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We present hydrodynamic and magnetohydrodynamic (MHD) simulations of liquid
sodium flows in the von Kármán sodium (VKS) set-up. The counter-rotating impellers
made of soft iron that were used in the successful 2006 experiment are represented
by means of a pseudo-penalty method. Hydrodynamic simulations are performed
at high kinetic Reynolds numbers using a large eddy simulation technique. The
results compare well with the experimental data: the flow is laminar and steady
or slightly fluctuating at small angular frequencies; small scales fill the bulk and
a Kolmogorov-like spectrum is obtained at large angular frequencies. Near the tips
of the blades the flow is expelled and takes the form of intense helical vortices.
The equatorial shear layer acquires a wavy shape due to three coherent co-rotating
radial vortices as observed in hydrodynamic experiments. MHD computations are
performed: at fixed kinetic Reynolds number, increasing the magnetic permeability of
the impellers reduces the critical magnetic Reynolds number for dynamo action; at
fixed magnetic permeability, increasing the kinetic Reynolds number also decreases
the dynamo threshold. Our results support the conjecture that the critical magnetic
Reynolds number tends to a constant as the kinetic Reynolds number tends to infinity.
The resulting dynamo is a mostly axisymmetric axial dipole with an azimuthal
component concentrated near the impellers as observed in the VKS experiment. A
speculative mechanism for dynamo action in the VKS experiment is proposed.

Key words: dynamo theory, MHD and electrohydrodynamics

1. Introduction
Dynamo action, i.e. the self-amplification of a magnetic field by the flow of

an electrically conducting fluid, is considered to be the main mechanism for the

† Email address for correspondence: caroline.nore@limsi.fr

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 Y

BP
 L

ib
ra

ry
 S

er
vi

ce
s,

 o
n 

03
 S

ep
 2

01
8 

at
 2

1:
00

:3
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
58

2

http://orcid.org/0000-0001-9118-5247
mailto:caroline.nore@limsi.fr
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.582


Numerical simulation of the von Kármán sodium dynamo experiment 165

generation of the magnetic fields of stars and planets (Moffatt 1978). In order to
gain a better understanding of the processes at play, different experimental groups
have investigated dynamo action (Peffley, Cawthorne & Lathrop 2000; Nornberg
et al. 2006; Frick et al. 2010; Colgate et al. 2011) but so far only three experiments
have been successful: Gailitis et al. (2000), Stieglitz & Müller (2001), Monchaux
et al. (2007). These three experiments were all performed in liquid sodium. The first
two experiments used optimized flows guided by pipes that intentionally limited the
influence that turbulence could have on the dynamo process. The experimentalists
found dynamo action with a magnetic field having a shape corresponding to the
one predicted by using kinematic dynamo computations based on analytical flows.
The third dynamo has been observed in the von Kármán sodium experiment (VKS)
located in Cadarache: in 2006 experimentalists observed a magnetic field generated
by a turbulent flow produced by two counter-rotating impellers in a cylindrical vessel.
It has been found that both the geometry and the material composing the impellers
play crucial roles in the dynamo action threshold: for example, at fixed available
mechanical power, dynamo action occurs only when at least one of the rotating
impellers is made of soft iron (Miralles et al. 2013). When the two soft iron impellers
counter-rotate at the same angular velocity, another puzzling observation is that the
generated magnetic field is statistically steady and mainly axisymmetric with an axial
dipole and a strong azimuthal component located near the impellers (Boisson et al.
2012). This magnetic field could not be predicted by using simplified axisymmetric
geometries and velocity fields averaged in azimuth and time: kinematic dynamo
simulations usually give an equatorial dipole superimposed with two anti-parallel
vertical magnetic structures near the vessel axis (see e.g. Ravelet et al. 2005, Laguerre
et al. 2006, Marié, Normand & Daviaud 2006, Gissinger et al. 2008, Guermond et al.
2011a).

It is clear that the nature of the material composing the impellers greatly influences
the transmission conditions enforced on the magnetic field, and that the geometry of
the impellers controls the dynamics of the tip vortices generated between the blades
(Ravelet et al. 2012; Kreuzahler et al. 2014). But a precise experimental investigation
of the influences of the material properties and the blade geometry is not feasible
due to the lack of accurate techniques such as non-intrusive Gaussmeters or PIV
measurements in liquid metals. It is natural then to turn to computer simulations
to gain some insight into the VKS experiment. The objective of the present work
is to report on three-dimensional numerical simulations of the von Kármán sodium
experiment at high kinetic Reynolds numbers. Dynamo action is obtained with
a magnetic field that is mainly axisymmetric and similar to the one observed in
the experiment. Some of these results were announced in Nore et al. (2016), but
in the present paper we go well beyond the range of kinetic Reynolds numbers
attained in the above reference. Our main result is that the critical magnetic Reynolds
number decreases as the kinetic Reynolds number increases and this number seems
to converge to a constant at very large kinetic Reynolds numbers. We also confirm
that, everything else being fixed, the critical magnetic Reynolds number decreases as
the magnetic permeability of the impellers increases.

The paper is organized as follows. The set-up of the 2006 VKS2 experiment
together with the relevant parameters is shortly presented in § 2. The governing
equations and the numerical methods that are used to solve them are also briefly
described. Section 3 presents hydrodynamical simulations performed for a large range
of kinetic Reynolds numbers. Dynamo action is studied in § 4. The impact of the
relative magnetic permeability of the impellers and of the boundary conditions is
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FIGURE 1. (Colour online) Schematic of the VKS2 experimental device of Monchaux
et al. (2007) in non-dimensional units. The impellers counter-rotate as indicated in (a)
and are fitted with eight curved blades (b).

studied. The dynamo threshold is determined for a large range of kinetic Reynolds
numbers; it decreases as the kinetic Reynolds number increases and it seems to reach
an asymptotic value for very large kinetic Reynolds numbers. The structure of the
generated magnetic field shows a striking similarity with the one observed in the
VKS2 experiment in all of the cases investigated. Key ingredients for dynamo action
in the VKS2 set-up are identified in § 5. It is shown in particular in this section
that kinematic dynamo computations using the time-averaged velocity field computed
at high fluid Reynolds number give a non-axisymmetric magnetic field similar to
the one obtained from simplified time-averaged and azimuthally averaged velocity
field, but this dynamo is very different from the one observed in VKS2 experiment.
Concluding remarks are reported in § 6 and a tentative scenario is proposed.

2. Technical preliminaries

In the present paper we simulate numerically the VKS2 experiment with the flow
driven by the TM73 impellers (see figure 1 and Monchaux et al. (2007)). We begin by
describing the geometry. Then we present the governing equations and the algorithms
that are used in our magnetohydrodynamic (MHD) code (Guermond et al. 2007, 2009,
2011a).

2.1. Experimental set-up and data
The VKS2 set-up described in Monchaux et al. (2007) uses two concentric cylindrical
containers: the first one has a very small thickness and is of radius Rcyl = 206 mm;
the second one is thick and made of copper, its inner radius is Rin= 289 mm and its
outer radius is Rout = 330 mm. Both containers have a total height H= 412 mm. The
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impellers are located at the two extremities of the inner container. There is some fluid
behind the impellers in the experiment, but in the present simulations we neglect this
fluid layer. The impellers are composed of two disks each supporting eight blades. The
disks have radius Rb= 155 mm and are 20 mm thick. The blades have height 41 mm,
thickness 5 mm, and the angle of curvature is equal to 24◦. The distance between the
inner faces of the disks is set to 370 mm so that the aspect ratio of the cylindrical
fluid domain is 370/206= 1.8. The fluid contained in the inner vessel is pushed by
the convex side of the blades. A schematic representation of the experimental set-up
is shown in figure 1 using Rcyl as reference length scale.

The vessel contains approximately 150 l of liquid sodium heated at 120 ◦C. The
kinematic viscosity is ν= 6.78× 10−7 m2 s−1, the density is ρ = 932 kg m−3 and the
electrical conductivity is σ = 9.6 × 106 S m−1. The corresponding magnetic Prandtl
number is Pm = µ0σν = 0.82 × 10−5. The impellers counter-rotate at a frequency
f , the experimental range of frequencies necessary for observing dynamo action is
16 Hz 6 f 6 22 Hz, leading to kinetic Reynolds numbers in the range 6.3 × 106 6
Re = 2πfR2

cyl/ν 6 8.7 × 106 and magnetic Reynolds numbers in the range 52 6 Rc
m =

µ0σ2πfR2
cyl 6 71.

At maximum available mechanical power, a dynamo has been observed with soft
iron impellers (made of ferromagnetic material of relative magnetic permeability of
the order of 50, see Verhille et al. (2010)) but not with stainless steel ones (Miralles
et al. 2013).

