
IMA Journal of Numerical Analysis (2022) 00, 1–34
https://doi.org/10.1093/imanum/drac053

Existence and convergence of a discontinuous Galerkin method for the
incompressible three-phase flow problem in porous media

Giselle Sosa Jones∗ and Loïc Cappanera
Room 641, Philip Guthrie Hoffman Hall, Department of Mathematics, University of Houston, 3551

Cullen Blvd, Houston, TX 77204-3008, USA
∗Corresponding author: ggsosajo@central.uh.edu

and

Beatrice Riviere
Department of Computational and Applied Mathematics, Rice University, 6100 Main St, Houston, TX

77005-1827, USA

[Received on 10 January 2022; revised on 13 May 2022]

This paper presents and analyzes a discontinuous Galerkin method for the incompressible three-phase
flow problem in porous media. We use a first-order time extrapolation, which allows us to solve the
equations implicitly and sequentially. We show that the discrete problem is well posed, and obtain a
priori error estimates. Our numerical results validate the theoretical results, i.e., the algorithm converges
with first order.
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1. Introduction

Subsurface modeling is important in improving the efficiency of clean-up strategies of contaminated
subsurface or the long-term storage of carbon dioxide in subsurface. Incompressible systems of liquid
phase, aqueous phase and vapor phase are mathematically modeled by nonlinear coupled partial
differential equations that are challenging to analyze. This work formulates a numerical scheme for
solving for the liquid pressure, the aqueous saturation and the vapor saturation using discontinuous
Galerkin methods in space. This choice of primary unknowns is inspired from previous work by Shank
& Vestal (1989), Hajibeygi & Tchelepi (2014), Cappanera & Riviere (2019a). The time marching uses
a sequential and implicit time stepping. It allows us to avoid the use of iterative methods such as the L-
scheme or Picard methods considered in, for example, Radu et al. (2018). Existence and uniqueness of
the solutions is proved, and convergence of the numerical method is obtained by deriving a priori error
estimates. These theoretical results are obtained under certain regularity assumptions on the data, such
as boundedness and Lipschitz continuity. We refer to the reader to Alizadeh & Piri (2014) for a complete
discussion on the advantages and limitations of such hypotheses. While the literature on computational
modeling of three-phase flows is vast, to our knowledge there are no papers on the theoretical analysis
of the discretization of the three-phase flow problem.

Ideal numerical methods for modeling multiphase flow in porous media are to be locally mass
conservative to accurately track the propagation of the phases through the media. Heterogeneities of the
porous media include highly discontinuous permeability fields with possibly local geological features
like pinch-out. This implies that the numerical methods should handle discontinuous coefficients and
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2 G. SOSA JONES ET AL.

unstructured grids. Discontinuous Galerkin (DG) methods are suitable methods thanks to their flexibility
derived from the lack of a continuity constraint between approximations on neighboring cells. DG are
known to be locally mass conservative, to handle highly varying permeability fields and to be accurate
and robust on unstructured meshes. For these reasons, the literature on DG methods for porous media
flows has exponentially increased over the past 20 years. The main drawback of these methods is their
cost, which is higher than the cost of low-order finite difference methods and finite volume methods.
DG has been applied to incompressible three-phase flow in Dong & Riviere (2016) and to compressible
three-phase flow in Rankin & Riviere (2015), Cappanera & Riviere (2019b,c). In the absence of capillary
pressure, DG is combined with the finite volume method in Natvig & Lie (2008), and with a mixed
finite element method in Moortgat & Firoozabadi (2013, 2016). These papers show the convergence
of the methods by performing numerical simulations on a sequence of uniformly refined meshes. The
theoretical convergence of numerical methods for three-phase flows remains an open problem, and
this paper provides the theoretical analysis of DG methods in the case of incompressible three-phase
flows under certain conditions on the data. While the numerical analysis of three-phase flow is sparse,
we note that the case of immiscible two-phase flows in porous media has been investigated in several
papers. For instance for incompressible flows, finite difference methods have been analyzed in Douglas
(1983), finite volume methods in Ohlberger (1997), Eymard et al. (2003), Michel (2003), DG methods in
Epshteyn & Riviere (2009) and finite element methods in Chen & Ewing (2001), Girault et al. (2021a,b).

The paper is organized as follows. In Section 2 we present the problem considered and its
mathematical formulation. Sections 3–4 describe the time and spatial discretization of our algorithm.
Classical projection estimates and the hypothesis used for the numerical analysis of our method are
detailed in Section 5. Then we show that the discrete problem is well posed in Section 6, and we
establish a priori error estimates in Section 7. Eventually, we perform numerical investigations in
Section 8 that recover the theoretical rate of convergence for various setups.

2. Problem description

Let pj, sj denote the pressure and the saturation, respectively, of the phase j, where j = �, v, a (liquid,

vapor and aqueous). The saturation for phase j at a point x in the domain Ω ⊂ Rd, with d = 2, 3, is
defined as the ratio of the volume of phase j to the total pore volume in a representative elementary
volume centered around the point x. Thus, the saturations satisfy

s� + sv + sa = 1. (2.1)

Assuming that the phase densities and the porosity are constant, the mass conservation equation of each
component is expressed as

φ∂tsj − ∇ ·
(
κλj

(
∇pj − ρjg

))
= qj, j = �, a, v, (2.2)

where κ is the absolute permeability, ρj denotes the density of phase j, λj denotes the mobility of phase
j and φ is the porosity of the medium. The mobility λj is defined as λj = krj/μj, where krj and μj
represent the relative permeability and viscosity of phase j, respectively. Gravity is denoted by g and q�,
qv and qa are source/sink terms. The differences between phase pressures are capillary pressures pc,v
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 3

and pc,a defined as

pc,v = pv − p�, pc,a = p� − pa. (2.3)

From the set of unknowns (saturations and pressures), we choose for primary unknowns the liquid
pressure p�, the aqueous saturation sa and the vapor saturation sv. For clarity, we explicitly write the
dependence of the different quantities with respect to the primary unknowns:

pc,v(sv), pc,a(sa), λ�(sv, sa), λv(sv, sa), λa(sv, sa), (2.4)

μ�(p�), μv(sv, sa), μa(sv, sa). (2.5)

Moreover, the capillary pressures are assumed to be differentiable, ∂sa
pc,a is a negative function and

∂sv
pc,v is a positive function.

