetric,
and the fact that this rules out self-interactions.

By conservation of mass

mt =
∫

Ω

ut dx =
∫

Ω

∫
Rn

−(u(x, t) − u(y, t))ν(|x − y|) dy dx +
∫

Ω

f dx,

where f (x) is a density specifying the net loss/gain of individuals at location x that combines
births and deaths. Since the domain Ω is arbitrary, the result is an evolution equation for the
variable u,

ut = −L ∗ u + f (x) for x ∈ Ω (A.1)

where

L ∗ u =
∫
Rn

(u(x, t) − u(y, t))ν(|x − y|) dy.
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Now, because the flow is nonlocal, instead of boundary conditions across ∂Ω , we need to
impose conditions on Ωc:

– Dirichlet: One specifies the value of the function u in Ωc

u(x) = g(x) for x ∈ Ωc.

– Neumann: Since by the nonlocal Gauss’ Theorem
∫
Ωc

∫
Rn −ψ(x, y, t) dy dx represents

the net flow in/out of Ωc, then the following relation specifies a given and fixed flow
density, fc(x), from Ωc into the domain Ω ,∫

Rn
ψ(x, y, t) dy = fc(x) x ∈ Ωc.

– Mixed: Given Ωc = Ωc
1 ∪ Ωc

2

u(x) = g(x) for x ∈ Ωc
1 ,∫

Rn
ψ(x, y, t) dy = fc(x) for x ∈ Ωc

2 .

B Nonlocal Diffusive Operators on a Lattice

Here we extend the results of 3.1 to operators defined on lattices using results presented in
[31].

We first define the analogue of the spaces L2
γ (R), M2,s

γ (R), and Hs
γ (R) in the obvious

way and denote them by �2γ (Z),m2,s
γ (Z), hsγ (Z), respectively. As above we use 〈, 〉 to denote

the pairing between dual elements, and we let u = {u j } j∈Z. In the case of lattices, the Fourier
Transform is given by

Fd : �2(Z) −→ L2(T1)

u = {u j } j∈Z �−→ û(σ ) = ∑
j∈Z u je−2π i jσ

where T1 = R/Z is the unit circle. We can also define discrete derivatives for elements in
�2(Z),

δ+({u j } j∈Z) = {u j+1 − u j } j∈Z δ−({u j } j∈Z) = {u j − u j−1} j∈Z δ = −i(δ+ + δ−)/2

with their corresponding Fourier symbols,

D+(σ ) = e2π iσ − 1, D−(σ ) = 1 − e−2π iσ , D(σ ) = sin(2πσ).

Aswas the case for operators defined on L2(R), the Fourier Transform of general convolution
operators, L(σ ), is a multiplication symbol defined on the space L2(T1):

L̂ : D(L̂ ) ⊂ L2(T1) −→ L2(T1)

u(σ ) �−→ L(σ )u(σ )

Here, we make the following assumptions on the Fourier symbol L(σ ), of our discrete
convolution operators L .

Hypothesis B.1 The symbol L(σ ) is analytic, uniformly bounded, and 1-periodic in a strip
Ω1 = R × (iσ1, iσ1) for some σ1 > 0. Moreover, when restricted to σ ∈ [−1/2, 1/2] the
symbol L(σ ) is invertible except at σ = 0, where it has a zero of multiplicity m.
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Aswas the case in the real line, the operatorL can be decomposed into an invertible oper-
atorML(σ ) and a Fredholm operator with Fourier symbol (e2π iσ −1)m[1+iC sinl(2πσ)]−1,
which formally corresponds to δm+(1 + δl)−1. This leads to the following proposition.

Proposition B.2 For γ /∈ {1/2, 3/2, . . . ,m − 1/2}, and appropriate value of the integer l,
the operator L : m2,m

γ (Z) −→ hlγ+m(Z) satisfying Hypothesis B.1 is Fredholm. Moreover,

letting ηb = {ηb}η∈Z, we have that

– for γ > −1/2 the operator is injective with cokernel

Coker = span{ηβ | β = 0, 1, . . . ,m − 1}
– for γ < 1/2 − m the operator is surjective with kernel

Ker = span{ηβ | β = 0, 1, . . . ,m − 1}
– for j − 1/2−m < γ < j −m + 1/2, with j ∈ Z, 1 ≤ j < m , the operator has kernel

Ker = span{ηβ | β = 0, 1, . . . ,m − j − 1}
and cokernel

Coker = span{ηβ | β = 0, 1, . . . , j − 1}.
On the other hand, the operator does not have closed range when γ ∈ {1/2, 3/2, . . . ,m −
1/2}.

From the above result we obtain the next corollary, which we will use in the proof of con-
vergence for the numerical schemes. In particular, the following result gives us information
about the decay rate of solutions to the discrete convolution problem defined over �2(Z)

L ∗ u = f .

Corollary B.3 Consider the discrete convolution operator L , with Fourier symbol (e2π iσ −
1)2[1 + (2i sin(2πσ)2]−1, and defined as

L : m2,2
γ (Z) −→ h2γ+2(Z)

u �−→ L ∗ u.

Suppose γ > −1/2, then the equation L ∗ u = f has a unique solution, with |u j | <

C | j |1/2−(γ+1) for large | j |, provided the right hand side f ∈ h2(Z)γ+2 satisfies

〈 f , 1〉 = 0 and 〈 f , η〉 = 0.
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