2.2. Spectral/finite element code for Maxwell and Navier–Stokes equations
(SFEMaNS)

To investigate the hydrodynamic and magnetohydrodynamic regimes of the above
experimental set-up, we use a code henceforth referred to in this paper as SFEMaNS.
This code uses a hybrid spatial discretization combining spectral and finite elements.
In a nutshell the code uses a Fourier decomposition in the azimuthal direction and
the continuous Hood–Taylor Lagrange elements P1–P2 for the pressure and velocity
fields in the meridian section. Modulo the computations of nonlinear terms with
the fast Fourier transform (FFT), the linear problems for each Fourier mode in the
meridian section are uncoupled and are thereby easily parallelized by using the
message passing interface (MPI). The solution of the linear problems in the meridian
section is further parallelized by using graph partitioning techniques from the METIS
library (Karypis & Kumar 1998) for the domain decomposition, and subroutines from
the portable extensible toolkit for scientific computation library (PETSc) (Balay et al.
2014) for the linear algebra. For the magnetic part, the algorithm solves the problem
using the magnetic induction, B, in the conducting region (after standard elimination
of the electric field) and the scalar magnetic potential in the insulating exterior. The
fields in each region are approximated by using H1-conforming Lagrange elements
with a penalty technique to control the divergence of B in a negative Sobolev norm
that guarantees convergence under minimal regularity (see details in Giesecke et al.
(2010, § 3.2), Bonito & Guermond (2011), Bonito, Guermond & Luddens (2013)).
The coupling between conducting and insulating media is done by using an interior
penalty method. SFEMaNS has been thoroughly validated on numerous manufactured
solutions and against other MHD codes (see e.g. Guermond et al. 2009; Giesecke
et al. 2012; Nore et al. 2016). The reader who is familiar with the numerical details
or is not interested in such details is now invited to jump to § 3.
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2.3. Governing equations
Let us now go into some details about the equations that are actually solved in
SFEMaNS. The MHD equations are solved in non-dimensional form as follows:

∂tu = −(∇×u)× u+
1
Re
1u−∇p+ f , (2.1a)

∂tB = ∇×(u×B)−
1

Rm
∇×

(
1
σr
∇×

(
1
µr

B
))

, (2.1b)

∇ · u = 0, (2.1c)
∇ · B = 0, (2.1d)

where u is the velocity field, B the magnetic induction field (with the magnetic
field H = B/µ0µr), p the pressure field and σr, µr are the relative conductivity and
permeability of the various materials present. The Navier–Stokes and the Maxwell
equations are coupled by the Lorentz force f = (∇×H)×B.

In the present situation the reference length Lref is set to Rcyl. The computational
domain for the hydrodynamic study is Ω = {(r, θ, z)∈ [0, 1] × [0, 2π)× [−1, 1]}. The
computational domain for the MHD study is the larger cylinder Ω ∪Ωout with Ωout=

{(r, θ, z)∈ [1, 1.6] × [0, 2π)× [−1, 1]} (the geometric dimensions and sketches of the
set-up are shown in figures 6c and 19b). Denoting by σ0 the electrical conductivity
of the liquid sodium, ρ its density and µ0 the magnetic permeability of vacuum, the
magnetic induction is made non-dimensional by using the Alfvén scaling B=U

√
ρµ0,

with U = ωRcyl where ω is the angular velocity of the impellers. The two governing
parameters are Rm=µ0σ0R2

cylω, the magnetic Reynolds number, and Re=R2
cylω/ν, the

kinetic Reynolds number, with ν the kinematic viscosity of the fluid.
Note that the parameters σr, µr are not constant since the walls and the impellers

are made of different materials such as copper, steel and soft iron. Specifically,
we take σr = 1, µr = 1 in the region {(r, θ, z) ∈ [1, 1.4] × [0, 2π) × [−1, 1]}
to represent the lateral layer of stagnant liquid sodium, and σr = 4.5, µr = 1 in
{(r, θ, z) ∈ [1.4, 1.6] × [0, 2π) × [−1, 1]} to model the lateral copper wall. The
computational domain is slightly smaller than the actual VKS2 container: it does
not contain the so-called lid layers, which have been shown in kinematic dynamo
simulations to be detrimental to dynamo action, Stefani et al. (2006), Laguerre et al.
(2006). In the induction equation (2.1b) we take u|Ωout = 0. With the exception of
§ 4.3 where we study the impact of the so-called vacuum boundary condition, in the
entire paper we impose the perfect ferromagnetic boundary condition H × n = 0 at
the boundary of the computational domain. We shall also refer to this condition as
the pseudo-vacuum boundary condition. This boundary condition allows us to save
memory and CPU time.

2.4. Moving domains
To distinguish the liquid sodium from the impellers, the cylinder Ω is split into a solid
domain Ωsolid(t) (composed of the rotating impellers) and a fluid domain Ωfluid(t), and
we introduce the characteristic function χ defined in cylindrical coordinates by:

χ(r, θ, z, t)=
{

1 if (r, θ, z) ∈Ωfluid(t),
0 if (r, θ, z) ∈Ωsolid(t).

(2.2)

In our case χ = 0 in the impellers (see figure 1). Note that both Ωsolid(t) and Ωfluid(t)
are time dependent. It is not possible to find a frame of reference where these domains
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are time independent since the impellers move with opposite angular velocities. The
ensuing main difficulty is to approximate the Navier–Stokes equations in a time- and
θ -dependent domain and to force the velocity in the solid domain Ωsolid(t) to be that
of two solid bodies in rotation. This is achieved by using a prediction–correction
method of Guermond & Shen (2004) and a pseudo-penalty technique of Pasquetti,
Bwemba & Cousin (2008). Let τ be the time step and let us generically denote by
f n the approximation of f (nτ). The velocity is then updated by using the following
scheme:

3un+1

2τ
−

1
Re
1un+1

=−∇pn
+ (1− χ n+1)

3un+1
obst

2τ

+χ n+1

(
4un
− un−1

2τ
−∇

(
4ψn
−ψn−1

3

)
− (∇×u∗,n+1)× u∗,n+1

+ f n+1
)
, (2.3)

where u∗,n+1
= 2un

−un−1 and, using cylindrical coordinates, uobs is the velocity of the
disks and blades defined for all n > 0 by:

un
obs(r, θ, z)=

{
−reθ if z> 0,
reθ if z 6 0. (2.4)

The pressure increment ψn+1 is obtained by solving the following Poisson problem:

1ψn+1
=

3
2τ
∇ · un+1. (2.5)

The pressure is finally updated as follows:

pn+1
= pn
+ψn+1

−
1
Re
∇ · un+1. (2.6)

Note that the velocity and the pressure are solutions of the Navier–Stokes equations
when χ = 1, i.e. in the fluid domain Ωfluid(t). When χ = 0, i.e. in Ωsolid(t), the
momentum equation reduces to 3un+1/2τ − (1/Re)1un+1

= −∇pn
+ 3un+1

obst/2τ ; to
first order in τ , the solution is u = uobs + O(τ/Re). Note that the higher the kinetic
Reynolds number, the more accurate the method. There are two situations for the
initialization of the above algorithm. Either we start from rest, and in this case
all the quantities required at n = 0 are set to zero, or we restart from a previous
computation, and in this case all the quantities required to restart are taken from the
previous computation.

The second difficulty we face is that the material properties in the computational
frame depend on the azimuthal angle and time due to the presence of the rotating
blades. This is not a serious issue for the conductivity σr since the conductivity of
the impellers and the liquid sodium are not very different; for the sake of simplicity
we take σr = 1 in the impellers and in the liquid sodium. But to account for the
heterogeneities of the magnetic permeability, we allow µr to depend on all the space
and time variables, i.e. µr =µr(r, θ, z, t). More precisely, letting µimp

r be the relative
permeability of the impellers and recalling that µr = 1 in the liquid sodium, we set

µr(r, θ, z, t)= χ(r, θ, z, t)+ (1− χ(r, θ, z, t))µimp
r . (2.7)

In order to make the linear algebra in the induction equation time independent, and
to avoid the nonlinearity in θ induced by the product (1/µr)B, we split the diffusion
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FIGURE 2. (Colour online) Velocity field in the reference frame of the top impeller at
Re= 105 and isovalues of the function χ . (a) Isovalue χ = 0.75 inside the blades and the
cutting plane at z=0.8; (b) isovalue χ =0.75 and ‖u−utop-impeller‖ in the plane z=0.8 seen
from below; (c) isovalue χ =0.925 and ‖u−utop-impeller‖ (partial scale between 0 and 0.25).

term by setting B/µr=B/µ̃r+ (B/µr−B/µ̃r), where µ̃r(r, z) is defined by µ̃r(r, z) :=
min06θ<2π µr(r, θ, z, t). The first part of the decomposition, B/µ̃r, is made implicit
while the second part, (B/µr −B/µ̃r), is made explicit by using B∗,n+1

= 2Bn
−Bn−1

and µr =µ
n+1
r . The magnetic induction field is therefore updated as follows:

3Bn+1

2τ
+

1
Rm
∇×

(
1
σr
∇×

(
Bn+1

µ̃r

))
=

4Bn
−Bn−1

2τ

+∇×(un+1
×B∗,n+1)−

1
Rm
∇×

(
1
σr
∇×

(
B∗,n+1

(
1
µr
−

1
µ̃r

)))
. (2.8)

The function µ̃r being independent of the azimuth, implicit FFT convolutions are
completely avoided. Note also that for each Fourier mode, the linear problem in
(2.8) is decoupled from the other Fourier modes. The scheme (2.8) is stable, owing
to the condition µ̃r 6 µr, and it can be shown to be second-order accurate in time,
see Castanon Quiroz (2015) for details. Finally, the solenoidal constraint (2.1d) is
enforced as in Guermond et al. (2011a).