2.1 Rewritten equations

Summing the three mass conservation equations (2.2) and using the definition of the capillary pressure
(2.3) yields the liquid pressure equation

− ∇ ·
(
λtκ∇p�

)
− ∇ ·

(
λvκ∇pc,v

)
+ ∇ ·

(
λaκ∇pc,a

)
= qt − ∇ ·

(
κ
(
ρλ

)
t
g
)

, (2.6)

where (
ρλ

)
t
= ρ�λ� + ρvλv + ρaλa, λt = λ� + λv + λa, qt = q� + qv + qa. (2.7)

Using the capillary pressure pc,a, the mass conservation (2.2) satisfied by the aqueous saturation can be
rewritten

φ∂tsa + ∇ ·
(
κλa∂sa

pc,a∇sa

)
− ∇ ·

(
κλa∇p�

)
= qa − ∇ ·

(
ρaκλag

)
. (2.8)

Similarly, the vapor saturation sv satisfies the following equation, derived from (2.2) with j = v:

φ∂tsv − ∇ ·
(
κλv∂sv

pc,v∇sv

)
− ∇ ·

(
κλv∇p�

)
= qv − ∇ ·

(
ρvκλvg

)
. (2.9)

These equations are complemented with Dirichlet and Neumann boundary conditions. The boundary
of the computational domain Ω is decomposed as

∂Ω = Γ
p�

D ∪ Γ
p�

N = Γ
sa

D ∪ Γ
sa

N = Γ
sv

D ∪ Γ
sv

N , (2.10)

with |Γ p�

D | > 0, |Γ sa
D | > 0, |Γ sv

D | > 0. The Dirichlet boundary conditions imposed on Γ
p�

D , Γ
sa

D and Γ
sv

D

are denoted by pbdy
� , sbdy

a , sbdy
v . The Neumann boundary conditions imposed on Γ

p�

N , Γ
sa

N and Γ
sv

N are
given by (

λtκ∇p� + λvκ∇pc,v − λaκ∇pc,a − κ(ρλ)tg
)

· n = jNp , (2.11a)
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4 G. SOSA JONES ET AL.

(
−κλa∂sa

pc,a∇sa + κλa∇p� − ρaκλag
)

· n = jNsa
, (2.11b)

(
κλv∂sv

pc,v∇sv + κλv∇p� − ρvκλvg
)

· n = jNsv
, (2.11c)

where n represents the outward unit normal vector to the boundary ∂Ω .

3. Time discretization

For the time discretization, we use a backward Euler method and partition the time interval [0, T] using a
time step τ > 0 such that Nτ = T . In the rest of the paper, we define tn = nτ for any integer 0 � n � N,
and for any time-dependent function f , we define f n = f |t=tn .

3.1 Liquid pressure

The time discretization of the liquid pressure (2.6) reads

− ∇ ·
(
λn

t κ∇pn+1
�

)
= qn+1

t − ∇ ·
(
κ(ρλ)n

t g
)

+ ∇ ·
(
λn

vκ∇pn
c,v

)
− ∇ ·

(
λn

aκ∇pn
c,a

)
. (3.1)

3.2 Aqueous saturation

The time discretization of the aqueous saturation equation (2.8) is

φ
sn+1

a − sn
a

τ
+ ∇ ·

(
κλn

a

(
∂sa

pc,a

)n∇sn+1
a

)
= qn+1

a + ∇ ·
(
κλn

a

(
∇pn+1

� − ρag
))

. (3.2)

Note that ∂sa
pc,a is negative. Therefore, with

(
∂sa

pc,a

)n,+ = −(
∂sa

pc,a

)n, we may write (3.2) as

φ
sn+1

a − sn
a

τ
− ∇ ·

(
κλn

a

(
∂sa

pc,a

)n,+∇sn+1
a

)
= qn+1

a + ∇ ·
(
κλn

a

(
∇pn+1

� − ρag
))

. (3.3)

3.3 Vapor saturation

The time discretization of the vapor saturation equation (2.9) reads

φ
sn+1

v − sn
v

τ
− ∇ ·

(
κλn

v

(
∂sv

pc,v

)n∇sn+1
v

)
= qn+1

v + ∇ ·
(
κλn

v

(
∇pn+1

� − ρvg
))

. (3.4)

4. Spatial discretization

For the spatial discretization, we use an interior penalty discontinuous Galerkin method. The domain
Ω is discretized with a conforming, shape-regular mesh Eh consisting of simplices or quadrilateral and
hexaedral elements. We denote by he and hK the size of an edge (or face for d = 3) e and an element K,
respectively. Moreover, we define the mesh size h = maxK∈Eh

hK . For any quadrilateral element K, we
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 5

define the two-dimensional local polynomial space Pk1,k2
(K) as

Pk1,k2
(K) =

⎧⎨
⎩p(x, y)

∣∣∣ p(x, y) =
∑
i�k1

∑
j�k2

aijx
iyj

⎫⎬
⎭ . (4.1)

The three-dimensional local polynomial space Pk1,k2,k3
(K) is defined similarly. Finally, we define

Qk(K) = Pk,k(K) for d = 2, and Qk(K) = Pk,k,k(K) for d = 3. The space of discontinuous piecewise
linear polynomials is denoted by Xh. If Eh consists of quadrilateral or hexahedral elements, the space Xh
is defined by

Xh =
{

v ∈ L2(Ω) : v|K ∈ Q1(K)∀ K ∈ Eh

}
. (4.2)

The discrete liquid pressure, aqueous saturation and vapor saturation at time tn are denoted by Pn
h, Sn

ah
and Sn

vh
respectively; they belong to the finite-dimensional spaces Xh. The Dirichlet boundary conditions

are imposed strongly; thus, we assume that the data pbdy
� , sbdy

a , sbdy
v are traces of functions in Xh. This

assumption is in agreement with realistic simulations where the Dirichlet data are simply constants
on the Dirichlet boundaries. We will make use of the following finite-dimensional spaces for the test
functions:

