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This paper presents and analyzes a discontinuous Galerkin method for the incompressible three-phase
flow problem in porous media. We use a first-order time extrapolation, which allows us to solve the
equations implicitly and sequentially. We show that the discrete problem is well posed, and obtain a
priori error estimates. Our numerical results validate the theoretical results, i.e., the algorithm converges
with first order.
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1. Introduction

Subsurface modeling is important in improving the efficiency of clean-up strategies of contaminated
subsurface or the long-term storage of carbon dioxide in subsurface. Incompressible systems of liquid
phase, aqueous phase and vapor phase are mathematically modeled by nonlinear coupled partial
differential equations that are challenging to analyze. This work formulates a numerical scheme for
solving for the liquid pressure, the aqueous saturation and the vapor saturation using discontinuous
Galerkin methods in space. This choice of primary unknowns is inspired from previous work by Shank
& Vestal (1989), Hajibeygi & Tchelepi (2014), Cappanera & Riviere (2019a). The time marching uses
a sequential and implicit time stepping. It allows us to avoid the use of iterative methods such as the L-
scheme or Picard methods considered in, for example, Radu ef al. (2018). Existence and uniqueness of
the solutions is proved, and convergence of the numerical method is obtained by deriving a priori error
estimates. These theoretical results are obtained under certain regularity assumptions on the data, such
as boundedness and Lipschitz continuity. We refer to the reader to Alizadeh & Piri (2014) for a complete
discussion on the advantages and limitations of such hypotheses. While the literature on computational
modeling of three-phase flows is vast, to our knowledge there are no papers on the theoretical analysis
of the discretization of the three-phase flow problem.

Ideal numerical methods for modeling multiphase flow in porous media are to be locally mass
conservative to accurately track the propagation of the phases through the media. Heterogeneities of the
porous media include highly discontinuous permeability fields with possibly local geological features
like pinch-out. This implies that the numerical methods should handle discontinuous coefficients and
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unstructured grids. Discontinuous Galerkin (DG) methods are suitable methods thanks to their flexibility
derived from the lack of a continuity constraint between approximations on neighboring cells. DG are
known to be locally mass conservative, to handle highly varying permeability fields and to be accurate
and robust on unstructured meshes. For these reasons, the literature on DG methods for porous media
flows has exponentially increased over the past 20 years. The main drawback of these methods is their
cost, which is higher than the cost of low-order finite difference methods and finite volume methods.
DG has been applied to incompressible three-phase flow in Dong & Riviere (2016) and to compressible
three-phase flow in Rankin & Riviere (2015), Cappanera & Riviere (2019b,c). In the absence of capillary
pressure, DG is combined with the finite volume method in Natvig & Lie (2008), and with a mixed
finite element method in Moortgat & Firoozabadi (2013, 2016). These papers show the convergence
of the methods by performing numerical simulations on a sequence of uniformly refined meshes. The
theoretical convergence of numerical methods for three-phase flows remains an open problem, and
this paper provides the theoretical analysis of DG methods in the case of incompressible three-phase
flows under certain conditions on the data. While the numerical analysis of three-phase flow is sparse,
we note that the case of immiscible two-phase flows in porous media has been investigated in several
papers. For instance for incompressible flows, finite difference methods have been analyzed in Douglas
(1983), finite volume methods in Ohlberger (1997), Eymard et al. (2003), Michel (2003), DG methods in
Epshteyn & Riviere (2009) and finite element methods in Chen & Ewing (2001), Girault ef al. (2021a,b).

The paper is organized as follows. In Section 2 we present the problem considered and its
mathematical formulation. Sections 3—4 describe the time and spatial discretization of our algorithm.
Classical projection estimates and the hypothesis used for the numerical analysis of our method are
detailed in Section 5. Then we show that the discrete problem is well posed in Section 6, and we
establish a priori error estimates in Section 7. Eventually, we perform numerical investigations in
Section 8§ that recover the theoretical rate of convergence for various setups.

2. Problem description

Let pjs Sj denote the pressure and the saturation, respectively, of the phase j, where j = ¢,v,a (liquid,
vapor and aqueous). The saturation for phase j at a point x in the domain 2 C R?, with d = 2,3, is
defined as the ratio of the volume of phase j to the total pore volume in a representative elementary
volume centered around the point x. Thus, the saturations satisfy

sp+s,+s5,=1. 2.1

Assuming that the phase densities and the porosity are constant, the mass conservation equation of each
component is expressed as

s — V- (K)»j(ij _ ,ojg)) —q. j=tav, 2.2)

where « is the absolute permeability, p; denotes the density of phase j, A; denotes the mobility of phase
Jj and ¢ is the porosity of the medium. The mobility A; is defined as A; = k,;/u;, where k,; and pu;
represent the relative permeability and viscosity of phase j, respectively. Gravity is denoted by g and g,
g, and g, are source/sink terms. The differences between phase pressures are capillary pressures p,. ,
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 3
and p,. , defined as

Pey =Py —P¢s Pea=DP¢ — Pa- (2.3)
From the set of unknowns (saturations and pressures), we choose for primary unknowns the liquid

pressure p,, the aqueous saturation s, and the vapor saturation s,. For clarity, we explicitly write the
dependence of the different quantities with respect to the primary unknowns:

Pev(y)s Pea(y)s  Ap(sys8,)s A(sy,,8,)s Ag(sy,s,), (2.4)

Me(pﬁ)’ l’l“v(sv’ sg)9 l'l'a(svvsa)' (25)

Moreover, the capillary pressures are assumed to be differentiable, d; p, , is a negative function and
0, P, 1s a positive function.

2.1 Rewritten equations

Summing the three mass conservation equations (2.2) and using the definition of the capillary pressure
(2.3) yields the liquid pressure equation

_v. (Alepg) _v. (A‘VKVPC’V) V. (xa/cvpcﬂ) —q, -V (K (M)tg)’ 2.6)
where
(Pk)t = pehp + P A, Fph A=A A A, q,=q,+q,+q, (2.7)

Using the capillary pressure p,. ,, the mass conservation (2.2) satisfied by the aqueous saturation can be
rewritten

$d,s, + V- (K)\aasapmwa) —v. (K)\avpg) —q,— V- (pam\ag). 2.8)

Similarly, the vapor saturation s, satisfies the following equation, derived from (2.2) with j = v:

$d,5, — V- (K)\vasvpC’VVSv) —v. (K,\va[) =gq,—- V- (pvxkvg). (2.9)

These equations are complemented with Dirichlet and Neumann boundary conditions. The boundary
of the computational domain £2 is decomposed as

IR=rur =rury =ryury, (2.10)

with [I5] > 0, [I3*] > 0,|I7y] > 0. The Dirichlet boundary conditions imposed on I70‘, I and I}y’

bdy bdy bd .. .
are denoted by Py v Sa v Sy Y. The Neumann boundary conditions imposed on rre, Flff‘ and FI\SIV are

given by

()‘tKVpl + )‘vKVpc,v - )‘aKVpc,a - K(p)‘)tg) ‘n :]II:I, (2.11a)
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4 G. SOSA JONES ET AL.

(—Kxaasapwwa +«A,Vp, — pakkag) -n :j?i,

(KAVBSVPC’VVSV + kA, Vp, — pvxkvg) -n :j?i,

where n represents the outward unit normal vector to the boundary 952.

3. Time discretization

(2.11b)

@2.11c)

For the time discretization, we use a backward Euler method and partition the time interval [0, T] using a
time step T > 0 such that Nt = T. In the rest of the paper, we define ¢, = nt for any integer 0 < n < N,

and for any time-dependent function f, we define /" = f1,_, .

3.1 Liquid pressure

The time discretization of the liquid pressure (2.6) reads
—v. (,\;’xvp;}“) —gt - V. (K (px)’;g) +V. (,\’V’xvpg{v) ~v. (,\ngp;{a).