To illustrate the performance of the penalty method, we show in figure 2 some
isovalues of the function χ and the amplitude of the velocity field in the reference
frame of the top impeller at some arbitrary time at Re = 105. Figure 2(a) shows the
isovalue χ = 0.75 in grey and the cutting plane at z = 0.8. The actual boundary of
the blades corresponds to χ = 0.99; therefore, the isovalue χ = 0.75 is inside the
blades. Figure 2(b) shows ‖u− utop-impeller‖ in the plane z= 0.8 seen from below. The
relative velocity is nearly zero in the blades. To emphasize the velocity gradient close
to the blades, we show in figure 2(c) the amplitude of the relative velocity in the range
[0, 0.25] and the isovalue χ = 0.925. The red colour indicates values well above 0.25
in the bulk of the fluid. The boundary layer around the blade is visible in blue. Close
to the isocontour χ = 0.925, the amplitude of the relative velocity is smaller than 0.02;
hence the relative value of the relative velocity is definitely smaller than 1.7 % within
the blades. This value is significantly smaller in the region χ < 0.75. These results
confirm that the pseudo-penalty technique performs as expected.

2.5. Entropy viscosity stabilization
When Re is moderate, it is possible to resolve all the scales by refining the grid
and by enriching the Fourier space, i.e. it is possible to perform direct numerical
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simulations (DNS, see table 1), but, given that computer resources are finite, this is no
longer feasible when Re becomes large. More specifically, given a fixed computational
budget, large gradients induced by the turbulence cascade can no longer be correctly
represented numerically for Reynolds numbers beyond a few thousands. The energy
that should have been dissipated at the Kolmogorov scale accumulates at the grid scale.
A stabilization method that handles this problem has been implemented in SFEMaNS.
This method, called entropy viscosity, and denoted LES in table 1, was developed in
Guermond, Marra & Quartapelle (2006), Guermond, Pasquetti & Popov (2011b) and
Guermond, Pasquetti & Popov (2011c). It consists of adding a local artificial viscosity
made proportional to the residual of the kinetic energy balance. This artificial viscosity
is added on the right-hand side of (2.1a) in the form ∇ · (νE∇u). This induces a
nonlinear diffusion proportional to the local energy imbalance that in turn allows the
unresolved scales to be better accounted for. The method has its roots in the notion
of suitable weak solutions introduced by Scheffer (1987) and has been shown by
Caffarelli, Kohn & Nirenberg (1982) to be the only reasonable notion of solution
currently available for the three-dimensional Navier–Stokes equations.

Let us now give some technical details on the computation of the entropy viscosity.
We consider a mesh Kh of the computational domain composed of a collection of
three-dimensional cells K. Since in the present situation the approximation mixes finite
elements and Fourier approximation, the mesh Kh in question is the tensor product
of the finite element mesh in the meridian section and the uniform azimuthal one-
dimensional mesh induced by the Fourier approximation. Denoting by M the number
of complex azimuthal Fourier modes, the mesh size in the azimuthal direct at the
radius r is 2πr/(2M − 1). We denote by hK the minimum of 2πr/(2M − 1) over
K and the diameter of the corresponding finite element cell, and we refer to hK as
being the size of K. Assuming that n > 2 (or u−2, u−1 and p−1 have been initialized
appropriately), we define the residual of the momentum equation as follows:

Resn
NS =

un
− un−2

2τ
+ (un−1

· ∇)un−1
−

1
Re
1un−1

+∇pn−1
− f n−1. (2.9)

This residual is computed at each time step and over every mesh cell in the real space.
The local artificial viscosity is defined on each cell K by:

νn
R|K =

h2
K‖Resn

NS · un
‖L∞(DK )

‖un‖2
L∞(DK )

, (2.10)

where DK is the patch composed of the cells sharing one face with the cell K in the
real space. The quantity νn

R|K is expected to be as small as the consistency error in
smooth regions and to be large in the regions where the Navier–Stokes equations are
not resolved well. To be able to run with Courant–Friedrichs–Lewy (CFL) numbers
of order O(1), we finally define the entropy viscosity as follows:

νn
E|K =min(cmaxhK‖un

‖L∞(DK ), ceν
n
R|K), (2.11)

where cmax= 1/8 (for P2 approximation on the velocity) and ce is a tuneable constant
O(1). Thus defined, and given that we use P2 polynomials to approximate the velocity,
the entropy viscosity scales like O(h3

K) in smooth regions and scales like O(hK) in
regions with very large gradients.

Let us finish this section by mentioning that in all the MHD computations reported
in the paper no artificial viscosity was added in the induction equation (2.1b). Since
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Re 1.5× 103 1.5× 103 1.5× 103 2.5× 103 104 105

Rm [50, 300] [50, 300] [50, 300] [50, 150] [50, 150] [50, 100]
Model DNS — — LES — —
µimp

r 1 5 50 50 50 50
τ 1.25× 10−3 1.25× 10−3 10−3 10−3 1.25× 10−3 1.25× 10−3

hmin 2.5× 10−3 — — 5× 10−3 — —
hmax 10−2 — — — — —
modes 128 128 128 144 168 or 256 168 or 256
nprocs 64 64 192 360 336 or 512 336 or 512

TABLE 1. Numerical parameters for the MHD computations: kinetic Reynolds number Re,
magnetic Reynolds number Rm, numerical model DNS or LES, maximum relative magnetic
permeability for impellers µimp

r , time step, mesh size in the blade region hmin, mesh size
at the outer boundary hmax (the meridian mesh is non-uniform), number of real Fourier
modes, number of processors.

the magnetic Reynolds number Rm is always far smaller than the kinetic Reynolds
number, the magnetic field is always correctly represented by the finite element mesh,
i.e. equation (2.1b) is always solved with DNS, and, depending on the value of Re,
equation (2.3) is solved with DNS or LES. Which method is used will be stated in
all the cases.

2.6. Summary of the numerical parameters
The numerical parameters that have been used in the various simulations reported
in the paper are listed in table 1. The spatial resolution of a typical DNS run in
the meridian plane is hmin = 2.5 × 10−3 in the blade region and hmax = 10−2 close
to the outer boundary and slightly coarser for a typical LES run. Using that the
thickness of the boundary layer on the blades is given by δBL/Rcyl = O(1/

√
Re),

we estimate that there is only one grid point in the viscous boundary layer; notice
though that the magnetic boundary layer is always well resolved since Rm ∈ [50, 300].
Although the viscous layer is under-resolved, we have verified by making comparisons
with experiments in the range Re ∈ [102, 105

] (Ravelet, Chiffaudel & Daviaud 2008,
figure 7), that the code computes accurately the torque applied by the blades to the
fluid (tests not reported here). Between 128 and 256 real Fourier modes are used. The
parallelization is done with one complex Fourier mode per processor, and the meridian
plane is further divided among the processors by using a domain decomposition
technique, the graph partitioning being done by METIS. The linear algebra in the
meridian section is handled by PETSc and the FFTs are done with FFT3W. One
rotation period (one turn) requires between five and eight wall-clock hours on a
medium capacity parallel machine called Brazos at Texas A&M University with quad
core Intel Xeon, AMD Opteron and 8-core AMD Opteron, and it takes between
two and four wall-clock hours on the cluster IBM x3750-M4 from GENCI-IDRIS.
Each run does between 15 and 60 turns. The cumulated computing time for the runs
presented in this article is approximately 5× 105 CPU hours on one processor.

3. Hydrodynamic study
We first perform hydrodynamic computations by solving (2.1a)–(2.1c) with Re

in the range {2 × 102, 5 × 102, 103, 1.5 × 103, 2.5 × 103, 5 × 103, 104, 105
}. We

characterize the structures of the flow through three-dimensional visualizations and
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FIGURE 3. (Colour online) Navier–Stokes simulations in the TM73 VKS2 configuration
in the cylinder of radius r = 1: (a) at Re = 104, partial scale for the amplitude of the
vorticity field, ‖∇×u‖ (between 10 and 25 for a total scale between 0 and 56) and (b)
at Re= 105 partial scale for the amplitude of the vorticity field, ‖∇×u‖ (between 10 and
25 for a total scale between 0 and 99). The impellers are represented in light grey.

by computing various time-averaged physical quantities. The visualizations, the global
quantities and the spatial spectra are in agreement with the experimental observations
and the Kolmogorov scenario. All the simulations done at Re = 5× 103 and beyond
have been done with the entropy viscosity technique presented previously.

3.1. Turbulent flow at high Reynolds numbers
We start by investigating the qualitative behaviour of the flow at high Reynolds
numbers. Figure 3 shows snapshots of the vorticity field at Re = 104 and Re = 105

characterized by small-scale structures with a clustering near the symmetry axis. The
numerous vorticity tubes are characteristic of fully developed turbulence. Elongated
vortical structures are attached to the concave side of the impeller blades.

We show in figure 4 one snapshot of the velocity field computed at Re = 105. The
flow is clearly turbulent as small scales have invaded the entire fluid domain. In the
yOz plane the velocity components {ux, uy} show ejection motions near the tip of the
impellers. Close to the symmetry axis, the uz-component shows strong axial motions
that are oriented toward the impellers and which are characteristics of the Ekman
suction induced by them (see figure 4a–c). The representation of the velocity vector
field on the cylindrical surface {r = 0.8} reveals two counter-rotating zonal flows
at the top and bottom of the vessel which are induced by the impellers. We also
observe large-scale structures in the equatorial plane where the {uθ , uz}-components
are significantly larger than the radial component ur (see figure 4d,e).