Xh,Γ
p�

D
= Xh ∩ {v = 0 on Γ

p�

D }, Xh,Γ sa
D

= Xh ∩ {v = 0 on Γ
sa

D }, Xh,Γ sv
D

= Xh ∩ {v = 0 on Γ
sv

D }.
(4.3)

We also define the Raviart–Thomas space RT0:

RT0 =
{

u ∈ H(div, Ω) : u|K ∈ RT0(K)∀ K ∈ Eh

}
, (4.4)

where

RT0(K) =
{
P1,0(K) × P0,1(K), d = 2,

P1,0,0(K) × P0,1,0(K) × P0,0,1(K), d = 3.
(4.5)

We note that the above spaces can be defined similarly if one uses simplex elements. The set of interior
faces is denoted by Γh. For any interior face e, we fix a unit normal vector ne, and we denote by K1 and
K2 the elements that share the face e such that ne points from K1 into K2. For any function f ∈ Xh, we
define the jump operator [·] on interior faces as

[
f
] = f1 − f2, where fi = f |Ki

. Moreover, we define the
weighted average operator {·} on interior faces as {A∇f · ne} = ω1A1∇f1 · ne + ω2A2∇f2 · ne, where
ω1 = A2(A1 + A2)

−1 and ω2 = A1(A1 + A2)
−1. Note that the standard average operator with weights

ω1 = ω2 = 1/2 is denoted by {·} 1
2
. On boundary faces, the jump and weighted average operators

are defined as [f ] = {f } = f . In the following, the L2 inner product over Ω is denoted by (·, ·). The
parameters θp�

, θsa
, θsv

take values −1, 0, 1, which respectively correspond to symmetric, incomplete
and nonsymmetric interior penalty discontinuous Galerkin.
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6 G. SOSA JONES ET AL.

4.1 Liquid pressure

The discrete problem for the liquid pressure reads as follows: find Pn+1
h ∈ Xh such that Pn+1

h = pbdy
� on

Γ
p�

D and the following relation is satisfied for all wh ∈ Xh,Γ
p�

D
:

bn
p(P

n+1
h , wh) = f n

p (wh), (4.6)

where bn
p(P

n+1
h , wh) = bp(P

n+1
h , wh; Pn

h, Sn
ah

, Sn
vh

), f n
p (wh) = fp(wh; Pn

h, Sn
ah

, Sn
vh

), with bp and fp defined
as

bp(vh, wh; Pn
h, Sn

ah
, Sn

vh
) =

∑
K∈Eh

∫
K

λn
t κ∇vh · ∇wh +

∑
e∈Γh

αp�,eh−1
e

∫
e
ηn

p�,e

[
vh

][
wh

]

−
∑
e∈Γh

∫
e

{
λn

t κ∇vh · ne

}[
wh

]
+ θp�

∑
e∈Γh

∫
e

{
λn

t κ∇wh · ne

}[
vh

]
(4.7)

and

fp(wh; Pn
h, Sn

ah
, Sn

vh
) = (qn+1

t , wh) +
∑

e∈Γ
p�

N

∫
e

jNp wh

−
∑

K∈Eh

∫
K

(
λn

vκ∇pn
c,v − λn

aκ∇pn
c,a − κ

(
ρλ

)n

t
g
)

· ∇wh

+
∑
e∈Γh

∫
e

{
λn

vκ∇pn
c,v · ne

}[
wh

]
−

∑
e∈Γh

∫
e

{
λn

aκ∇pn
c,a · ne

}[
wh

]

−
∑
e∈Γh

∫
e

{
κ
(
ρλ

)n

t
g · ne

}[
wh

]
. (4.8)

We recall that λn
t , (ρλ)n

t , λn
i for i = v, �, a are the functions λt, (ρλ)t, λi evaluated at the discrete

solutions (discrete pressures and saturations) at time tn. The penalty parameter αp�,e is a positive constant
such that 0 < αp�,∗ � αp�,e � α∗

p�
, and the penalty parameter ηn

p�,e depends on the absolute permeability
and mobilities in the following way:

ηn
p�,e = H

((
κλn

t

)
|K1

,
(
κλn

t

)
|K2

)
∀ e = ∂K1 ∩ ∂K2, (4.9)

where H is the harmonic average function:

H (x1, x2) = 2x1x2

x1 + x2
. (4.10)
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 7

4.2 Aqueous saturation

The discrete problem for the aqueous saturation reads as follows: find Sn+1
ah

∈ Xh such that Sn+1
ah

= sbdy
a

on Γ
sa

D and such that the following relation is satisfied for all wh ∈ Xh,Γ sa
D

:

1

τ
(φSn+1

ah
, wh) + bn

a(S
n+1
ah

, wh) = 1

τ
(φSn

ah
, wh) + f n

a (wh), (4.11)

where bn
a(S

n+1
ah

, wh) = ba(S
n+1
ah

, wh; Pn+1
h , Sn

ah
, Sn

vh
), f n

a (wh) = fa(wh; Pn+1
h , Sn

ah
, Sn

vh
), with ba and fa

defined as

ba(vh, wh;Pn+1
h , Sn

ah
, Sn

vh
) =

∑
K∈Eh

∫
K

κλn
a

(
∂sa

pc,a

)+,n∇vh · ∇wh

−
∑
e∈Γh

∫
e

{
κλn

a

(
∂sa

pc,a

)+,n∇vh · ne

}[
wh

]
+

∑
e∈Γh

αsa,eh−1
e

∫
e
ηn

sa,e

[
vh

][
wh

]

+ θsa

∑
e∈Γh

∫
e

{
κλn

a

(
∂sa

pc,a

)+,n∇wh · ne

}[
vh

]
(4.12)

and

fa(wh; Pn+1
h , Sn

ah
, Sn

vh
) = (qn+1

a , wh) +
∑

K∈Eh

∫
K

(
λn

aun+1
h + κρaλ

n
ag

)
· ∇wh +

∑
e∈Γ

sa
N

∫
e

jNsa
wh

−
∑
e∈Γh

∫
e

(
λn

a

)↑
sa

un+1
h · ne

[
wh

]
−

∑
e∈Γh

∫
e

{
ρaκλn

ag · ne

}[
wh

]
. (4.13)

In (4.13), the vector un+1
h is the projection of the approximation of the Darcy velocity onto the Raviart–

Thomas space RT0 (see the exact definition of operator ΠRT in Section 4.5):

un+1
h = ΠRT(−κ∇Pn+1

h ).