3.2 Aqueous saturation

The time discretization of the aqueous saturation equation (2.8) is

sat! = s, "ot +1 +1
a a n
¢ - +V. (KAZ(BSapC’a) Vs, ) =q," +V- (K)‘Z(Vpe - ,oag)).
Note that ; p.., is negative. Therefore, with (aSapm)"* = —(9y,Peq)"> we may write (3.2) as
1
sitl g1

Ky n,~+
¢ L-V. (K)‘Z(asapc,a) VSZ—H) = qZ-H +V- (K)‘Z(VPZJFI - Ioag))'

T

3.3 Vapor saturation
The time discretization of the vapor saturation equation (2.9) reads

n+1 n
spth—s

n
¢ LoV (k0 pey) V) =gt 4 - (exn (V! - pig))-

T

4. Spatial discretization

3.1

3.2)

(3.3)

34

For the spatial discretization, we use an interior penalty discontinuous Galerkin method. The domain
£2 is discretized with a conforming, shape-regular mesh &), consisting of simplices or quadrilateral and
hexaedral elements. We denote by &, and i the size of an edge (or face for d = 3) e and an element K,
respectively. Moreover, we define the mesh size h = maxg ¢ hy. For any quadrilateral element K, we

2202 J8qWIBAON 6Z UO J8sn UojsnoH Jo AlsisAun Aq | 1990/9/SS02eIp/wnuewI/S60 L 01 /10p/a[onie-aoueApe/eulewi/woo dno olwapeae//:sdjjy Wol) papeojumod]



DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 5

define the two-dimensional local polynomial space Py ;. (K) as

Py, 1, (K) = 1 P(x,y) ‘p(x,y) =D Dapiyt. 4.1)

i<k j<k

The three-dimensional local polynomial space P , ;. (K) is defined similarly. Finally, we define
Qi(K) = Py x(K) for d = 2, and Qi (K) = P, (K) for d = 3. The space of discontinuous piecewise
linear polynomials is denoted by X,,. If &, consists of quadrilateral or hexahedral elements, the space X,
is defined by

X, = {v € L2(2) 1 vlg € Q(K)YK € @@h}. 4.2)

The discrete liquid pressure, aqueous saturation and vapor saturation at time 7, are denoted by Py, S,

and S} respectively; they belong to the finite-dimensional spaces X},. The Dirichlet boundary conditions

are imposed strongly; thus, we assume that the data plzdy, deY, s'v)dy are traces of functions in X;,. This

assumption is in agreement with realistic simulations where the Dirichlet data are simply constants
on the Dirichlet boundaries. We will make use of the following finite-dimensional spaces for the test
functions:

X

prre =X, N {v=0o0n gy Xppe =X, N{v=00nTIy"}, X, v =X, N{v=00nIy}
(4.3)
We also define the Raviart-Thomas space RT):
RT, = {u € H(div, 2) : ulg € RT,(K)VK € gh}, (4.4)
where
P, o(K) x Py, (K), d=2,
RT,(K) = | - 10 X Fou (K) (4.5)
Py o0 K) x Py oK) x Py (K), d=3.

We note that the above spaces can be defined similarly if one uses simplex elements. The set of interior
faces is denoted by I'},. For any interior face e, we fix a unit normal vector n,, and we denote by K; and
K, the elements that share the face e such that r, points from K| into K,. For any function f € X, we
define the jump operator [-] on interior faces as [f] = f; — f,, where f; = f| ;- Moreover, we define the
weighted average operator {-} on interior faces as {AVf - n,} = 0A,|Vf] - n, + ©,A,Vf, - n,, where
w, = Ay(A; +A,)"! and w, = A; (A + A,)~!. Note that the standard average operator with weights
w; = w, = 1/2 is denoted by {-} 1 On boundary faces, the jump and weighted average operators

are defined as [f] = {f} = f. In the following, the L? inner product over §2 is denoted by (-, -). The

parameters 6, , 6, , 6 take values —1, 0, 1, which respectively correspond to symmetric, incomplete

and nonsymmetric interior penalty discontinuous Galerkin.
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6 G. SOSA JONES ET AL.

4.1 Liquid pressure

The discrete problem for the liquid pressure reads as follows: find PZ‘H € X,, such that PZ‘H = p?dy on

I'%* and the following relation is satisfied for all w), € X, Pk
**D

BRI W) = £ 0wy, 4.6)
where bZ(PZ+1,Wh) = bp(PZ+l»Wh;PZ’ SZMS:};,)?f;(Wh) ZfP(wh;PZ’SZh’S\’}h)’ with bp andfp defined
as

by (v Wy P, ST S0 ) = Z / A Vv, - Vw, + Zam,eh;l/n;l,e[vh] [Wh]
Keé, K ecly, ¢
=3 [frevnen[u] 46, 3 [frevmen[n] @
ecl, ¢ ecl, ¢
and

foni PSSt = @+ 3[Ry

eel‘ﬁl ¢
n

- / (mixcvpt, = 2Vl —1c(p3) g) -

Keé, K
+ Z/{A'V’KVpg’v-ne}[wh] — Z/{)‘Z"Vl’?,a'"e}[wh]

ecl;,” ¢ eel,” ¢

n

— Z/{K(pk)tg-ne}[wh]. (4.8)

eel ¢

We recall that A}, (o))}, A;’ for i = v,{,a are the functions A,, (pA),, A; evaluated at the discrete
solutions (discrete pressures and saturations) at time #,,. The penalty parameter «,,, , is a positive constant

Pu.e
suchthat 0 <, , <« , < «’ | and the penalty parameter 17; , . depends on the absolute permeability

o= pre S Yo
and mobilities in the following way:

Mo = 7 (130 )iy (K34 1x,) - Ve = 0K, N 0K, 4.9)
where 7 is the harmonic average function:

2
H(xyxy) = —112 4.10)

X+ X
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 7

4.2 Aqueous saturation

The discrete problem for the aqueous saturation reads as follows: find SZ;H € X, such that SZ:'I =55

on Iy and such that the following relation is satisfied for all w;, € X, e

1 n+1 n,on+1 n
@S o) (S wy) = —(¢ S W)+ fwy), (4.11)

where B(STH wy) = b, (SPH L wys PR SE ST, £ wy) = f,wy PRS2 ST, with b, and f,

ap >Map Py >Tap’ T vh
defined as

+
b (vhswh>Pn+13SZh’S‘r;lh) = Z/K)\‘n a pca VVh VWh

Keé),
+
_ Z/ K}J‘ asapca Vv, -n ][wh] + Z asa’ehe—l /ﬁ?a,e [Vh] [wh]
ecly ecly, €
+.n
+6, > / [exs(0y,pca) " V- me}[wi] (4.12)

eely ¢

and

fa(Wthn+l Szh’Sn) n+1 Wh)+ Z/ An n+l +Kpak'1g) th—|- Z /]?awh

Kedéy eelY

_Z/)\n wr Wh Z/ i\lg - n, [wh] (4.13)

ecly, ecly

In (4.13), the vector u”Jrl is the projection of the approximation of the Darcy velocity onto the Raviart—
Thomas space RT,, (see the exact definition of operator [Ty in Section 4.5):

wt = Mpp(— VPP,

The upwind operator (~)sTa is defined as follows. For readability, let D = A}, and D8 = p kA”. For an
interior edge e shared by two elements K; and K,, we have

Dlg, if (Du}™ +Dsg}s -n, >0,
(D)T:[ 1T ghy e (4.14)

Dlg, otherwise.

The penalty parameter o , is a positive constant such that 0 < o , < @ , < of , and the
parameter 7 , is defined on the interior faces by

o= ((K(BSapc,a)+’"AZ) Ik, (K(Bsapc,a)+ ’"AZ) | Kz) Ve = 0K, NIK,. (4.15)
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8 G. SOSA JONES ET AL.