The overall structure is made more visible by inspecting the time average of the
velocity field (see figure 5a–g). We observe two counter-rotating recirculation tori
separated by an active azimuthal shear layer localized at the equator. Kinetic energy
is injected by the impellers, the flow spirals up or down along the side wall and
is driven radially inward at mid-plane. The two resulting inward flows meet at the
equator and form a shear layer that dissipates energy. Note that the components of the
time-averaged velocity shown in figure 5(a–c) are not fully symmetric with respect to
the Oz and Oy axes due to the presence of the azimuthal Fourier mode m= 3. The
spectra reported in figure 10 show that the azimuthal Fourier mode m= 3 is persistent
over a wide range of Reynolds numbers. This energy peak at m = 3 corresponds to
three radial co-rotating vortices seen in figure 5(d,e). These cat’s-eye structures are the
manifestation of the Kelvin–Helmholtz instability of the equatorial shear layer (Nore
et al. 2003). These vortices are localized near the equator and form a complex three-
dimensional structure inside the bulk, as evidenced in figure 5( f,g). Similar cat’s-eye
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(a) (b) (c)
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z
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FIGURE 4. (Colour online) Navier–Stokes simulations in the TM73 VKS2 configuration at
Re= 105. Snapshots of the velocity field in the plane yOz (−16 y6 1,−16 z6 1): (a) ux
(scale between −0.94 (blue) and 0.85 (red)); (b) uy (scale between −0.83 (blue) and 0.77
(red)); (c) uz (scale between −0.66 (blue) and 0.69 (red). Snapshots of the velocity vector
field on the cylindrical surface {r= 0.8}: (d) for −π/26 θ 6π/2; (e) for π/26 θ 6 3π/2.

vortices have been experimentally observed by Cortet et al. (2009) at very high
Reynolds numbers. It is reported therein that ‘these vortices fluctuate in azimuthal
position as well as in amplitude or apparent size’. The fact that these structures are
visible in our time average may be due to the Reynolds number not being large
enough or the range of the time averaging being too short.

As seen in figure 6(a), the global kinetic helicity HelK(t) :=
∫
Ω

u(r, t) ·∇×u(r, t) dΩ
is negative during the entire time of evolution. This is not a surprise since the
Ekman suction creates a strong vertical velocity field moving toward each impeller
and the product of this velocity field with the angular velocity of the impellers
is predominantly negative. However, the spatial distribution of the local helicity
u(r, t) · ∇×u(r, t) is complex and exhibits fine scales (see figure 6b,c). The maxima
are always localized near the impellers whereas the minima are dispersed over the
whole fluid domain. This is well illustrated in figure 6(c) where we show the helicity
field of the time-averaged velocity. As first numerically evidenced by Ravelet et al.
(2012), Kreuzahler et al. (2014) and seen in figure 3, the positive maxima are
associated with the swirling vortices attached to each blade and occupying part of
the space between the blades. These vortices are thought to be a key ingredient of
the dynamo mechanism (Laguerre et al. 2008; Gissinger 2009; Varela et al. 2015).

3.2. Global quantities
We now make quantitative diagnostics to get a better understanding of the dynamics.
Given a finite time series f 1, . . . , f q, we define the time average f as follows:

f :=
1
q

∑
16n6q

f n. (3.1)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 Y

BP
 L

ib
ra

ry
 S

er
vi

ce
s,

 o
n 

03
 S

ep
 2

01
8 

at
 2

1:
00

:3
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
58

2

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.582


Numerical simulation of the von Kármán sodium dynamo experiment 175

x y
z

x
x

x
x

y y
y

y
z z

z
z

(a) (b) (c)

0.10

0.30

0.40

0

0.57

(d ) (e) ( f ) (g)

FIGURE 5. (Colour online) Time-averaged velocity field in Navier–Stokes simulations for
the TM73 VKS2 configuration at Re = 105. Velocity field in the plane yOz (−1 6 y 6
1,−1 6 z 6 1): (a) ux (scale between −0.75 (blue) and 0.75 (red)); (b) uy (scale between
−0.34 (blue) and 0.39 (red)); (c) uz (scale between −0.37 (blue) and 0.33 (red)). Velocity
vector field on the cylindrical surface {r = 0.8}: (d) for −π/2 6 θ 6 π/2; (e) for π/2 6
θ 63π/2. Isosurface of 10 % of the velocity magnitude (purple) with streamlines (coloured
by velocity magnitude): ( f ) from a perspective; (g) top view; the cylinder {r = 1} is in
light grey.
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FIGURE 6. (Colour online) Navier–Stokes simulations in the TM73 VKS2 configuration
at Re = 105: (a) time evolution of the total helicity HelK(t); (b) snapshot of the helicity
in the yOz plane at time t = 125; (c) local helicity of the time-averaged velocity in the
yOz plane. The dimensions and the contour of the bottom disk and the area swept by the
blades are shown in this panel.

The first quantities of interest are the kinetic energy E, the root mean square velocity
and an indicator of the fluctuation level δ defined by:

E(t) :=
1
2

∫
Ω

|u(r, t)|2 dΩ, Urms :=

√
2E
|Ω|

, δ(u)(t) :=
‖u‖2

L2(Ω)

‖u‖2
L2(Ω)

. (3.2a−c)
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We also introduce the poloidal and the toroidal components of the velocity field which
we denote by P(u) and T(u), respectively. Using the same notation and convention as
in Ravelet (2005), we set:

P(u) :=
1
|Ω|

∫
Ω

√
u2

r,0 + u2
z,0 dΩ, T(u) :=

1
|Ω|

∫
Ω

|uθ,0| dΩ, Γ (u) :=
P(u)
T(u)

,

(3.3a−c)

where ur,0, uθ,0 and uz,0 are the radial, azimuthal and vertical components of the
Fourier mode m= 0 of the velocity u. We finally consider the dimensionless torque
Kp defined by:

Kp =
1
2

∫
Ωsolid

|(r× f s) · ez| dΩ, (3.4)

where f s is the non-dimensional body force that induces the solid rotation of the
impellers. Using the notation from (2.2)–(2.4), we deduce from the expression of the
discrete momentum balance (2.3) that the torque at time tn+1 is given by

Kp =
1
2

∫
Ω

r(1− χ)sign(z)
1

2τ
(4un
− un−1

− 3uobs) · eθ dΩ, (3.5)

with sign(z) equal to 1 if z> 0 and −1 otherwise.
We have reported in table 2 the quantities E, δ(u), P(u), T(u), Γ (u), Urms and

Kp for all the runs we have done with Re ∈ {2 × 102, 5 × 102, 103, 1.5 × 103, 2.5 ×
103, 5× 103, 104, 105

}. With the exception of Kp and δ(u), all the quantities increase
with Re. In particular the ratio Γ increases with Re and reaches the value 0.57 at
Re = 105. Using TM73 impellers, Ravelet et al. (2005) estimated from measurements
in the bulk region 0 6 r/Rcyl 6 1, −0.7 6 z/Rcyl 6 0.7 that Γ ≈ 0.8 at Re = 105.
The ratio Γ is expected to play a major role in the generation of a magnetic field
in kinematic dynamo models using time- and azimuth-averaged velocity fields; in
particular, values around 0.7 are thought to be near optimal (see figure 5 of Ravelet
et al. (2005)) for generating magnetic fields mainly supported by the Fourier mode
m= 1 and resembling that of the kinematic dynamo discussed in § 5.1. The values of
Γ reported in table 2 are significantly different from those reported in Ravelet et al.
(2005). One possible origin for these differences is that we compute Γ whereas it
is the quantity P(u)/T(u) that is estimated in Ravelet et al. (2005) using 11 × 17
laser Doppler velocimetry measurements. Notice finally that the LES results at
Re= 2.5× 103 are very close to the DNS results at Re= 2.5× 103 thereby confirming
that, as expected, the entropy viscosity (2.11) vanishes when the flow is well resolved.

Upon inspection of figure 7, where we have reported the time-averaged torque
as a function of the Reynolds number, we observe that Kp has a non-monotonic
behaviour with respect to Re. We also observe that Kp seems to be converging to
a non-zero asymptotic limit when Re→∞. Note that δ(u) has the same behaviour.
The behaviour of Kp and δ(u) is coherent with the theoretical arguments and the
experimental observations from Cortet et al. (2009).

In conclusion, even though our computations are performed at smaller Re than in
the experiment, the trend followed by the global quantities compares qualitatively well
with the experimental results of Ravelet et al. (2008).
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FIGURE 7. Time-averaged Kp versus Re in log–linear showing a local maximum around
Re = 2.5× 103.