The upwind operator (·)↑sa is defined as follows. For readability, let D = λn
a and Dg = ρaκλn

a. For an
interior edge e shared by two elements K1 and K2, we have

(D)↑sa
=

{
D|K1

if {Dun+1
h + Dgg} 1

2
· ne � 0,

D|K2
otherwise.

(4.14)

The penalty parameter αsa,e is a positive constant such that 0 < αsa,∗ � αsa,e � α∗
sa

, and the
parameter ηn

sa,e is defined on the interior faces by

ηn
sa,e = H

((
κ(∂sa

pc,a)
+,nλn

a

)
|K1

,
(
κ(∂sa

pc,a)
+,nλn

a

)
|K2

)
∀ e = ∂K1 ∩ ∂K2. (4.15)
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8 G. SOSA JONES ET AL.

4.3 Vapor saturation

The discrete problem for the vapor saturation reads as follows: find Sn+1
vh

∈ Xh such that Sn+1
vh

= sbdy
v on

Γ
sv

D and such that the following relation is satisfied for all wh ∈ Xh,Γ sv
D

:

1

τ
(φSn+1

vh
, wh) + bn

v(S
n+1
vh

, wh) = 1

τ
(φSn

vh
, wh) + f n

v (wh), (4.16)

where bn
v(S

n+1
vh

, wh) = bv(S
n+1
vh

, wh; Pn+1
h , Sn+1

ah
, Sn

vh
), f n

v (wh) = fv(wh; Pn+1
h , Sn+1

ah
, Sn

vh
), with bv and fv

defined as

bv(vh, wh;Pn+1
h , Sn+1

ah
, Sn

vh
) =

∑
K∈Eh

∫
K

κλn
v∂sv

pn
c,v∇vh · ∇wh

−
∑
e∈Γh

∫
e

{
κλn

v∂sv
pn

c,v∇vh · ne

}[
wh

]
+

∑
e∈Γh

αsv,eh−1
e

∫
e
ηn

sv,e

[
vh

][
wh

]

+ θsv

∑
e∈Γh

∫
e

{
κλn

v∂sv
pn

c,v∇wh · ne

}[
vh

]
(4.17)

and

fv(wh;Pn+1
h , Sn+1

ah
, Sn

vh
) = (qn+1

v , wh) +
∑

K∈Eh

∫
K

(
λn

vun+1
h + κρvλ

n
vg

)
· ∇wh

+
∑

e∈Γ
sv

N

∫
e

jNsv
wh −

∑
e∈Γh

∫
e

(
λn

v

)↑
sv

un+1
h · ne

[
wh

]
−

∑
e∈Γh

∫
e

{
ρvκλn

vg · ne

}[
wh

]
, (4.18)

where (·)↑sv denotes the upwind average operator that is defined similarly to (·)↑sa , but with D = λn
v and

Dg = ρvκλn
v . The penalty parameter αsv,e is a positive constant such that 0 < αsv,∗ � αsv,e � α∗

sv
, and

ηn
sv,e is defined by

ηn
sv,e = H

((
κ(∂sv

pc,v)
nλn

v

)|K1
,
(
κ(∂sv

pc,v)
nλn

v

)|K1

)
. (4.19)

4.4 Starting the algorithm

To start the algorithms, we choose the L2 projections of the unknowns at time t0. Let Πh be the L2

projection onto Xh:

P0
h = Πhp0

� , S0
ah

= Πhs0
a, S0

vh
= Πhs0

v , (4.20)

where p0
�, s0

a, s0
v are the exact solutions at time t0.
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 9

4.5 Raviart–Thomas projection

The Raviart–Thomas projection, un+1
h = ΠRT(−κ∇Pn+1

h ), is defined by the following equations:

∫
e

un+1
h · neqh = −

∫
e

{
κ∇Pn+1

h · ne

}
qh + αp�,eh−1

e

∫
e
ηn

p�,e

[
Pn+1

h

]
qh ∀ qh ∈ Q0(e), ∀ e ∈ Γh,

(4.21a)∫
e

un+1
h · neqh = −

∫
e
κ∇Pn+1

h · neqh ∀ qh ∈ Q0(e), ∀ e ∈ ∂Ω . (4.21b)

This projection was introduced for elliptic partial differential equations in Ern et al. (2007) for spaces
of the same order; we apply it here to Raviart–Thomas spaces with a degree less than the DG spaces.

5. Preliminaries

In this section we establish some notation and recall some well-known results from finite element
analysis that will be used in the rest of the paper. Finally, we list the hypotheses assumed in this work.

5.1 Notation and useful results

The L2 norm over a set D is denoted by ‖ · ‖L2(D). When D = Ω , the subscript will be omitted. Let us
define the space X(h) = Xh + H2(Ω). For functions w ∈ X(h), we define the broken gradient ∇hw by
(∇hw)|K = ∇(w|K). The space X(h) is endowed with the coercivity norm for all w ∈ X(h):

‖|w‖| :=
(
‖∇hw‖2 + |w|2J

)1/2
, |w|J =

(∑
e∈Γh

h−1
e

∥∥[
w

]∥∥2
L2(e)

)1/2
. (5.1)

Additionally, we introduce the following norm on X(h):

‖|w‖|∗ :=
(
‖|w‖|2 +

∑
K∈Eh

hK‖∇w|K · nK‖2
L2(∂K)

)1/2
. (5.2)

The following classical finite element results will be used in the analysis carried out in Sections 6
and 7.

Lemma 5.1 (Trace inequality). Let Eh be a shape-regular mesh with parameter Cshape. Then, for all
wh ∈ Xh, all K ∈ Eh and all e ∈ ∂K, we have

‖wh‖L2(e) � Ctrh
−1/2
K ‖wh‖L2(K), (5.3)

where Ctr > 0 depends only on Cshape.