4.3 Vapor saturation

The discrete problem for the vapor saturation reads as follows: find S} I € X, such that S",’Ij'l =% on

Iy and such that the following relation is satisfied for all w;, € X, s
D

1
;(¢Sﬁ:1,wh) + i wy) = —(qbsvh wy) + 1wy, (4.16)

where b(STH wy) = b, (STH wy Pyt Sl ST ), fi(wy) = f,(wy PR SeHL ST ), with b, and f,
defined as

bv(vh’wh;PZ-'_l,SZ:_l’Sn ) = Z / K)“caxvpg,vvvh : th
Keé&),

— Z/ KAy pe, Vv, '”e}[wh] + Z o, M /77““’[ ][Wh]

ecly eely

+ st Z / {K)“lr/lasvpg,vvwh ! ne} [Vh] (417)

ecly ¢

and

f, PSSy = (g w) + D ( w4 ep, At g)~th
Keé&,

+ z /]s w), — Z/ kn SL n+1 Wh Z/{pvk)‘vg n, I:Wh:l (4.18)

eely eel}

where (-)STV denotes the upwind average operator that is defined similarly to (-)STa, but with D = A} and
D# = p k. The penalty parameter e , is a positive constant such that 0 < & , < o , < , and
1, . 1s defined by

Mo = (€04 pe)") ks (KO P30 i, )- (4.19)

4.4 Starting the algorithm

To start the algorithms, we choose the L? projections of the unknowns at time ty- Let IT;, be the L?
projection onto X,

P)=1,p), S5 =10, So =II,s, (4.20)

ap

where pg, sg, s(v) are the exact solutions at time #,.
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 9

4.5 Raviart-Thomas projection

The Raviart-Thomas projection, uZH = Ipr(—«k VPZH), is defined by the following equations:

/uZJrl "Ry = _/{KVPZJFI 'ne}qh + Pé,ehe_l /UZZ,e[PZ+1]qh Vay € Qole),Ve eI,
e e e
(4.21a)

/uz+1 gy = _/KVPZ‘H ‘n,q, Vg, € Qye),Ve € 082, (4.21b)
e e

This projection was introduced for elliptic partial differential equations in Ern et al. (2007) for spaces
of the same order; we apply it here to Raviart-Thomas spaces with a degree less than the DG spaces.

5. Preliminaries

In this section we establish some notation and recall some well-known results from finite element
analysis that will be used in the rest of the paper. Finally, we list the hypotheses assumed in this work.
5.1 Notation and useful results

The L2 norm over a set D is denoted by |l - lI;2 D)- When D = £2, the subscript will be omitted. Let us

define the space X(h) = X, + H?(£2). For functions w € X(h), we define the broken gradient V,w by
(Vyw)|g = V(wlg). The space X(h) is endowed with the coercivity norm for all w € X(h):

172 B 9 1/2
il = (1912 + wiF) 0wty = (30 n 1w e) (5.1)
ecly
Additionally, we introduce the following norm on X (k):
2 2 1/2
Hwll, = (Il + 3 Al 9wl - melag) (5.2)

Keé

The following classical finite element results will be used in the analysis carried out in Sections 6
and 7.

LEmMMA 5.1 (Trace inequality). Let &, be a shape-regular mesh with parameter C Then, for all

wy, € X;,,all K € &, and all e € 0K, we have

shape*

—-1/2
Wallz2 < Culie > IWall 210 (5.3)

where C > 0 depends only on Cy,pe.-

LeEMmA 5.2 (Discrete Poincaré inequality; Brenner, 2003). For all w in the broken Sobolev space
H! (&},), there exists a constant Cp > 0 independent of 4 such that

wll < Cpllwll. (54
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10 G. SOSA JONES ET AL.

We denote by 7, |- the L?-orthogonal projection onto X, nr for I' € {1 ]1)", I S", I SV}. The following
lemma recalls approximation estimates that are later used in the analysis of the numerical scheme
introduced in Section 4.

LEMMA 5.3 (L*-orthogonal projection approximation bounds). For any element K & &y, for all
s € {0,1,2} and all w € H%(K), there holds

|W—7Th,FW|Hm(K) < ChAKim|W|HA(K) Vme {O,...,S}, (55)

where C is independent of both K and &. Moreover, if s > 1, then for all K € &), and all e € 0K, there
holds

—1/2
W — 72, p Wil 20 < Chg Wl iy (5.6)
andif s > 2,
-3/2

Note that these results imply that
lw = 7 pwll, < Chig Wlgs (o) (5.8)
n+1

The projected velocity u;, ™ defined by (4.21a)—(4.21b) satisfies the following approximation bound.

LEMMA 5.4 Assume p, belongs to L? O, T; H2(.Q)). There is a positive constant independent of 4 and
T such that

Iyt + v, PEEY < Pt = pit I+ Ch (5.9)

Proof. The proof of this bound follows an argument in Bastian & Riviere (2003) and we present its
main points. Let us denote

+1 +1
X=u," +xVP".
Then, from (4.21a)—(4.21b), we have for any K, K’ € &), and any e C 0K,
1 1 1 -1 1
/6X|K nqy = E/eK(VPT lk = VP ) gy + by /e’h@,e[”? lg,  e=0KNIK,

/X|K'"eqh=0, e C0S2.
e

Let us take g, = x - n, in the above; this is allowed because PZH is piecewise linear and « is assumed
to be piecewise constant (see H.5). For edges on the boundary, we have

Xk - Bell 2 = O.
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 11

For interior edges, we apply Cauchy—Schwarz’s inequality:
X1k mell2e) < CUIVPYT Tl 200 + ChZ M IR T 2 0)-

We now bound || x [l 2k, by passing to the reference element, by using the fact that || - ||, is a norm

@K)
for the Raviart-Thomas space restricted to K and by going back to the physical element:

X2y < ChIR N2y < CRIR N 200 < CRY2 XN 12050)-

We apply the bounds above:

IXllzg < CRY2 D7 VP m e +C D0 h P -
ecdE\IR ecdE\OR

Taking the square and summing over all the elements,

xiP<en > (> v ) +CX (> h—1/2||[Pz“]||Lz(e))2.

Keé), ecdK\9s2 Keé&), ecdK\ds2

The last term is bounded above by || |P;l’Jrl ”+1 12 since [p,] = 0. For the first term, we write for
e=0KNoK',

IVP 20 < NIV = Py D2
Clearly, we have
V@ =Py Dl < CAVE@T =P Dkl + IVEF =P DIl

n+1

We add and subtract the L> projection of P, onto X:

IV =P DIkl < IVE =, prepy Dlklize + 1V, ey = 7 DIkl
—-1/2 +1 1/2 +1
< Ch IV P =y, ey D ) + CH P 2 -

So

1 1 1 1
(D Vet - >||Lz(e)) <C IV =7y oD ) + ORI g
Ke&, ecdK\os2 Keé,

or

< CNPY = pr P + CR I 1p )

2202 J8qWIBAON 6Z UO J8sn UojsnoH Jo AlsisAun Aq | 1990/9/SS02eIp/wnuewI/S60 L 01 /10p/a[onie-aoueApe/eulewi/woo dno olwapeae//:sdjjy Wol) papeojumod]



12

G. SOSA JONES ET AL.

Combining all the bounds we have

5.2

Ixll < CPEtt —pith| + ch.

Hypotheses

In the remainder of the paper, the following assumptions are made on the input data.

H.1 The nonlinear functions A;, for i = v, £, a, are C? functions with respect to time. Moreover, we

H.2

H.3

H.4
H.5

have the following bounds:

0 < g(p)\‘)[ < (,O)\.)t < C&[)}L)z’

0 < g)»i < )“i § C)Li s

0 < gA, g )"t < C)Lt ’

O < K>'< < K < K*s
+ —

O < Qpc,u < (asapc,a) < szr,a ’

O < gl)c,v < ai‘vpc‘,v g Cp(',v'

.11

REMARK 5.5 We note that the above bounds also hold when these functions are evaluated with

discrete solutions by using cutoff in the definition of the above functions.