Re Model E δ(u) P(u) T(u) Γ (u) Urms Kp

2× 102 DNS 0.229 1.01 0.0753 0.194 0.389 0.270 0.0631
5× 102 — 0.299 1.02 0.0933 0.201 0.465 0.308 0.0532
103 — 0.390 1.12 0.115 0.246 0.465 0.352 0.0505
1.5× 103 — 0.408 1.21 0.116 0.226 0.511 0.360 0.0508
2.5× 103 — 0.443 1.35 0.124 0.219 0.567 0.375 0.0520
2.5× 103 LES 0.449 1.34 0.124 0.224 0.557 0.376 0.0512
5× 103 — 0.475 1.41 0.128 0.229 0.563 0.389 0.0494
104 — 0.491 1.54 0.131 0.232 0.566 0.395 0.0479
105 — 0.519 1.49 0.134 0.235 0.571 0.406 0.0470

TABLE 2. Global quantities as defined in the text for hydrodynamic computations in the
TM73 set-up.

3.3. Kinetic energy versus Reynolds number
We investigate in this section the behaviour of the kinetic energy as the kinetic
Reynolds number increases.

We show in figure 8(a) the time evolution of the kinetic energy E(t) for the
Reynolds numbers in the range {2× 102, 5× 102, 103, 1.5× 103, 2.5× 103, 104, 105

}.
There is a unique time series since we have used the final state from the previous run
as the initial condition for the next run with a higher Reynolds number. We observe
that the flow is steady at Re= 2× 102. It is marginally unsteady at Re= 5× 102, and
increasing further Re leads to a turbulent regime. The time-averaged kinetic energy E
increases with Re as reported in table 2.

Letting û(r, m, z, t) be the mth complex Fourier component of the velocity field
u(r, θ, z, t), we define the kinetic energy of the mth Fourier mode by

Em =

∫
Ω2D

fluid

π|û(r,m, z, t)|2r dr dz. (3.6)

Figure 8(b,c) shows Em as a function of m for m∈{0, . . . ,63}. The maximum at m=0
corresponds to the large-scale forcing induced by the rotating disk. The maximum
at m = 8 and the maxima at the corresponding harmonics are induced by the eight
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FIGURE 8. (Colour online) (a) Time evolution of the total kinetic energy E(t) versus Re.
Modal kinetic energy Em as a function of the azimuthal Fourier mode: (b) Re = 2× 102;
(c) Re = 5× 102.

x x
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z

0.20

0

0.30

0.50

0.62

(a) (b)

FIGURE 9. (Colour online) Navier–Stokes simulations in the TM73 VKS2 configuration
at Re= 5× 102: (a) snapshot of the velocity vector field on a cylindrical surface at r= 0.8
for −π/2 6 θ 6 π/2; (b) isosurface of 6 % of the maximum velocity magnitude (purple)
with streamlines (coloured by velocity magnitude) from a top view; the cylinder {r = 1}
is in light grey.

rotating blades. As expected, only the Fourier mode m = 0 and the mode m = 8
together with its harmonics are populated at Re= 2× 102. This scenario changes when
the Reynolds number is slightly increased since all the even Fourier modes are active
at Re = 5× 102.

At Re = 5 × 102 the flow is dominated by the Fourier modes m = 0 and m = 2
as illustrated in figure 9. Figure 9(a) shows that the azimuthal shear layer near
the equator acquires a wavy structure with two co-rotating radial vortices. This
phenomenon has also been observed in Ravelet et al. (2008). The dominance of the
Fourier mode m = 2 and its harmonics is clearly seen when inspecting the velocity
streamlines in figure 9(b). The spectrum in figure 8(b) shows that all the even modes
are activated by nonlinearity.

As illustrated in figure 10, as Re increases further, the axisymmetric mode m = 0
and the Fourier mode m= 8 together with their harmonics are still energetic, but the
dynamics becomes richer as the mode m=3 starts to be active and eventually becomes
the second largest after the axisymmetric mode (see figure 10a). This m= 3 structure
(see figure 5) has been visualized in the experiment at very high Reynolds numbers
as reported in Cortet et al. (2009). The structure consists of three radial co-rotating
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FIGURE 10. (Colour online) Spectra of the kinetic energy Em as a function of the
azimuthal mode at final time for Re = 1.5 × 103, 2.5 × 103, 104, 105: (a) in linear–log
scale, (b) in log–log scale with a fit in m−5 and in m−1.7 for guiding the eye.

vortices located nearby the equatorial shear layer. The Fourier modes m∈ {0, 3, 8} and
their harmonics are activated by nonlinearity as Re grows and eventually the spectrum
adopts the m−5/3 scaling at very high Reynolds number (see figure 10). The quantity
Em decreases like a negative power of m when m is large. For instance Em∼m−5 for
Re = 1.5 × 103 and Em ∼ m−1.7 for Re = 105. The scaling Em ∼ m−1.7 at Re = 105 is
close to m−5/3 and thereby reminiscent of the Kolmogorov 1941 turbulent scaling for
a one-dimensional kinetic energy spectrum (Frisch 1995).

Let us finish this section by noting that a bifurcation similar to the one discussed
above, from even modes to odd modes, has been observed and reported in Herbert
et al. (2014) at Re = 700 on a configuration where the impellers are equipped with
16 blades instead of eight and the curvature of the blades is higher. Although the use
of planar stereo particle velocimetry made the discrimination between odd modes like
m = 1 and m = 3 uneasy, the bifurcation was attributed to a (m = 1) bifurcation. In
this reference the authors have shown that increasing Re from 102 to 106 leads to
non-axisymmetric modulations of the axisymmetric (laminar or time-averaged) flow
with successive azimuthal changes in parity (even–odd–even–odd).

4. MHD results

In this section we solve the full MHD system (2.1a)–(2.1d) using as initial velocity
field a snapshot computed during the Navier–Stokes runs at the different Re. The
snapshots are selected at the end of each Navier–Stokes run when the flow is at
saturation. The magnetic field H=B/µ0µr is initialized to a very small value which
we call the seed. Unless specified otherwise, the seed is H0 = 10−6(ez + ex). We also
add a random noise of amplitude 5 × 10−7 on all the Fourier modes m > 1 of H0

to arrive at saturation faster. We first explain how we determine the threshold for
dynamo action on an illustrative case. Next we study the influence of the relative
magnetic permeability of the impellers and the boundary conditions imposed on
the outer boundaries of the domain Ω ∪ Ωout. We then fix the relative magnetic
permeability of the impellers and use the pseudo-vacuum boundary conditions to
investigate the variation of the critical magnetic Reynolds number with Re.
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B.C. µimp
r Rc

m Dominant mode Figure

H× n= 0 1 190± 10 0, 1 Figure 14(a–c)
H× n= 0 5 170± 5 0, 1 Figure 14(d,e)
H× n= 0 50 90± 5 0 Figure 6 in Nore et al. (2016)
Vacuum 1 310± 30 1 Figures 15(a,b) and 16(a–c)
Vacuum 50 130± 10 0 Figures 15(c,d) and 16(d–f )

TABLE 3. Magnetic thresholds Rc
m for Re = 1.5× 103. ‘H× n= 0’ means pseudo-vacuum

boundary condition and ‘vacuum’ means that a larger integration domain with a
non-conducting domain around the outer cylinder is used.

Re 5× 102 1.5× 103 2.5× 103 5.0× 103 104 105

Rc
m 135∗ ± 5 90∗ ± 5 84± 5 75± 5 70± 5 70± 5

Pc
m ≈0.27∗ ≈0.06∗ ≈0.034 ≈0.015 7.5× 10−3 7× 10−4

TABLE 4. Magnetic thresholds Rc
m and critical magnetic Prandtl numbers Pc

m for µimp
r = 50

versus fluid Reynolds number Re. Asterisks represent values from Nore et al. (2016).

4.1. Summary of our previous results
We have shown in Nore et al. (2016) that two distinct dynamo families compete at
small Reynolds numbers (typically for Re < 700) and that these two families merge at
larger kinetic Reynolds numbers. In the first family, the magnetic field is essentially
supported on the even Fourier modes, whereas in the second family the magnetic field
is essentially supported on the odd modes; these are called the 0-family and the 1-
family in Nore et al. (2016), respectively. In the entire section we focus on Re > 1.5×
103; hence all the Fourier modes of the magnetic field are coupled and vary in time
with the same (growth or decay) rate in the linear dynamo regime.

4.2. Dynamo threshold and saturation

In this section we fix Re = 104 and explain how we estimate the dynamo threshold
with µimp

r = 50 and the pseudo-vacuum boundary condition. We are going to use the
same methodology for all the other cases. The onset of dynamo action is monitored
by recording the time evolution of the magnetic energy in the conducting domain,
M(t) = 1/2

∫
Ω∪Ωout

H(r, t) · B(r, t) dr = 1/2
∫
Ω∪Ωout

µ0µr|H(r, t)|2 dr, and the modal

energies Mm(t)=
∫
Ω2D∪Ω2D

out
π|Ĥ(r, m, z, t)|2r dr dz. Linear dynamo action occurs when

Mm(t) increases exponentially in time (non-oscillating dynamo here) and nonlinear
dynamo action takes place when M(t) saturates. Various MHD runs are performed
with different values of the magnetic Reynolds number Rm. The threshold for dynamo
action is obtained by interpolation on the growth rate between the largest magnetic
Reynolds number with a negative growth rate and the smallest magnetic Reynolds
number with a positive growth rate. The interpolation is done once the bracketing
interval of the threshold is small enough to yield a 5–10 % error estimate. All
the thresholds reported in tables 3 and 4 are accompanied with the corresponding
uncertainty.