Lemma 5.2 (Discrete Poincaré inequality; Brenner, 2003). For all w in the broken Sobolev space
H1(Eh), there exists a constant CP > 0 independent of h such that

‖w‖ � CP‖|w‖|. (5.4)
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10 G. SOSA JONES ET AL.

We denote by πh,Γ the L2-orthogonal projection onto Xh,Γ for Γ ∈ {Γ p�

D , Γ sa
D , Γ sv

D }. The following
lemma recalls approximation estimates that are later used in the analysis of the numerical scheme
introduced in Section 4.

Lemma 5.3 (L2-orthogonal projection approximation bounds). For any element K ∈ Eh, for all
s ∈i {0, 1, 2} and all w ∈ Hs(K), there holds

|w − πh,Γ w|Hm(K) � Chs−m
K |w|Hs(K) ∀ m ∈

{
0, . . . , s

}
, (5.5)

where C is independent of both K and hK . Moreover, if s � 1, then for all K ∈ Eh and all e ∈ ∂K, there
holds

‖w − πh,Γ w‖L2(e) � Chs−1/2
K |w|Hs(K), (5.6)

and if s � 2,

∥∥∇(
w − πh,Γ w

)∣∣
K · nK

∥∥
L2(e) � Chs−3/2

K |w|Hs(K). (5.7)

Note that these results imply that

‖|w − πh,Γ w‖|∗ � Chs−1
K |w|Hs(Ω). (5.8)

The projected velocity un+1
h defined by (4.21a)–(4.21b) satisfies the following approximation bound.

Lemma 5.4 Assume p� belongs to L2(0, T; H2(Ω)). There is a positive constant independent of h and
τ such that

‖un+1
h + κ∇hPn+1

h ‖ � C‖|Pn+1
h − pn+1

� ‖| + Ch. (5.9)

Proof. The proof of this bound follows an argument in Bastian & Rivière (2003) and we present its
main points. Let us denote

χ = un+1
h + κ∇Pn+1

h .

Then, from (4.21a)–(4.21b), we have for any K, K′ ∈ Eh, and any e ⊂ ∂K,

∫
e
χ |K · neqh = 1

2

∫
e
κ(∇Pn+1

h |K − ∇Pn+1
h |K′) · neqh + αp�,eh−1

e

∫
e
ηn

p�,e

[
Pn+1

h

]
qh, e = ∂K ∩ ∂K′,

∫
e
χ |K · neqh = 0, e ⊂ ∂Ω .

Let us take qh = χ · ne in the above; this is allowed because Pn+1
h is piecewise linear and κ is assumed

to be piecewise constant (see H.5). For edges on the boundary, we have

‖χ |K · ne‖L2(e) = 0.
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 11

For interior edges, we apply Cauchy–Schwarz’s inequality:

‖χ |K · ne‖L2(e) � C‖[∇Pn+1
h ] · ne‖L2(e) + Ch−1

e ‖[Pn+1
h ]‖L2(e).

We now bound ‖χ‖L2(K) by passing to the reference element, by using the fact that ‖ · ‖L2(∂K̂)
is a norm

for the Raviart–Thomas space restricted to K̂ and by going back to the physical element:

‖χ‖L2(K) � Ch‖χ̂‖L2(K̂)
� Ch‖χ̂‖L2(∂K̂)

� Ch1/2‖χ‖L2(∂K).

We apply the bounds above:

‖χ‖L2(K) � Ch1/2
∑

e∈∂E\∂Ω

‖[∇Pn+1
h ] · ne‖L2(e) + C

∑
e∈∂E\∂Ω

h−1/2‖[Pn+1
h ]‖L2(e).

Taking the square and summing over all the elements,

‖χ‖2 � Ch
∑

K∈Eh

( ∑
e∈∂K\∂Ω

‖[∇Pn+1
h ] · ne‖L2(e)

)2 + C
∑

K∈Eh

( ∑
e∈∂K\∂Ω

h−1/2‖[Pn+1
h ]‖L2(e)

)2
.

The last term is bounded above by ‖|Pn+1
h − pn+1

� ‖|2 since [p�] = 0. For the first term, we write for
e = ∂K ∩ ∂K′,

‖[∇Pn+1
h ]‖L2(e) � ‖[∇(Pn+1

h − pn+1
� )]‖L2(e).

Clearly, we have

‖[∇(Pn+1
h − pn+1

� )]‖L2(e) � C(‖∇(Pn+1
h − pn+1

� )|K‖L2(e) + ‖∇(Pn+1
h − pn+1

� )|K′ ‖L2(e)).

We add and subtract the L2 projection of pn+1
� onto Xh:

‖∇(Pn+1
h − pn+1

� )|K‖L2(e) � ‖∇(Pn+1
h − πh,Γ

p�
D

pn+1
� )|K‖L2(e) + ‖∇(πh,Γ

p�
D

pn+1
� − pn+1

� )|K‖L2(e)

� Ch−1/2‖∇(Pn+1
h − πh,Γ

p�
D

pn+1
� )‖L2(K) + Ch1/2‖pn+1

� ‖H2(K).

So

h
∑

K∈Eh

( ∑
e∈∂K\∂Ω

‖∇(Pn+1
h − pn+1

� )‖L2(e)

)2
�C

∑
K∈Eh

‖∇(Pn+1
h − πh,Γ

p�
D

pn+1
� )‖2

L2(K)
+ Ch2‖pn+1

� ‖2
H2(Ω)

,

or

� C‖|Pn+1
h − pn+1

� ‖|2 + Ch2‖pn+1
� ‖2

H2(Ω)
.
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12 G. SOSA JONES ET AL.

Combining all the bounds we have

‖χ‖ � C‖|Pn+1
h − pn+1

� ‖| + Ch. �

5.2 Hypotheses

In the remainder of the paper, the following assumptions are made on the input data.