The following functions are Lipschitz continuous, so that we have

216y 51) = g5l < L(Isy = S0y + 153, = 5,1),
|8s‘,pc,v(svl) - asvpc,v(s\;z” < L|svl - Sv2|5

|asvpc,a(sa1) - 8svpc’a(sa2)| < L|Sa1 - Sazl'

The functions Vp, , and Vp, , are bounded, so that we have

C9pe,

Cy

<
< pCV,

0< VPeq < ||Vpca ||LO<>(_Q)
0 < DPe

C
Cy ) < ||VPCV ”LOO(Q)
and they satisfy the growth conditions

”Vpca(sal) - Vpca(saz)” g L”Sal - 5a2||a
IVDe, () = Vo, (s,)Il < Llls,, — sy, |-

(5.12)

(5.13)

(5.14)

We remark that, even though this hypothesis might be somewhat restrictive, it has been used
before in e.g., Chen & Ewing (2001), Radu et al. (2018). For instance, in Chen & Ewing (2001),
assumptions (A5) and (A7) state that the functions y; and y,, which contain the gradient of the
capillary pressure, are bounded and Lipschitz continuous with respect to the primary unknown 6.

The source terms ¢; are smooth enough: ¢; € L>(0, T; L*°(£2)), for i = £, v, a.

The absolute permeability « is piecewise constant.

2202 J8qWIBAON 6Z UO J8sn UojsnoH Jo AlsisAun Aq | 1990/9/SS02eIp/wnuewI/S60 L 01 /10p/a[onie-aoueApe/eulewi/woo dno olwapeae//:sdjjy Wol) papeojumod]



DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 13

6. Existence and uniqueness

In the following we denote by p,, s, and s, the exact solutions to (2.6), (2.8) and (2.9). We assume that
the exact solutions are smooth enough, more precisely p,,s,,s, € C>(0,T; L*(£2)) N C°(0, T; H*(£2)) N
L>®(0, T; Who°(£2)).

For readability, we denote by 5\1, ﬁc’a, f’c,v’ 5‘1‘ for i = v, £, a the functions A, PearDeys A; evaluated at
the exact solutions (pressures and saturations) at time ¢. If the time is ¢,,, then the functions are denoted
by )NL;’, 132’ w [)Z”v, X?. For instance, we will write

=2 (s, s, AL =2, (S, e ).

Existence and uniqueness of P}, §7+! "+ follow from the linearity of (4.6), (4.11), (4.16) with

Pap 2Py,
respect to their unknowns and from the coercivity and continuity of the forms b, b, and b,,.

6.1 Liquid pressure

LeEmMA 6.1 (Consistency of b,). We have for any n > 0 and any w), € X, 1-»e,
D

B Py owy) = oy, 6.1)
where
l;;’;+l(p(’wh) — bp(pl7wh pZ-ﬁ-l’ Z-i—l, n+1) and f;l-‘rl(wh) f;;(wh pn+l’ n+1 n—H) (62)

Proof. First, note that

B (pgawy) = Z/x"“;cm Vi, — Z/)\"HKVpZ L] 6.3)

Keé), K ecly

In the rest of the proof, we drop the superscript (n 4+ 1) for readability, but it is understood that all
functions are evaluated at time 7, , ;. Applying integration by parts on the first term, we obtain

by (peswy) = Z/ AKVP@ wy, + Z/ bk Npy - mgwy, — Z/)‘KVPE ]

Keé), ecly,
(6.4)

Using the fact that [,k Vp, - n,] = 0 on interior faces, we obtain

Ep(pz,wh) Z/ )\.Kvp[ wy, + Z /k kVp,-n,wy. (6.5)

Keéy e sz
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14 G. SOSA JONES ET AL.

On the other hand, after integration by parts on the volume term of (4.8), we have

f (Wh) (quh) + Z / )" Kvpcv - )" Kvpca - (’Oi)tg)wh

Keéy,

- Z/ A N/ Y Kpr—K(pI\),g) W,

Keéy

s /J,,wﬁz [own - 3 e
e Fmg ecl) eel}

I ACCEAIEY o
ecly

Using that [ (2,6 Vp,., — A,k Vp,., — k(pL) g) - n] = 0 on interior faces, we obtain

o) = G+ 3 [ 9 (Vi = Ry = (o) )

Keé&),

_ Z/AKV};CV n,w, + Z/AKVpca n,w, + Z/ pktg n,w;, + Z/]pwh
ce]“plZ 1_11[ 1“17[ eeF”

6.7)

Recalling that p, solves (2.6) and satisfies the boundary condition (2.11a), the result (6.1) follows. [J

LEMMA 6.2 For all (vh, wh) € X;, x X;,, the following relation is satisfied for all n > 0:

)Z/{X?KVvh-ne}[wh]‘ (Z Z h Vv, lx -1 IILZ(E)) Wy (6.8)

ecly Ked), ecdK

Proof. Letus consider a face e € I, that is shared between two elements K| and K,, i.e.,e = K| NIK,.
With H.1 and Cauchy—Schwarz’s inequality, we have

/{kaVvh -ne}[wh] < Ekix*hé/z(HVv“Kl ‘n,
e

+ HVvth2 -n,

Lz(e))hgl/zﬂ [W"]

L2(e)
(6.9)

L2(e)

Summing over all faces, applying Cauchy—Schwarz’s inequality and writing the sum in terms of the face
contributions for each element, we obtain the result. O

Next we show that bp is coercive on X, e
* D
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 15

LeEMmmaA 6.3 (Coercivity of bp). Assume that O, satisfies

@ > 025(1 - 9p£)2<EAtK*)3(QAtK ) ‘e, (6.10)

where C; results from the trace inequality (5.3). Then the bilinear form b['; defined by (4.7) is coercive
on X, with respect to the norm ||| - ||| defined by (5.1), i.e., for all w;, € X, e and for all n > 0, the
D

following relation is satisfied:

bWy wi) = Cop w17, (6.11)

with

L o, K (C)LIK*)1—0.25(1—OPZ)Z(K‘)L[K*)z(QA,K*)2Ct2r. 6.12)

ape — _ —1
1+a,,C« (CAlK*)

Proof. Using (4.7) we have

BpOwy W) = Z/A" DI /nm[wh] +0, 1)2/ {rrsevwy - m ]

eely ecly
C3 k2

C)\, K*”VWhH +a p( *Et |Wh|J Z/ )\.nKVWh |: ]
2K

t ecly

(6.13)

Using (6.8), the trace inequality (5.3) and the fact that for all K € &), and all e € 0K, h, < hg, we have

12
> [ {evwn ] < G [ 22 nlVwle mlisg, | ol
el Ked), ecdK

< Gy k*Cel VWl Iwyly. (6.14)

Thus, since Qp .~ 1 <0, we have
(sz - 1) 3 / {/\;’Kth -ne}[wh] > (em - 1)Z‘Ml<*ctr||th|||wh|J. (6.15)
eely ¢
Using this in (6.13) and noting that 6, — 1 is equal to either —2, —1 or 0, we have
2 42

2 =,
bZ(Wh,Wh) >Q)L,K*||VW;,|| +05p£*6 P |Wh|J

At

— 017@

(_j)\zK*Ctr”VWthhh- (6.16)
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16 G. SOSA JONES ET AL.

Next we use the following inequality: let 8 be a non-negative real number and assume that ¢ > 2; then,
forall x,y € R,

2 2py e s P (x2 +y2). 6.17)

14+c¢
Using this in (6.16) with ¢ = @, ,C,x,(C, "), B = 05(1—8,)C,Cyk*(Cyic,)
x= (er/c*)l/ZHthH andy = (C) ) 2 110,1; concludes the proof. O

Now we prove that b, is bounded.