4.2.1. Linear regime
At Re = 104 the velocity field is dominated by the Fourier modes m= 0 and m= 3

as shown in figure 10. Since the coupling term ∇×(u× B) generates even magnetic
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FIGURE 11. (Colour online) Time evolution of the total and modal magnetic energies
Mm(t) at Re = 104 with µimp

r = 50 for m ∈ {0, . . . , 4}: (a) Rm = 50; (b) Rm = 150.

modes from odd magnetic seeds (for example, the interaction of the seed magnetic
mode m= 1 with the velocity mode m= 3 activates the magnetic modes m= 2 and
m= 4, etc.) and odd magnetic modes from even magnetic seeds, all the Fourier modes
of the magnetic field have the same decay or growth rate as reported in figure 11 for
Rm= 50 and Rm= 150. After estimating the decay rate at Rm= 50 and the growth rate
at Rm= 150, linear interpolation shows that the threshold in the considered conditions
is Rc

m=75±5. All the thresholds on Rm for dynamo action with µimp
r =50, the pseudo-

vacuum boundary condition and Re ∈ {2× 102, 5× 102, 103, 1.5× 103, 2.5× 103, 5×
103, 104, 105

} are reported in table 4.
We show in figure 12 the distribution of the modal energies Em and Mm at two

different times for Rm = 150. Note that there is dynamo action at this magnetic
Reynolds number. The graphs in figure 12(a) have been done during the linear
growth of the magnetic field. Those in figure 12(b) have been obtained at saturation.
Note that the spectrum of the magnetic energy during the linear growth resembles
that of the kinetic energy; the Fourier modes m ∈ {0, 3} and the mode m= 8 with its
harmonics are dominant.

4.2.2. Nonlinear regime
At Rm= 150 we have Rm≈ 2× 75= 2Rc

m; hence the simulation done at Rm= 150 is
far from the threshold, and the Lorentz force is therefore strong enough to retroact on
the velocity field in the saturated phase. Figure 12(b) shows that the small azimuthal
modes (m ∈ {0, . . . , 4}) of the velocity field and the magnetic field are indeed in
competition at saturation (t= 1300); this can be seen also in figure 11(b) in the time
interval t ∈ [1210, 1300]. The dominant Fourier modes of the velocity in the saturated
regime are now m ∈ {0, 1, 2} as seen in figure 13(a). The kinetic energy decreases
while the magnetic energy increases during the time interval t∈ [1100, 1240] as shown
in figure 13(b); at t = 1250 both quantities have reached asymptotic values about
which they fluctuate. The retroaction of the Lorentz force makes the torque decrease
by 40 %; hence, quite surprisingly, driving the flow with a saturated dynamo requires
less mechanical power than driving the hydrodynamic base flow (see figure 13c).

While the retroaction of the Lorentz force on the velocity field in turbulent flows
has been studied in various experiments involving applied magnetic fields (see e.g.
Sisan, Shew & Lathrop 2003; Miralles, Plihon & Pinton 2015), very little is known
in this respect when dynamo action occurs. In the Riga experiment, an increase
of approximately 10 % of the power consumption has been measured at saturation,
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FIGURE 12. (Colour online) Spectra of the kinetic Em and magnetic Mm energies as a
function of the azimuthal mode for Re = 104 and Rm = 150: (a) in the linear phase at
t= 1142; (b) in the saturation regime at t= 1300.
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FIGURE 13. (Colour online) Time evolution of (a) the modal kinetic energies Em(t) for
m ∈ {0, . . . , 4} and for Rm = 150, Re = 104 and µimp

r = 50, (b) the kinetic and magnetic
energies and (c) the total torque.

and a modification of the swirling profile together with a deceleration of the axial
motion has been observed (Gailitis et al. 2003). In the Karlsruhe experiment, a slow
down of the axial flow has been recorded in the nonlinear regime (Müller, Stieglitz &
Horanyi 2004). In the VKS2 experiment, the modification of the flow in the saturation
regime has been too weak to be measured. Note that the range of magnetic Reynolds
numbers that can be explored experimentally is limited by the mechanical power that
is available; in the above three experiments dynamo action has been investigated only
in a small neighbourhood beyond the threshold.

Although very interesting, the study of the nonlinear regime over a large range of
parameters is numerically expensive and therefore postponed for future work.

4.3. Impact of the magnetic permeability and boundary conditions on the threshold
We focus in this section on the influence of various parameters on the threshold and
we investigate the structure of the growing magnetic field.

4.3.1. Influence of the magnetic permeability
In this section we work with the pseudo-vacuum boundary condition enforced at

the outer boundary of the domain Ω ∪Ωout; this boundary condition corresponds to
setting H × n = 0, and it is also called perfect ferromagnetic boundary condition in
the literature. We also fix the Reynolds number to Re = 1.5 × 103. Figure 14(a–e)
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FIGURE 14. (Colour online) Time evolution of the total and modal magnetic energies
Mm(t) at Re= 1.5× 103 with pseudo-vacuum boundary condition for m∈ {0, . . . , 4}: (a–c)
Rm ∈ {100, 200, 300} and µimp

r = 1; (d,e) Rm ∈ {150, 200} and µimp
r = 5.

shows the time evolution of Mm(t) for the azimuthal modes m ∈ {0, . . . , 4} for
µimp

r = 1 and µimp
r = 5. The computations reported in figure 14(a) have been done with

H0=10−3(ez+ ex) plus a random noise of amplitude 5×10−5 on all the Fourier modes
m > 1 of H0 as in Nore et al. (2016). But since it turned out that this type of
perturbation was a bit too large to yield a very accurate estimate of the threshold
over reasonable integration times, the other of the computations have been done with
H0 = 10−6(ez + ex) plus a random noise of amplitude 5× 10−7.

When µimp
r = 1 and near criticality, the behaviour of the magnetic field shows a

competition between the modes m=0 and m=1 (Rm=100,200 in figures 14a,b). Well
above the threshold, say at Rm = 300 and beyond, we recover the same dynamics as
that obtained when µimp

r is larger; that is, the axisymmetric magnetic field is dominant
and it is preferentially coupled to the mode m = 3 through the velocity field. The
threshold for µimp

r = 1 is estimated to be Rc
m= 190± 10. The threshold for µimp

r = 5 is
estimated to be Rc

m = 170± 5. This value is slightly higher than the value Rc
m ≈ 130

reported in Nore et al. (2016). The likely origin of the discrepancy is that, in order
to save CPU time and to reach saturation faster, the initial seed for the magnetic field
that was used in Nore et al. (2016) was chosen to be larger than the one presently
used, and the integration time was shorter. We believe that the present estimation of
Rc

m is probably more accurate. It seems finally that for small values of µimp
r , typically

µimp
r 6 5, the dynamics involves interactions between Fourier modes, i.e. the unstable

eigenvector is not a pure Fourier mode in azimuth, whereas the axisymmetric mode
dominates when µr is large. Hence when µr is large we obtain clearer decay or
growth rate, and, consequently, it is easier to estimate the threshold. The largest value
of the relative permeability used in the present paper is µimp

r = 50.

4.3.2. Influence of the boundary conditions
To test the influence of boundary conditions, we now enlarge the computational

domain by adding an insulator around the VKS2 container (air or vacuum). The outer
boundary of the computational domain is now a sphere centred at the origin and of
radius 10. The magnetic field in the insulator is represented as the gradient of a scalar
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FIGURE 15. (Colour online) Time evolution of the total and modal magnetic energies
Mm(t) at Re = 1.5× 103 with vacuum boundary condition for m ∈ {0, . . . , 4}: (a,b) Rm ∈

{150, 300} and µimp
r = 1; (c,d) Rm ∈ {50, 150} and µimp

r = 50.

potential as in Guermond et al. (2009) and this potential is enforced to be zero on
the outer sphere. This configuration is a better representation of the actual experiment
than that with the pseudo-vacuum boundary condition, but it is computationally more
expensive.

We show in figure 15 the time evolution of the magnetic energy at Re = 1.5× 103

for the Fourier modes m ∈ {0, . . . , 4} with µimp
r = 1 (figure 15a,b) and with µimp

r =

50 (figure 15c,d). These computations have been done with the vacuum boundary
condition. The seed for the magnetic field is H0 = 10−6ex plus a random noise of
amplitude 5 × 10−7. We removed the axial component of the seed to demonstrate
unequivocally that the axial component of the axisymmetric mode grows above the
dynamo threshold. Other computations (not shown here) done with the standard seed
described at the beginning of § 4 give very similar results.

For µimp
r = 1, the two Fourier modes m= 1 and m= 2 compete below and above the

threshold. The threshold in this case is larger than when the pseudo-vacuum boundary
condition is imposed. We obtain here Rc

m = 310± 30 whereas we had Rc
m = 190± 10

with the pseudo-vacuum boundary condition. The increase is approximately 60 %. The
magnetic field is mainly supported on the Fourier modes m = 1 and m = 2 with a
complex three-dimensional structure as shown on figure 16(a–c).