H.1 The nonlinear functions λi, for i = v, �, a, are C2 functions with respect to time. Moreover, we
have the following bounds:

0 < C(ρλ)t
�

(
ρλ

)
t

� C(ρλ)t
,

0 < Cλi
� λi � Cλi

,
0 < Cλt

� λt � Cλt
,

0 < κ∗ � κ � κ∗,

0 < Cpc,a
�

(
∂sa

pc,a

)+
� Cpc,a

,

0 � Cpc,v
� ∂sv

pc,v � Cpc,v
.

(5.11)

Remark 5.5 We note that the above bounds also hold when these functions are evaluated with
discrete solutions by using cutoff in the definition of the above functions.

H.2 The following functions are Lipschitz continuous, so that we have

|λi(sa1
, sv1

) − λi(sa2
, sv2

)| � L
(
|sa1

− sa2
| + |sv1

− sv2
|
)

,

|∂sv
pc,v(sv1

) − ∂sv
pc,v(sv2

)| � L|sv1
− sv2

|, (5.12)

|∂sv
pc,a(sa1

) − ∂sv
pc,a(sa2

)| � L|sa1
− sa2

|.

H.3 The functions ∇pc,a and ∇pc,v are bounded, so that we have

0 � C∇pca
� ‖∇pca

‖L∞(Ω) � C∇pca
,

0 � C∇pcv
� ‖∇pcv

‖L∞(Ω) � C∇pcv
,

(5.13)

and they satisfy the growth conditions

‖∇pca
(sa1

) − ∇pca
(sa2

)‖ � L‖sa1
− sa2

‖,
‖∇pcv

(sv1
) − ∇pcv

(sv2
)‖ � L‖sv1

− sv2
‖.

(5.14)

We remark that, even though this hypothesis might be somewhat restrictive, it has been used
before in e.g., Chen & Ewing (2001), Radu et al. (2018). For instance, in Chen & Ewing (2001),
assumptions (A5) and (A7) state that the functions γ1 and γ2, which contain the gradient of the
capillary pressure, are bounded and Lipschitz continuous with respect to the primary unknown θ .

H.4 The source terms qi are smooth enough: qi ∈ L∞(0, T; L∞(Ω)), for i = �, v, a.

H.5 The absolute permeability κ is piecewise constant.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/drac053/6706611 by U
niversity of H

ouston user on 29 N
ovem

ber 2022



DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 13

6. Existence and uniqueness

In the following we denote by p�, sa and sv the exact solutions to (2.6), (2.8) and (2.9). We assume that
the exact solutions are smooth enough, more precisely p�, sv, sa ∈ C2(0, T; L2(Ω))∩C0(0, T; H2(Ω))∩
L∞(0, T; W1,∞(Ω)).

For readability, we denote by λ̃t, p̃c,a, p̃c,v, λ̃i for i = v, �, a the functions λt, pc,a, pc,v, λi evaluated at
the exact solutions (pressures and saturations) at time t. If the time is tn, then the functions are denoted
by λ̃n

t , p̃n
c,a, p̃n

c,v, λ̃n
i . For instance, we will write

λ̃n
a = λa(s

n
a, sn

v), λn
a = λa(S

n
ah

, Sn
vh

).

Existence and uniqueness of Pn+1
h , Sn+1

ah
, Sn+1

vh
follow from the linearity of (4.6), (4.11), (4.16) with

respect to their unknowns and from the coercivity and continuity of the forms bp, ba and bv.

6.1 Liquid pressure

Lemma 6.1 (Consistency of bp). We have for any n � 0 and any wh ∈ Xh,Γ
p�

D
,

b̃n+1
p (pn+1

� , wh) = f̃ n+1
p (wh), (6.1)

where

b̃n+1
p (p�, wh) = bp(p�, wh; pn+1

� , sn+1
a , sn+1

v ) and f̃ n+1
p (wh) = fp(wh; pn+1

� , sn+1
a , sn+1

v ). (6.2)

Proof. First, note that

b̃n+1
p (p�, wh) =

∑
K∈Eh

∫
K

λ̃n+1
t κ∇p� · ∇wh −

∑
e∈Γh

∫
e
λ̃n+1

t κ∇p� · ne

[
wh

]
. (6.3)

In the rest of the proof, we drop the superscript (n + 1) for readability, but it is understood that all
functions are evaluated at time tn+1. Applying integration by parts on the first term, we obtain

b̃p(p�, wh) = −
∑

K∈Eh

∫
K

∇ ·
(
λ̃tκ∇p�

)
wh +

∑
K∈Eh

∫
∂K

λ̃tκ∇p� · nKwh −
∑
e∈Γh

∫
e
λ̃tκ∇p� · ne

[
wh

]
.

(6.4)

Using the fact that
[
λ̃tκ∇p� · ne

] = 0 on interior faces, we obtain

b̃p(p�, wh) = −
∑

K∈Eh

∫
K

∇ ·
(
λ̃tκ∇p�

)
wh +

∑
e∈Γ

p�
N

∫
e
λ̃tκ∇p� · newh. (6.5)
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14 G. SOSA JONES ET AL.

On the other hand, after integration by parts on the volume term of (4.8), we have

f̃p(wh) = (qt, wh) +
∑

K∈Eh

∫
K

∇ ·
(
λ̃vκ∇p̃c,v − λ̃aκ∇p̃c,a − κ

(
ρλ̃

)
tg

)
wh

−
∑

K∈Eh

∫
∂K

(
λ̃vκ∇p̃c,v − λ̃aκ∇p̃c,a − κ

(
ρλ̃

)
tg

)
· nKwh

+
∑

e∈Γ
p�

N

∫
e

jNp wh +
∑
e∈Γh

∫
e

{
λ̃vκ∇p̃c,v · ne

}[
wh

]
−

∑
e∈Γh

∫
e

{
λ̃aκ∇p̃c,a · ne

}[
wh

]

−
∑
e∈Γh

∫
e

{
κ
(
ρλ̃

)
tg · ne

}[
wh

]
. (6.6)

Using that
[(

λ̃vκ∇p̃c,v − λ̃aκ∇p̃c,a − κ
(
ρλ̃

)
tg

) · n
] = 0 on interior faces, we obtain

f̃p(wh) = (qt, wh) +
∑

K∈Eh

∫
K

∇ ·
(
λ̃vκ∇p̃c,v − λ̃aκ∇p̃c,a − κ

(
ρλ̃

)
tg

)
wh

−
∑

e∈Γ
p�

N

∫
e
λ̃vκ∇p̃c,v · newh +

∑
e∈Γ

p�
N

∫
e
λ̃aκ∇p̃c,a · newh +

∑
e∈Γ

p�
N

∫
e
κ
(
ρλ̃

)
tg · newh +

∑
e∈Γ

p�
N

∫
e

jNp wh.