LEMMA 6.4 (Boundedness of bp). There exists a constant CB!p ;> 0 independent of 4 such that, for all
v, € X, ppe andwy, € X, e, the following relation is satisfied,
Ip )

by (v wy) < Cpp, VN1 Wl (6.18)

In addition, there exists a constant Cg_,, > 0 independent of / and t such that for any v € H*(2) +

X, I and any wy, € X bt the followmg bound holds:

b v, wi)l < Cg, , VI W I (6.19)

Proof. Letv, € X, e and wy, € X rie- We have

b, (v )| < Z / ANV, - Vw, | + Zame . /nme[vh][wh]

Keé&, eel}
Z/ X YKV, n [ ] Z /{A;’Kth 'ne}[vh]
ecly, ecly

Using Cauchy—Schwarz’s inequality, we see that

< Co M IV lIVwull < Co kMl Hw - (6.21)
Similarly,
_ 2 _ 2
(th/c* (CMIC*)
T, <a} Walswaly < o == [v, 1 11w, . (6.22)
be QA,K* be g)w *
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 17
Using (6.8), recalling that s, < hy and using the trace inequality (5.3), we bound T35 as
T3 < Co vyl 1wyl (6.23)
Finally, T, can be bounded in a similar way as 75 to obtain

Ty <16, 1C; 1 vyl 1w l1- (6.24)

Taking CBM = 46)Lr«//(*max (ot* Gy |9p(|) gives the result. The proof of (6.19) is similar; one

pe C Wik
needs to change the bound for the term T5. O

COROLLARY 6.5 There exists a unique solution to problem (4.6).

Proof. The coercivity Lemma 6.3 and boundedness Lemma 6.4 of b,,, together with the fact that ¥, is
strictly positive, imply, using the Lax—Milgram theorem, that problem (4.6) is well posed. ([
6.2 Aqueous saturation

LEmMA 6.6 (Consistency of b,).
@@y owy) BT s owy) = F ) Yy € Xy pes Y20, (6.25)

where B/ (s, wy,) = by (s wys pp Y siH L sty and f14 (wy,) = £ (wys i sit L it
Proof. The proof of this lemma is skipped because it is analogous to the proof of Lemma 6.1. O

LEMMA 6.7 For all (v, w;,) € X, x X, the following relation is satisfied:

Z / {")*Z (8sapc,a)+,nvvh '"e}[Wh]

eel}, "€
1/2
<G, *C,,, DD Vvl iz © Wy (6.26)
Ke&, ecdK
Proof. The proof of this lemma is analogous to the proof of (6.8). O
Now we can show that b, is coercive on X, e
LemMA 6.8 (Coercivity of b,). Assume that o, , satisfies
2/ 3 -3 2
0. > 025(1-06,) (€, G, k") (CLCpue) CR. 6.27)

where C,; results from the trace inequality (5.3). Then the bilinear form 5, defined by (4.12) is coercive
on X, ry with respect to the norm ||| - ||| defined by (5.1), i.e., for all w, € X, s the following relation
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18 G. SOSA JONES ET AL.

is satisfied:

bg(wh’ Wh) > Ca’sa ” |Wh ” |2’ (628)
with
— —1 2, _ 2
avﬂ *gp(‘ (lg)"ﬂ * (Cp(',a CA‘QK*) - 0.25 (l - Q‘Ya) (Cp(',a CA‘{IK ) (Cp ag)ta >|<) Ct2r
Cosa = — . (6.29)
1 + asaa*gpz‘ag)\ak* (6pC(lZ‘)"ﬂK*)

Proof. Using (4.12), (6.26), the trace inequality (5.3), the fact that for all K € &), and all e € 0K,
h, < hg, and that Gsa — 1 < 0 we have

b (wy, wy) = Z/KA" Bsﬂpca) |Vw, > + Zame e /nsae([wh])2

Keé), ecly
+
+ (0, —1)2/ {ers(8y,pca) " V- [
eely
2 2 .2
>C «k.C, [V, | Spea=ha'x 6. —1)C, k*C v
> Gy sy, IV 0t o ] 4 0, = DT,k Gl Iyl .
Pc,a )t

(6.30)

Using (6.17) with ¢ = oy ,C,, C; *(_p aCM ) ,B=05(1 - HSH)CA *C e . (C " Qka)fl,
x= (gpmx*gka)”2||vhwh|| andy = (gpca;c*gka) ?|w,|; concludes the proof. O
Now we prove that b, is bounded.

LEMMA 6.9 (Boundedness of b,). There exists a constant Cg ;> 0 independent of 4 such that, for all
nz0,v,eX, e and w;, € X, s the following relation is satisfied:

1ba i wi)l < Co Vil w1 (6.31)

In addition, there exists a constant Cg_, > 0 independent of & and 7 such that for any v € H*(2) +
Xj,rye and any wy, € Xj, s, the following bound holds:

1ba (v, wi)l < Cg_g VLW (6.32)

Proof. The proof of this lemma is analogous to that of Lemma 6.4 and therefore is omitted. g
COROLLARY 6.10 There exists a unique solution to problem (4.11).

Proof. The coercivity Lemma 6.7 and boundedness Lemma 6.8 of g , together with the fact that ¢ and
p, are strictly positive, imply, using the Lax—Milgram theorem, that problem (4.11) is well posed. [
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 19

6.3 Vapor saturation

LEmMA 6.11 (Consistency of b,).
@ @s)" T wy) + BT w) = ), Yw, €X,, Vi, (6.33)

7 1 7 1
where " (s, wy) = by (s, wys pp L s s and T (wy) = f, (wys pp T st a0,
Proof. The proof is similar to the other consistency lemma and therefore not shown here. O

LEMMA 6.12 For all (v;,,w;,) € X;, x X}, and any n > 0, the following relation is satisfied:

3 [ fot(aure) vorn ]

eely
1/2
<G, «*C,, DD Vvl iz © IWhl;- (6.34)
Keé), ecdK
Proof. The proof of this lemma is completely analogous to the proof of (6.8). 0
Now we can show that b, is coercive on Xj,.
LEMMA 6.13 (Coercivity of b,). Assume that o , satisfies
2, _ 3 -3,
o, > 0.25(1 - esv) (C)WC[,CVK*) (Q)ngwlc*) 2, (6.35)

where C,, results from the trace inequality (5.3). Then the bilinear form 5, defined by (4.17) is coercive
on X, ry with respect to the norm ||| - ||| defined by (5.1), i.e., for all w;, € X}, ry the following relation
is satisfied:

b:L(Wh,Wh) > Ca,sv”'Wh”" (636)
with
S -1 2, _ 2 -2
aSv,*ch VQ)WK* (CPC v C)LVK*) - 025 (1 - 9“‘\/) (Cpc v C)LVK*) (gpc vg)w K*) Ctzr
Coy, = —— — . (6.37)
1 + asw*gpc,vg)\v’c* (Cpc,v C)WK*)
Proof. The proof is analogous to that of (6.28) and therefore not shown here. ]

Now we prove that b, is bounded.
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20 G. SOSA JONES ET AL.

LEMMA 6.14 (Boundedness of b,). There exists a constant Cg ¢ > 0 independent of 4 such that, for all
nz0,v, €Xy s and w;, € X, ry the following relation is satisfied:

15 v wi) | < C g 1Vl Tl (6.38)

In addition, there exists a constant Cg_ > 0 independent of  and 7 such that for any v € HX(2) +
Xp.ry and any w;, € X, rys the following bound holds:

1D v, w)l < Cg, g MVILTW - (6.39)

Proof. The proof of this lemma follows that of Lemma 6.4 and therefore is not shown here. O
COROLLARY 6.15 There exists a unique solution to the discrete problem (4.16).