For µimp
r = 50 the threshold is estimated to be at Rc

m = 130 ± 10 (figure 15c,d).
Inspection of figure 15(d) reveals that at Rm= 150 the Fourier mode m= 1 decreases
in time, while the modes m= 0 and m= 3 increase and transfer energy to the other
modes by nonlinear interactions for t > 850. This scenario is reminiscent of the
crossing of the modes m= 1 and m= 0 discussed in Boisson & Dubrulle (2011). The
present simulations show that the magnetic field is not purely axisymmetric since
a significant portion of the magnetic energy is carried by the Fourier mode m = 3.
We will examine the relative importance of the non-axisymmetric modes in § 4.5.
As shown in figure 16(d–f ) the growing magnetic field is mainly an axial dipole
with an azimuthal component approximately even in z. The structure of a snapshot
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FIGURE 16. (Colour online) Magnetic field from full MHD simulations in the TM73
VKS2 configuration at Re = 1.5 × 103 with vacuum boundary condition: (a,b) Rm = 300,
µimp

r = 1, snapshot and time-averaged magnetic field in Ωc; (c) Rm = 300, µimp
r = 1,

magnetic field lines in the whole domain; (d,e) Rm = 150, µimp
r = 50, snapshot and

time-averaged magnetic field in Ωc; ( f ) Rm = 150, µimp
r = 50, magnetic field lines in the

whole domain. In (a,b,d,e) arrows represent in-plane {Hy,Hz} vectors and colour represents
the out-of-plane component Hx.

of the magnetic field (figure 16d) and the structure of the time-averaged magnetic
field (figure 16e) are similar to those obtained with the pseudo-vacuum boundary
condition (see figure 18a,b). This structure is also compatible with the measurements
of the magnetic field made at saturation during the dynamo regime obtained in the
VKS2 configuration with soft iron impellers and a copper container (see figure 6b in
Boisson et al. (2012)).

When one compares the estimations of the threshold using µimp
r = 50 and the

pseudo-vacuum boundary condition, Rc
m = 90 ± 5, with that obtained with µimp

r = 50
and the vacuum boundary condition, Rc

m= 130± 10, we observe a 40 % increase. This
dependence of the dynamo threshold on the boundary condition is compatible with the
observation made in Guermond et al. (2011a), Gissinger et al. (2008) using kinematic
dynamo simulations. It is shown in these references that the perfect ferromagnetic
boundary condition decreases the dynamo threshold, the minimum being achieved
when this boundary condition is enforced over the entire boundary of the container.
This is explained by a screening mechanism of the walls. The present full MHD
simulations show the same trend.

The data collected in table 3 lead to the conclusion that using the ferromagnetic
boundary condition on the external boundary of the container and using ferromagnetic
material for the impeller with a large value of the magnetic permeability decreases the
dynamo threshold and enhances the axisymmetric component of the magnetic field
produced by the dynamo effect.
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FIGURE 17. (Colour online) Rc
m versus Re in log–linear at µimp

r = 50.

A similar dominant axisymmetric magnetic field is also observed at Re = 2025 and
Pm= 1/3 for µimp

r > 12 in Kreuzahler et al. (2017). In this paper, the authors study the
dynamo action in the von Kármán sodium experiment for four values of the Reynolds
number and three values of the magnetic Reynolds number (up to Re = 2025 and
Rm= 1012.5, using the same definitions for these control parameters as in the present
article). There are similarities between the present paper and this recent reference
since both works use similar penalty methods and evidence the same dominant
axisymmetric dipolar magnetic field when the relative magnetic permeability of the
impellers is large enough, as already pointed out by Nore et al. (2016). However there
are two key differences between the two papers: (i) we determine thresholds over a
wider range of kinetic Reynolds numbers and for larger values of relative magnetic
permeability of the impellers; the largest value of the relative magnetic permeability
reached in Kreuzahler et al. (2017) is 16, whereas we reach µimp

r = 50, (this value
of the relative magnetic permeability of the soft iron impellers is of the same order
as that measured in the experiment, Verhille et al. (2010)). (ii) The penalty method
in Kreuzahler et al. (2017) is used for the fluid part only (to confine the flow in
a cylinder and to drive it with the impellers); therefore, the magnetic part is only
crudely modelled, since the conductivity is assumed to be constant everywhere. This
makes comparisons with the present work difficult, as we showed in table 3 that
boundary conditions have a large influence on the actual values of the thresholds.

4.4. Threshold at µimp
r = 50 versus Re

We put ourselves in this section in the most favourable configuration for dynamo
action to occur: we enforce the ferromagnetic boundary condition on the external
boundary of the container and we use µimp

r = 50. We now investigate the evolution of
the critical magnetic Reynolds number as a function of the kinetic Reynolds number.

We have reported in figure 17 the estimated value of Rc
m for Re ∈{5×102,1.5×103,

2.5× 103, 5× 103, 104, 105
}. The critical magnetic Reynolds number seems to tend to

an asymptotic value Rc
m∞ as the kinetic Reynolds number tends to infinity. Since the

kinetic Reynolds numbers associated with dynamo action in the VKS2 experiment are
in the range 6.3× 106 6 Re 6 8.7× 106 (see § 2.1), figure 17 leads us to conjecture
that the critical magnetic Reynolds number in this range is close to Rc

m∞. It is indeed
remarkable that the asymptotic value Rc

m∞≈ 70 is in the range [52, 71] where dynamo
action has been experimentally observed.
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FIGURE 18. (Colour online) Magnetic field from full MHD simulations in the TM73
VKS2 configuration in the saturated regime at Re = 1.5 × 103, Rm = 150 and µimp

r =

50, pseudo-vacuum boundary condition: (a,b) arrows represent in-plane {Hy, Hz} vectors,
colour represents the out-of-plane component Hx, the cylinder axis is in the middle (from
Nore et al. (2016)). (c) Magnetic field lines of H coloured by Hz; (d) isosurface of 50 %
of the maximum amplitude of ‖H‖ and cut at z= 0 for {r 6 1.6}; (e) cut at z= 0 from
top view coloured by Hz (the inner cylinder of radius r= 1 is indicated in light grey, the
outer radius is 1.6).

Assuming, as suggested by the results reported in table 3, that going from µimp
r ≈ 50

to µimp
r = 1 doubles the threshold for dynamo action (uniformly in Re), it is reasonable

to expect that the asymptotic limit Rc
m∞ for µimp

r = 1 is approximately 70× 2≈ 140.
Hence, we conjecture that the threshold on the VKS experiment with impellers
made of stainless steel might be Rc

m ' 140. The estimate of the threshold obtained
experimentally by measurements of the decay time in this configuration (see Miralles
et al. (2013): run O in figure 6, threshold reported in table 1 and Rm defined at line
24, page 8) gives Rc

m ' 110, which is in reasonable agreement with our conjectured
value Rc

m ' 140 considering that the ferromagnetic walls in run O are closer to the
impellers than in our computations.

4.5. Spatial structure of the magnetic field versus Re

We continue with the pseudo-vacuum boundary conditions and µimp
r = 50. Figures 18

and 19 show a snapshot of the magnetic field and the time-averaged magnetic
field obtained at saturation in the dynamo regime at Re = 1.5 × 103 and Re = 105,
respectively. Although the time-averaged magnetic field at Re = 1.5 × 103 and at
Re = 105 look similar, we observe on the two snapshots in figures 18(a) and 19(a)
that the magnetic field at Re = 105 exhibits bursts near the impellers, whereas the
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FIGURE 19. (Colour online) Same as figure 18 with Re = 105, Rm = 100 and µimp
r = 50.

The non-dimensional geometric dimensions of the set-up are shown in (b).

magnetic field at Re = 1.5 × 103 is smoother. Notice also that the time-averaged
magnetic vector field in the yOz plane is not strictly symmetric with respect to the
Oz axis. The ratio of the magnetic energy supported by the Fourier modes m > 1 to
the total magnetic energy is approximately 11 % for Re = 1.5× 103, Rm = 150 and it
is approximately 18 % for Re= 105, Rm= 100. This little departure from axisymmetry
gives a wavy shape to the magnetic field streamlines as shown in figures 18(c)
and 19(c). The dominant non-axisymmetric Fourier mode of the magnetic field is
m= 3 as shown in figures 18(d,e) and 19(d,e).

Although the flows at Re = 1.5 × 103 and Re = 105 are quite different, the
time-averaged magnetic fields produced by dynamo action are very similar: compare
figures 18(b) and 19(b). This observation leads us to conjecture that the time-averaged
magnetic field might have the same shape for the actual Reynolds number Re≈5×106.
At least the axisymmetric shape in figures 18(b) and 19(b) is similar to the one
reconstructed in figure 6(b) in Boisson et al. (2012). Of course, the scarcity of
experimental data (Gaussmeters on a few lines) gives little information on the
non-axisymmetric components.

5. Simplified models

In this section we investigate whether the mostly axisymmetric structure of the
dynamo can be recovered by performing kinematic dynamo computations with flat
disks and the time average of the velocity field obtained at Re = 105 and shown in
figure 5. We also take a closer look at the structure of the electrical current that
is generated by dynamo action in the full MHD simulations and propose a simple
interpretation of the observed dynamo.
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FIGURE 20. (Colour online) Magnetic field from kinematic dynamo simulations using
the time-averaged velocity field at Re = 105 with Rm = 150 and µimp

r = 50: (a) arrows
represent in-plane {Hy,Hz} vectors, colour represents the out-of-plane component Hx, the
cylinder axis is in the middle; (b) isosurface of the magnetic magnitude (coloured by the
Hz component: red for upward direction and green for downward direction) at 30 % of
the maximum with magnetic vector fields.