(6.7)

Recalling that p� solves (2.6) and satisfies the boundary condition (2.11a), the result (6.1) follows. �
Lemma 6.2 For all

(
vh, wh

) ∈ Xh × Xh, the following relation is satisfied for all n � 0:

∣∣∣ ∑
e∈Γh

∫
e

{
λn

t κ∇vh · ne

}[
wh

]∣∣∣ � Cλt
κ∗( ∑

K∈Eh

∑
e∈∂K

he‖∇vh|K · ne‖2
L2(e)

)1/2|wh|J. (6.8)

Proof. Let us consider a face e ∈ Γh that is shared between two elements K1 and K2, i.e., e = ∂K1∩∂K2.
With H.1 and Cauchy–Schwarz’s inequality, we have

∫
e

{
λn

t κ∇vh · ne

}[
wh

]
� Cλt

κ∗h1/2
e

(∥∥∥∇vh|K1
· ne

∥∥∥
L2(e)

+
∥∥∥∇vh|K2

· ne

∥∥∥
L2(e)

)
h−1/2

e

∥∥∥[
wh

]∥∥∥
L2(e)

.

(6.9)

Summing over all faces, applying Cauchy–Schwarz’s inequality and writing the sum in terms of the face
contributions for each element, we obtain the result. �

Next we show that bp is coercive on Xh,Γ
p�

D
.
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 15

Lemma 6.3 (Coercivity of bp). Assume that αp�,∗ satisfies

αp�,∗ > 0.25
(

1 − θp�

)2(
Cλt

κ∗)3(
Cλt

κ∗
)−3

C2
tr, (6.10)

where Ctr results from the trace inequality (5.3). Then the bilinear form bn
p defined by (4.7) is coercive

on Xh with respect to the norm ‖| · ‖| defined by (5.1), i.e., for all wh ∈ Xh,Γ
p�

D
and for all n � 0, the

following relation is satisfied:

bn
p(wh, wh) � Cα,p�

‖|wh‖|2, (6.11)

with

Cα,p�
=

αp�,∗Cλt
κ∗

(
Cλt

κ∗
)−1 − 0.25

(
1 − θp�

)2(
Cλt

κ∗
)2(

Cλt
κ∗

)−2
C2

tr

1 + αp�,∗Cλt
κ∗

(
Cλt

κ∗
)−1 . (6.12)

Proof. Using (4.7) we have

bn
p(wh, wh) =

∑
K∈Eh

∫
K

λn
t κ

∣∣∣∇wh

∣∣∣2 +
∑
e∈Γh

αp�,eh−1
e

∫
e
ηn

p�,e[wh]2 + (θp�
− 1)

∑
e∈Γh

∫
e

{
λn

t κ∇wh · ne

}[
wh

]

� Cλt
κ∗‖∇wh‖2 + αp�,∗

C2
λt

κ2∗
Cλt

κ∗ |wh|2J +
(
θp�

− 1
) ∑

e∈Γh

∫
e

{
λn

t κ∇wh · ne

}[
wh

]
.

(6.13)

Using (6.8), the trace inequality (5.3) and the fact that for all K ∈ Eh and all e ∈ ∂K, he � hK , we have

∣∣∣∣∣∣
∑
e∈Γh

∫
e

{
λn

t κ∇wh · ne

}[
wh

]∣∣∣∣∣∣ � Cλt
κ∗

⎛
⎝ ∑

K∈Eh

∑
e∈∂K

he‖∇wh|K · ne‖2
L2(e)

⎞
⎠

1/2

|wh|J

� Cλt
κ∗Ctr‖∇wh‖|wh|J. (6.14)

Thus, since θp�
− 1 � 0, we have

(
θp�

− 1
) ∑

e∈Γh

∫
e

{
λn

t κ∇wh · ne

}[
wh

]
�

(
θp�

− 1
)

Cλt
κ∗Ctr‖∇wh‖|wh|J. (6.15)

Using this in (6.13) and noting that θp�
− 1 is equal to either −2, −1 or 0, we have

bn
p(wh, wh) � Cλt

κ∗‖∇wh‖2 + αp�,∗
C2

λt
κ2∗

Cλt
κ∗ |wh|2J − 2

1 − θp�

2
Cλt

κ∗Ctr‖∇wh‖|wh|J. (6.16)
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16 G. SOSA JONES ET AL.

Next we use the following inequality: let β be a non-negative real number and assume that c > β2; then,
for all x, y ∈ R,

x2 − 2βxy + cy2 � c − β2

1 + c

(
x2 + y2

)
. (6.17)

Using this in (6.16) with c = αp�,∗Cλt
κ∗

(
Cλt

κ∗)−1, β = 0.5
(
1 − θp�

)
CtrCλt

κ∗(Cλt
κ∗

)−1,

x = (
Cλt

κ∗
)1/2‖∇wh‖ and y = (

Cλt
κ∗

)1/2|wh|J concludes the proof. �
Now we prove that bp is bounded.