Proof.  The coercivity Lemma 6.11 and boundedness Lemma 6.12 of a , together with the fact
that ¢ and p, are strictly positive, imply, using the Lax—-Milgram theorem that problem (4.16) is
well posed. g

7. A priori error estimates

In this section we derive a priori error estimates. To do so, we introduce the following quantities:

n o __ pn __ n no__ .n__ n

€y, = Py, rrh’pgepg, €, =P¢ ﬂh’rglpe, (7.1a)
no__ qno__ n no__ n__ n

€a, = Sap, = T Sa Cay = Sa ™ ThriSas (7.1b)
__qn N no__ Jn_ n

e, =8, — T rsvSys €y = Sy = TSy (7.1¢c)

We can then decompose the errors as

Pe =P =€ — e (7.22)
Sy — Sa, = €p. — €y (7.2b)
Sy = Sgy = €5 — € (7.2¢)

We note that, thanks to the definition of the L?-orthogonal projection, the errors above satisfy
(ler’Wh) = (egﬂ,wh) = (eﬁ”,wh) =0 th c Xh (73)

We will make use of the following two auxiliary lemmas.

LEMMA 7.1 Forany 0 < n < N — 1, and any w, € X,,, we have the following bounds:

B @y ow) = BT w | < Crlliwyll, (7.4a)
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 21

Byt wy) — Basitw) | < Cellbl, (7.4b)
B ) = B wp| < Cellwl (7.4¢)
Moreover,
[t ) = From) | < Cellbwgl, (7.5
i+ ovg) = o on)| < Celwy I (7.5b)
[t on) = Fromp)| < Collbwgll (7.50)

Proof. The results can be obtained using the Lipschitz continuity of all the coefficients and the

smoothness of p,, s,, . O

LEmMmA 7.2 Forany 0 < n < N, and any w;, € X}, we have the bounds

Byt owy) — Byt wh)\<c(h2+||szh—sz||+||S$h—s:‘||) Hwylll, (7.6a)
BGs o wy) = B wp)| < € (R 4185, = il + 1S5, = 21) lw . (7.6b)
a\la *"h a\Pa "Wh)| ap a Vi v hills

B wy) = B wp| < € (R 4185, = il + 1S5, = i) Mwll - (7.60)
vWy > Wh vWy s WpJE ay a Vh v h

Moreover,

From) = fronp| < € (B 4180, = sall+ 183, = 521) w1, (7.72)
Fru) = f2 o) | < € (h+ Nlep N1+ 1S5, — ol + 1S5, = s21) Ibwll. (270)
o) = £ 00| < € (4 Nlep N1+ 1S5, = ol + 183, = s21) Iwill.— (7.70)

Proof. We start by showing (7.6a). Note that using the definition of b, (4.7), we obtain

th

x" an KVpn+1 }[ ]’ (1.8)

eely

With the Lipschitz continuity assumptions H.2, we can write

hf =

< C(ISy, — syl + 18z, — sab-
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22 G. SOSA JONES ET AL.

The first term on the right-hand side of (7.8) is bounded by

S [ =) w155, sl 0t = 51 il
ke&, 'K

where we have used the Cauchy—Schwarz inequality, the boundedness of « and the smoothness of p,.

For the second term on the right-hand side of (7.8), we have

>

(17 =) ewmrtene ]| < € 32 [ {ist, —sti+185, = s} o

ecly, ecl},” ¢
<c> /{|e’$h| + et ol + € 3 /{|e’;”| +let 1} [[wall
ecl;; "¢ ecl}, ¢
1/2 —1/2
<C D7 (N iz + el Iz Ve 20wl 2oy
ecly
1/2 —1/2
+C 7 (el 2o + Nl N2 e 2 100nll 2
ecly,

Using the trace inequality (5.3) and the projection estimates (5.6), we have

>

ecly ¢

Combining these bounds we obtain

7 1 1 2
B owy) = o wy)| < € (W 1S, — s+ 1S5, — s20) lwy -

The proofs for (7.6b) and (7.6¢c) are analogous to that of (7.6a) and therefore not shown here.
Next we show (7.7a). Using the definition of j;,, see (4.8), we obtain

< T | + |T5| + |75,

om0 — T 0n)| = 11, O PRS2, 1) = £ 0 500

with

T, =— MVt~ Amevpt —ic(pn)'g) - v
1= Z viEVDey a¥VPca — K\ P tg C VW
Keé, K

~ - ~ - o~ n
+ 2 / (%’KVPZEV — Mk Viea — K(M) g) - Vwy,
Keé, K !

TG =) wmt e [on]| < (et e, ) syl + R

(7.9)
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 23

T2_Z/ Ak Vpe, - n, — " WKVPL, -n e}[wh]

el

—Z/ )»"Kpr n, —)»”Kpr~ e}[ ]
ecly
Z/ kA'g - m, wh Z/ kil - m, wh] (7.10)
ecly ecly

Using the boundedness and growth conditions of Vp, ,, Vp,. , (see H.3), the boundedness of the rest of
the coefficients and H.2, the volume terms 7| are bounded as

Ty < C (IS, = sall + 1Sy, = svl) Hw -

With the same assumptions, for the face terms T, we have

IT,| < CZ/ ISt — SISt s |)|[wh]|_c2/h1/z e |+ el )he—l/2|[wh]|

ecly ecly

+C 0 [ n2(len, 1+ leb 1) 2wl < C (1S5, — sl + 1S5, = $21) w1+ CH2lwy
ecly, ¢

(7.11)

where we have used the trace inequality (5.3), (7.2) and the projection estimates (5.6). Similarly, the
terms in 75 are bounded by

T30 < € (R 4+ 1185, = sall + 1S5, = 520) w1

which concludes the proof.
To prove (7.7b), note that

) =Ty | = [fo oy P 0,.80,) = fulomye o] <

1Ty + T3] + |51,

with

T = z/vmﬂw)whz/vﬂwm@vW

Keé, Keé,
Z/ )Ln uit Wh Z/An ntl "e w ]
eely el
== [{owite-n)[m] + 2 [ ot n) o]
ecly el
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24 G. SOSA JONES ET AL.

where we recall that uZH = HRT(—KVPZH) and we denote u"t! = /cheJrl Note that we have

71 < Z/\ (it = 1) - V| + 2/\ Puig — Puig) - V|

The second term is bounded by

> / |(0urig = aiig) - Fw| < C (1S5, = shll + 1S5, = 521) w1

Keé

For the first term in 7| we have

Py RC

il _ n+1) ,th‘ £y / }(AZ+1 gy th"
Keé), K

We write

+1 1
D / x| <l — a1

Keéy

Using the triangle inequality, (5.5) and (5.9) we have

™ — < g+ )V PR+ eV, P = pEYIE < Cllel I + Ch.

For the second term in (7.12) we have

> / |G = 22Vt | < (IS5, = sl + 1S5, = s20) w1,

Keé

where we have used that p, € C%0,T; H3(£2)). So combining the bounds above, we obtain

T30 < C (4 e 14+ 15, = sall -+ 115, = 31wy

The term T, can be written as

IT,| <

)Ln n+1 n+1) n [Wh]“‘r‘

ecly eely

Sa

The first term in (7.13) is bounded by

T
> / () @it =y m b)) < Cllwyll D bl =12,

el ¢ el

(7.12)

(7.13)
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 25

We fix a face e and we choose one neighboring element K, such that e C 9K,:
It — w2y < g™+ VP g 2 + VP 1k = P D -

Using the trace inequality (5.3) and the Raviart-Thomas projection estimate (5.9), we have

1/2

1 1
> bl + VP 117

el

o] <G eV PR < Cllie I+ Ch.

Adding and subtracting 7, -»c pZ‘H and using (5.7) and the trace inequality (5.3) yields
Ip

1/2
D VP g, =P DI | < Clliey I+ Ch.
eely

Therefore, the first term in (7.13) is bounded as

RO R U | e (RN [ DYMATR

el

The second term in (7.13) can be bounded as

n) nt1 ne[Wh]‘ <C (hZ + 18, — sall+ 1Sy, — SZII) Wl
ecly

Therefore, combining the bounds above and using that # < 1 so that < h, we have
Tyl < € (B e I+ 1S5, = sall + 1S5, = s0) Hhwill

Finally, the term 75 is bounded by
T3 < C (2 + 1S5, = S0+ 1S3, = s21) w1

Combining all the bounds above gives the result.
The proof for (7.7¢) is analogous to that of (7.7b). (Il
7.1 Liquid pressure

The following lemma gives an equation for the error ¢, .
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26 G. SOSA JONES ET AL.