5.1. Kinematic dynamo using the time-averaged velocity field at Re = 105

A kinematic dynamo simulation is done by solving only the induction equation (2.1b)
and by using the time-averaged velocity field obtained at Re= 105; this field is shown
in figure 5. The time-averaged velocity field is not axisymmetric and therefore may
sustain an axisymmetric magnetic field since Cowling’s theorem does not apply. We
also use flat ferromagnetic disks with µimp

r =50 and we impose the boundary condition
H× n= 0 on the outer wall of the container.

We perform simulations with Rm ∈ [50, 200] and find that the Fourier modes m ∈
{1, 2, 4} can grow while the modes m∈ {0, 3} always decrease. The dynamo threshold
is Rc

m ≈ 120 ± 5 and the growing magnetic field has a strong Fourier component
supported on the mode m= 1. This unstable eigenmode has the shape of an equatorial
dipole with two opposite axial structures (see figure 20). This magnetic field is similar
to the one obtained in Ravelet et al. (2005), Guermond et al. (2011a) using the time-
and azimuth-averaged flow measured in a von Kármán experiment done in water. In
these references the amplitude of the velocity field has been multiplied by factors
in the range [0.6, 0.75] to test various scenarios and to make the definitions of Re
adopted in these references coincide. Once we take into account this multiplicative
factor (between 0.6 and 0.75), the threshold Rc

m ≈ 120 that we obtain is in the range
of those published in the above references; for instance 43/0.75 6 Rc

m 6 180/0.6 in
Ravelet et al. (2005) and 40/0.75 6 Rc

m 6 82/0.6 in Guermond et al. (2011a).
The main point of the present discussion is that the kinematic dynamo computation

realized with the time-averaged velocity field obtained at Re=105 gives a dynamo that
is totally different from the one obtained with the full velocity field since it is mainly
supported on the Fourier mode m = 1. Therefore the mainly axisymmetric magnetic
field shown in figure 19 cannot be attributed to the time-averaged velocity field only.

5.2. Spatial structure of the electric current versus Re

We now focus our attention on the electric current produced by the full MHD dynamo.
Figure 21(a,b) shows the electric current associated with the time-averaged magnetic
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FIGURE 21. (Colour online) Electric current field from time-averaged magnetic field,
µimp

r = 50: (a,b) Re= 1.5× 103, Rm= 150; (c,d) Re= 105, Rm= 100; (a,c) streamlines of the
current j = ∇×H coloured by the magnitude of ‖H‖; (b,d) current streamlines coloured
by the magnitude of ‖H‖ and slice at {z= 0} coloured by jz.

field computed at Re = 1.5 × 103 with Rm = 150; figure 21(c,d) shows the electric
current associated with the time-averaged magnetic field computed at Re = 105 with
Rm = 100. In both cases we use µimp

r = 50. The current distribution shows large-scale
meridian loops. The current lines close to the axis have the shape of a left-handed
helix going downwards; they are mainly radial in the disks (flowing outwards in the
bottom disk and inwards in the top disk); they are mainly vertical and flow upwards
in the copper wall ( jz is positive in figure 21(b–d) in the ring {1.4 6 r 6 1.6; z =
0}). The current lines also form smaller meridian loops near the blades. The poloidal
component of the current ({jr, jz} in the copper wall and near the blades) generates
the toroidal Hθ field, while the toroidal jθ component of the twisted helical current
lines near the axis creates the axial Hz magnetic field. This organization of the current
evokes the disk–dynamo of Bullard (1955) with two disks (instead of one only). The
radial current in the bottom disk is collected in the copper walls, injected in the top
disk, and flows from the top disk to the bottom disk in a left-handed helix. The
left-hand twist of the current lines in the bulk near the cylinder axis is induced by
the flow of liquid sodium. Figure 22(a) shows the current lines coloured by ‖j‖. The
current amplitude is strong near the axis. A schematic representation of the double-
disk Bullard dynamo is shown in figure 22(b).

6. Summary and discussion

The main outcomes of the present paper are the following points:

(i) The hydrodynamic computations using the entropy–viscosity-based LES technique
give results in agreement with the experimental data at high Reynolds numbers.
The global experimental and numerical kinetic quantities behave similarly when
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FIGURE 22. (Colour online) Current distribution: (a) current streamlines coloured by the
magnitude of ‖j‖ (in log scale); (b) schematic of the dominant current field lines giving
rise to the predominant axisymmetric time-averaged magnetic field of figure 19.

Re increases. The modal spectrum of the kinetic energy is dominated by the
azimuthal Fourier modes m∈ {0, 2} for Re < 700 and m∈ {0, 3} for larger Re. At
Re= 105, the modal spectrum behaves like m−5/3 when m is large. In the physical
space, the leading Fourier mode m = 2 found at Re = 5 × 102 corresponds to
the wavy bifurcation reported in Ravelet et al. (2008). At larger Re, the Fourier
mode m = 3 is related to the three radial co-rotating vortices localized near
the equatorial shear layer as observed by Cortet et al. (2009) in a von Kármán
experiment using water.

(ii) The full MHD computations show that, at fixed Re, increasing the relative
magnetic permeability of the impellers and/or using ferromagnetic material at the
outer boundaries of Ω ∪Ωout decreases the threshold (using the pseudo-vacuum
boundary condition is equivalent to adding a material with infinite permeability at
the boundary). The ferromagnetic impellers enhance the axisymmetric magnetic
field (Giesecke et al. 2012) and ferromagnetic outer walls confine the magnetic
field inside the vessel. At fixed µr, increasing the kinetic Reynolds number
also reduces the threshold. Moreover, the overall shape of the critical magnetic
field averaged in time barely changes between Re = 1.5 × 103 and Re = 105

as shown in figures 18 and 19. This robustness with respect to the kinetic
Reynolds number may explain why the magnetic field that we computed is in
very good agreement with the mainly axisymmetric magnetic field that has been
experimentally observed at much higher Reynolds numbers (compare figures 18b
and 19b with figure 6b in Boisson et al. (2012)).

(iii) Using ferromagnetic boundary conditions and µimp
r = 50, we have found that the

critical magnetic Reynolds number tends to an asymptotic value Rc
m∞≈ 70 when

Re increases. This value is in the range 52 6 Rc
m 6 71 where dynamo action has

been observed in the VKS2 set-up (see table I in Miralles et al. (2013)). The
behaviour of Rc

m with respect to Re that we observed suggests that the small
scales of turbulence do not seem to intervene in the dynamo mechanism at
high Re numbers. This behaviour is somewhat at odd with other computations
using simplistic forcings like Iskakov et al. (2007), Ponty et al. (2007), Reuter,
Jenko & Forest (2011), Ponty & Plunian (2011). In all these simulations the
critical magnetic Reynolds number has a non-monotonic behaviour with respect
to Re. It first increases with Re, then either reaches a plateau or decreases after
some intermediate value of Re in the range [200, 1500]. Finally, it is suggested

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 Y

BP
 L

ib
ra

ry
 S

er
vi

ce
s,

 o
n 

03
 S

ep
 2

01
8 

at
 2

1:
00

:3
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
58

2

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.582


192 C. Nore, D. Castanon Quiroz, L. Cappanera and J.-L. Guermond

in Ponty & Plunian (2011) that ‘it is the mean flow which plays the most
important role in the field generation even though it is 40 % less intense than
the fluctuations’. As shown in figure 10, the azimuthal Fourier modes m ∈ {0, 3}
of the velocity contain most of the total kinetic energy at all the kinetic Reynolds
numbers we have explored (the smallest being Re= 500). For instance these two
modes contain about 75 % of the total kinetic energy at Re = 105. However
the kinematic computations of § 5.1 have proved that the mean flow (averaged
in time but not in space, therefore with non-axisymmetric features) gives a
dynamo with a magnetic field mainly supported by the Fourier mode m = 1 as
already reported in the literature by us and others using an experimental time-
and azimuth-averaged velocity field. Therefore the VKS2 dynamo cannot be
attributed to the mean flow.

To conclude, our simulations at high Re numbers confirm that the ferromagnetic
impellers are crucial to reduce the dynamo threshold and to obtain the predominantly
axisymmetric dynamo mode observed in the VKS2 experimental set-up. Looking at
figure 22, where a schematic representation of the path followed by the electrical
current is shown, the following speculative mechanism comes to mind: Let us imagine
a vertical magnetic seed pointing upwards near one rotating impeller; by Ω-effect, the
differential rotation of the impeller generates a toroidal magnetic field nearby the disk.
This toroidal field is associated with a radial current ( jr ≈−∂zHθ ) flowing outward in
the bottom impeller and inward in the top one. The current circulates from the bottom
impeller to the top one through a large-scale loop inside the copper wall. Near the
axis of the vessel the current flows downwards and the current lines are twisted by
the flow in a way that regenerates the initial vertical field. This is the Bullard dynamo
loop (Bullard 1955) with the Ω-effect due to the disks and the twisting effect due to
the flow.
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