LemMA 7.3 (Error equation for the liquid pressure). We have that, for all w, € X, ;e and all 0 < n <
D
N — 1, there exists a constant C > 0 independent of /2 and t such that

Bi(epwy) < bp(ent!, wh)+C(r+h2+|| —sg||+||sch—s;'||)|||wh|||. (7.14)

Proof. Subtracting the consistency of the scheme (6.1) from the discretization (4.6), we have
VP wy) = B ot wy) = £ wy) — Fr wy). (7.15)
This is equivalent to

by Py w) =By wy) = 1w =y ) 7 0v) = Jy e =By g ow) B L wy).

(7.16)
Thanks to (7.4a) and (7.5a) we have
By PRt wy) = Byt wy) = £ 0w) = F ) + C w1 (7.17)
This is also equivalent to
BEPET wy) = BEp T wy) = £ wy) — Frwy) + CTlllwylll + By wy) — B ). (7.18)
Owing to (7.6a), (7.7a), this is equivalent to
by —pthwy) < C (r + R+ SE = s+ Sy, — s’su) Hwplll. (7.19)
The result is obtained by using (7.2a). g
LeEmMA 7.4 (Error estimates for the liquid pressure). We have that, forall0 <n < N — 1,
> 12 2,42 2 2
Crlllept I < Co(e + ) + Cr (IS5, = st + 1S3, = s3IP) (7.20)
where C, C > 0 are independent of 4 and 7.
Proof. Letting w;, = tept! in (7.14), it reads
Tbient ety < (et ) + O (r I 1S5, — sl + 1S, = S2) Meptt . (721

Applying coercivity (6.11) and boundedness (6.19) of b}, we obtain

Copo Tllent 1P < Cy,p,Tlllent L Nen I + CT (r +hE S — s+ ST —s';u) el
(7.22)
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 27

Using Young’s inequality on the right-hand side, we have

Crlllgg I < Cole I + Cr (22 4+t + 18y, — ol +18, = 217) . (7.23)

The result is obtained after using the L?-orthogonal projection estimates (5.8) and recalling that
h* < b2 0

7.2 Aqueous saturation
The following lemma gives an equation for the error ey, .

LeEmMMA 7.5 (Error equation for the aqueous saturation). We have that, for all w, € X rye» and all
0 < n < N — 1, there exists a constant C > 0 independent of % and t such that

1 1
;(d)(sz,jl — s W) + Bl wy) = —(@ (G, — 50wy + A GARRTN)

€ (b e+ 1S5, = sall + 1S5, = s30) Mwgll + 0, 00p),  (7.24)

where
[P ntl frt1
o,(wp) = ;(,BH wy), B =¢ (t —1,)0,s, dt. (7.25)
In

Proof. Using a Taylor series expansion we have

n a1 n+1 Int1
§ = s —r(&tsa) + /t (z— n)i)nsa dr, (7.26)

n

Rearranging the terms, multiplying by ¢ and a test function w;, € X;, and integrating over £2 yields

1 n+1 1 n n+1
;(tbsa ,wh)=;(¢sa,wh)+(¢(8,sa) Jwy) — o, (wy). (7.27)

where o,(w),) is defined in (7.25). Using the consistency of scheme (6.25) on the second term on the
right-hand side, rearranging terms and subtracting the result from (4.11) reads

1 ~ 1
—(¢ (St — sty wy) 4+ RS wy) — B it wy) = —(@(Sh, = 5 wp)

+ 1wy — [P wy) + 0, (wy). (7.28)
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28 G. SOSA JONES ET AL.

Owing to (7.6b) and (7.7b), this is equivalent to

1
(¢<S"+‘ SiED )+ BRSE — it wy) = e CISEEARTY

+C (T et N+ 1S5, = sall + 1S5, = 531) lwyll + 0, 00). (7.29)

Using (7.2) gives the result. 0

LeMMA 7.6 (Error estimates for the aqueous saturation). We have that, forall0 <n < N — 1,

1 1 112 2 2 2 2
ISPt — a2+ Crllle P < (1+ ColSE, — sall> + CT|Sy, — siI* + Ct(x? + k%), (7.30)

where C, C > Oare independent of / and t.

Proof. Letw,, = re;’;“] in (7.24):

¢(Sn+l n+1 n+1) + Tbn(en-‘rl n+1) — ¢(S n n+1) + _L,bn(en+l Z}-l‘rl)

+Co (vt et 11+ 185, = sall) llet™ ll + To (el (731)

Using the coercivity of b” (6.28) on the second term of the left-hand side, and the boundedness of b
(6.32) on the first term of the right-hand side, we obtain

P —satl et + Co, Tl P < oS3, — st i) + Cpy g Tllen el ]
+Cr (r +h e+ 1S, — sg||) e + Ta, (). (7.32)

+1 _ ontl o+l +1 _ ont12 +1 +1 n+l1 +1y —
Note that (S — sit1, eltl) = [IS2! — o124 (St — 5ot et and (87, — sh el = (87, —

sp, Sl — sith +( no—shenth). Moreover,

1
1 1 1 1,2 1 1 2
(S —shSml— ity = ||S"+ S IP + 3185, = sal? ||S"+ — s s

where we have used that ab = %az + %bz - %(a — b)%. Thus,

¢ ¢
SISar " = et 4 g, Tl 2 < S1SG, — Gl° + @S, — S €D + @5 — s, et

ap ° ag

+ Cpy, Tl I MR | + Co (r +h+ e+ 11Sp, — szn) e | + To, (el (7.33)
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 29

The second term on the right-hand side is zero due to (7.3). Moreover, the third term on the right-hand
side is bounded above by Ct ||er;1 | < Cth?. Thus,

¢\ ot 12 e ® 2 1 1
SUSHE = i HIP 4 C Tl I < EIISa — $ull” 4 Cpas, TG e N

+Co (T Rt e I+ 1S5, — sall) el Il + 7o (el + Coh?. (7.34)

Note that, using the Cauchy—Schwarz inequality, we have 7o, (e"“) ||/3’H‘1 [| ||e”+l ||. Moreover,

Iny1 2 Iny1 2
= [ (o[ am ) <c [ ([T 0= 10,5, 0)
2 In 2 th
th1 In+1
< 2 2
<C /Q ( /[ t—1) dt)( /t 8,5,) dt)
Int1
<cr? / / (8,5,)% dt
2Jt,

<C max /(Bts)

te[tn tn-H]

=Cr* max |d,s,]
t€ty,tyt1]

4
< Ct7,

where we have used that s, € C%(0,T; L?(£2)). Using this, Young’s inequality on the right-hand side
and estimates (5.8), we obtain

¢ ¢
SISer ! = SaTP + CelleG IR < SUSG, — sall® + Cr (r + 17+ eyt I + 1S5, —s2||2).
(7.35)

Using the liquid pressure error estimates (7.20) gives the result. (]

7.3 Vapor saturation

The following two lemmas state error estimates for the error e} . Proofs are similar to those of
Lemmas 7.5 and 7.6 and thus are skipped for brevity.
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30 G. SOSA JONES ET AL.

LeEMMA 7.7 (Error equation for the vapor saturation). We have that, for all w, € X nIy andall0 < n <
N — 1, there exists a constant C > 0 independent of . and t such that

1
(qs(S"+1 "“),wh)+b3<e;‘,jl,w,,)=;(«zs(sz,, S wp) + Blert ! wy)
+C (T o+ e N+ 1S5, = 2+ 1S, = 21 lwy -+ 0,00, (7.36)

where
o (w) = 2 (B g [ e s d 737
v h) — T v »Wh)’ ;Bv - ¢ (t tn) z[sv f. ( . )
n
LeEmmMmA 7.8 (Error estimates for the vapor saturation). We have that, forall0 <n < N — 1,

ISP — st 2 4 Crlllent I1* < (14 CoISE, — st + CTlSE, — stl* + Ct(x? + 1), (7.38)

where C,C > 0 are independent of 4 and 7.

7.4  Final estimates

In this section we combine the error estimates (7.20), (7.30) and (7.38), and use induction to give the
final error bounds. We first denote the errors made with the starting values by & (¢;):

Ety) = 1S5, — solI* + 1159, — 50112

THEOREM 7.1 There exists a constant C independent of # and 7 such that the following error estimates
hold:

IS5, — 17 + 1S — 507 + Co (e 1P + el 1P + Nl 117) < T () + € + 1)
(7.39)
Proof. LetA,,, = IS5 =i P IS =iV 2 B,y = Cr (e I+ el 12 + el 1)

and D = Ct(t? + h?). Then, adding up all three estimates (7.20), (7.30) and (7.38), we obtain
A, +B, <0+ Cr)A, +D.
Applying induction, we have that, for any 1 < n < N,
n—1

A+ B, <(+Cr)"Ag+D > (1+Co).
k=0
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We apply this with n = N. Since (1 + COF < (14 Ct)N < N = T we have

n—1
Ay +By < eTAG+ DD T < eTAy+ (N — DD < e (Ay + C(x* + 1)),
k=0
which concludes the proof. (]

CoROLLARY 7.1 Assume that the initial solutions Soh, 59 satisfy (4.20). Then we have

IS5, = 17+ 18, — 517 + Co (e, 17 + el 1P + el I12) < €T (2 4+42) . (7.40)

Proof. This follows from (7.39). ([

REMARK 7.1 Note that, as expected, the convergence rates in space are suboptimal. As we show in
Section 8, by setting T = A%, we can recover second-order convergence. In order to obtain optimal rates
of convergence in space, a duality argument is needed.

8. Numerical results

For the numerical results, we consider manufactured solutions under different scenarios. The solution
of the problem is given by

Pt x,y) =2+ xy° 4 x7sin(t + ), (8.1a)
1+ 2)c2y2 + cos(t + x)

s,(t,x,y) = s , (8.1b)
3 - t

Sv(l»x,)’) = M- (8.1b)

8

The computational domain is taken as £2 = [0, 1] x [0, 1], and the final time of the problem is 7 = 1.
The porosity ¢ is taken to be constant equal to 0.2, while the absolute permeability « is taken to be
constant equal to 1. The phase viscosities are set as

g =075 p, =025 u,=05. (8.2)

The phase relative permeabilities and the capillary pressures are defined as (Bentsen & Anli, 1976; Chen
et al., 2006)

Ky =s,(sp +5)(0—5,), k,=s2 k,=s, (8.3a)

In(1.01 —5,), p.,=

Dey = In(s, + 0.01). (8.3b)

6.
In (0 01) In(0.01)

We consider Dirichlet boundary conditions on all the boundaries of the domain. The source terms g,, g,
and g, are computed according to the manufactured solutions and other parameters of the problem.
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TABLE 1  Rates of convergence for test case in Section 8.1, witht = h

Py Sa Sy
h DOFs L2(£2)-error Rate L%(£2)-error Rate L%(£2)-error Rate
0.25 64 3.18e—2 — 7.41e-3 — 5.84e—2 —
0.125 256 1.14e—2 1.48 4.67e—3 0.66 9.64e—3 2.60
0.0625 1,024 2.78e—3 2.04 2.27e—3 1.04 4.77e—3 1.02
0.03125 4,096 9.22e—4 1.59 1.18e—3 0.94 2.15e-3 1.15
0.015625 16,384 341le—4 1.44 6.0le—4 0.97 1.08e—3 1.01

TABLE 2 Rates of convergence for test case in Section 8.1, with T = h?

Py Sa Sy
h DOFs L%(£2)-error Rate LZ(Q)—error Rate L%(£2)-error Rate
0.5 16 1.36e—1 — 6.48¢—3 — 5.11e—2 —
0.25 64 3.40e—2 2.00 1.51e-3 2.10 3.37¢—-3 3.92
0.125 256 8.43e—3 2.01 3.74e—4 2.01 6.95e—4 2.28
0.0625 1,024 2.11e—-3 2.00 9.35¢e—5 2.00 1.85¢—4 1.91
0.03125 4,096 5.32¢e—4 1.99 2.32e—5 2.01 5.07e—5 1.87

TABLE 3 Rates of convergence for test case in Section 8.2, witht = h

Dy Sq Sy
h DOFs L? (£2)-error Rate L? (£2)-error Rate 12 (£2)-error Rate
0.25 64 3.20e—2 — 8.10e—3 — 6.05e—2 —
0.125 256 1.20e—2 1.42 5.06e—3 0.68 1.11e—2 2.45
0.0625 1,024 2.78e—3 2.11 2.42e—-3 1.06 5.03e—3 1.14
0.03125 4,096 9.78e—4 1.51 1.27e—3 0.93 2.08e—3 1.27
0.015625 16,384 3.66e—4 1.42 6.47e—4 0.97 1.04e—3 1.00

8.1 Constant densities

First, we consider the case in which the phase densities are constant and taken as

=3 p,=1 p,=5. 8.4)

For this test case, gravity is not considered. We take 6, =6, =6, =lande, , =«o,  =0a; , =1
on all the edges of the mesh. The simulation is performed on six uniform meshes with an initial mesh
size of h = 0.5. We compute the [2-errors at the final time. In Tables 1 and 2, we show the results with
the time step 7 taken equal to & and to 42, respectively. We observe that, as expected from the results in
Section 7, when T = h, the scheme is first order. Moreover, we can recover second order when taking

T = K2

8.2  Gravity

Finally, we consider the effect of gravity. We take g = [0 — 0.1]T, and the phase densities as taken
as in (8.4). The simulation is performed on six uniform meshes with an initial mesh size of 7 = 0.5.
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TABLE 4  Rates of convergence for test case in Section 8.2, with T = h*

Dy s s

a %
h DOFs 2 (£2)-error Rate 12 (£2)-error Rate 2 (£2)-error Rate
0.5 16 1.36e—1 — 6.53e—3 — 5.50e—2 —
0.25 64 3.43e—2 1.99 1.56e—3 2.07 3.72e—-3 3.89
0.125 256 8.47e—3 2.02 3.79¢e—4 2.04 6.55—4 2.51
0.0625 1,024 2.13e—3 1.99 9.51e—5 1.99 1.81e—4 1.86
0.03125 4,096 5.35e—4 1.99 2.37e—5 2.00 5.03e—5 1.85

We compute the L2-errors at the final time. In Tables 3 and 4, we show the results with the time step 7
taken equal to & and to /2, respectively. We observe that, as expected from the results in Section 7, when
T = h, the scheme is first order. Moreover, we can recover second order when taking 7 = h2.

9. Conclusions

We presented and analyzed a first-order discontinuous Galerkin method for the incompressible three-
phase flow problem in porous media. Our method does not require a subiteration scheme, which makes
it computationally cheaper. We obtained a priori error estimates by assuming Lipschitz continuity of
the coefficients. The numerical test cases show, under different scenarios, that our scheme is first-order
convergent. For future work, we would like to extend the numerical analysis to variable density flow
and to a second-order scheme by using a BDF2 time stepping. Moreover, we plan to extend this scheme
to the black oil problem where mass transfer can occur between the liquid and vapor phases and study
the performance of such methods on setups that include wells or viscous fingering effects (Bangerth
et al., 2006; Li & Riviere, 2016).
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