Lemma 6.4 (Boundedness of bp). There exists a constant CB,p�
> 0 independent of h such that, for all

vh ∈ Xh,Γ
p�

D
and wh ∈ Xh,Γ

p�
D

, the following relation is satisfied,

bn
p(vh, wh) � CB,p�

‖|vh‖| ‖|wh‖|. (6.18)

In addition, there exists a constant CB∗,p�
> 0 independent of h and τ such that for any v ∈ H2(Ω) +

Xh,Γ
p�

D
and any wh ∈ Xh,Γ

p�
D

, the following bound holds:

|bn
p(v, wh)| � CB∗,p�

‖|v‖|∗‖|wh‖|. (6.19)

Proof. Let vh ∈ Xh,Γ
p�

D
and wh ∈ Xh,Γ

p�
D

. We have

|bn
p(vh, wh)| �

∣∣∣∣∣∣
∑

K∈Eh

∫
K

λn
t κ∇vh · ∇wh

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∑
e∈Γh

αp�,eh−1
e

∫
e
ηn

p�,e

[
vh

][
wh

]∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
e∈Γh

∫
e

{
λn

t κ∇vh · ne

}[
wh

]∣∣∣∣∣∣ +
∣∣∣∣∣∣
∑
e∈Γh

θp�

∫
e

{
λn

t κ∇wh · ne

}[
vh

]∣∣∣∣∣∣
= T1 + T2 + T3 + T4. (6.20)

Using Cauchy–Schwarz’s inequality, we see that

T1 � Cλt
κ∗‖∇hvh‖‖∇hwh‖ � Cλt

κ∗‖|vh‖| ‖|wh‖|. (6.21)

Similarly,

T2 � α∗
p�

(
Cλt

κ∗
)2

Cλt
κ∗

|vh|J|wh|J � α∗
p�

(
Cλt

κ∗
)2

Cλt
κ∗

‖|vh‖| ‖|wh‖|. (6.22)
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 17

Using (6.8), recalling that he � hK and using the trace inequality (5.3), we bound T3 as

T3 � Cλt
κ∗‖|vh‖| ‖|wh‖|. (6.23)

Finally, T4 can be bounded in a similar way as T3 to obtain

T4 � |θp�
|Cλt

κ∗‖|vh‖| ‖|wh‖|. (6.24)

Taking CB,p�
= 4Cλt

√
κ∗ max

(
α∗

p�

Cλt κ
∗

Cλt κ∗ , |θp�
|
)

gives the result. The proof of (6.19) is similar; one

needs to change the bound for the term T3. �
Corollary 6.5 There exists a unique solution to problem (4.6).

Proof. The coercivity Lemma 6.3 and boundedness Lemma 6.4 of bp, together with the fact that ψ� is
strictly positive, imply, using the Lax–Milgram theorem, that problem (4.6) is well posed. �

6.2 Aqueous saturation

Lemma 6.6 (Consistency of ba).

(φ(∂tsa)
n+1, wh) + b̃n+1

a (sn+1
a , wh) = f̃ n+1

a (wh) ∀ wh ∈ Xh,Γ sa
D

, ∀ n � 0, (6.25)

where b̃n+1
a (sa, wh) = ba(sa, wh; pn+1

� , sn+1
a , sn+1

v ) and f̃ n+1
a (wh) = fa(wh; pn+1

� , sn+1
a , sn+1

v ).

Proof. The proof of this lemma is skipped because it is analogous to the proof of Lemma 6.1. �
Lemma 6.7 For all

(
vh, wh

) ∈ Xh × Xh, the following relation is satisfied:

∣∣∣∣∣∣
∑
e∈Γh

∫
e

{
κλn

a

(
∂sa

pc,a

)+,n∇vh · ne

}[
wh

]∣∣∣∣∣∣
� Cλa

κ∗Cpc,a

⎛
⎝ ∑

K∈Eh

∑
e∈∂K

he‖∇vh|K · ne‖2
L2(e)

⎞
⎠

1/2

|wh|J. (6.26)

Proof. The proof of this lemma is analogous to the proof of (6.8). �
Now we can show that ba is coercive on Xh,Γ sa

D
.

Lemma 6.8 (Coercivity of ba). Assume that αsa,∗ satisfies

αsa,∗ > 0.25
(

1 − θsa

)2(
Cλa

Cpc,a
κ∗)3(

Cλa
Cpc,a

κ∗
)−3

C2
tr, (6.27)

where Ctr results from the trace inequality (5.3). Then the bilinear form bn
a defined by (4.12) is coercive

on Xh,Γ sa
D

with respect to the norm ‖| · ‖| defined by (5.1), i.e., for all wh ∈ Xh,Γ sa
D

, the following relation
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18 G. SOSA JONES ET AL.

is satisfied:

bn
a(wh, wh) � Cα,sa

‖|wh‖|2, (6.28)

with

Cα,sa
=

αsa,∗Cpc,a
Cλa

κ∗
(

Cpc,a
Cλa

κ∗
)−1 − 0.25

(
1 − θsa

)2(
Cpc,a

Cλa
κ∗

)2(
Cpc,a

Cλa
κ∗

)−2
C2

tr

1 + αsa,∗Cpc,a
Cλa

κ∗
(

Cpc,a
Cλa

κ∗
)−1 . (6.29)

Proof. Using (4.12), (6.26), the trace inequality (5.3), the fact that for all K ∈ Eh and all e ∈ ∂K,
he � hK , and that θsa

− 1 � 0 we have

bn
a(wh, wh) =

∑
K∈Eh

∫
K

κλn
a

(
∂sa

pc,a

)+,n|∇wh|2 +
∑
e∈Γh

αsa,eh−1
e

∫
e
ηn

sa,e

([
wh

])2

+ (θsa
− 1)

∑
e∈Γh

∫
e

{
κλn

a

(
∂sa

pc,a

)+,n∇wh · ne

}[
wh

]

� Cpc,a
κ∗Cλa

‖∇wh‖2 + αsa,∗
C2

pc,a
C2

λa
κ2∗

Cpc,a
Cλa

κ∗ |wh|2J + (θsa
− 1)Cλa

κ∗Cpc,a
Ctr‖∇wh‖|wh|J.

(6.30)

Using (6.17) with c = αsa,∗Cpc,a
Cλa

κ∗
(
Cpc,a

Cλa
κ∗)−1, β = 0.5(1 − θsa

)Cλa
κ∗Cpc,a

Ctr

(
Cpc,a

κ∗Cλa

)−1,

x = (
Cpc,a

κ∗Cλa

)1/2‖∇hwh‖ and y = (
Cpc,a

κ∗Cλa

)1/2|wh|J concludes the proof. �
Now we prove that ba is bounded.

Lemma 6.9 (Boundedness of ba). There exists a constant CB,sa
> 0 independent of h such that, for all

n � 0, vh ∈ Xh,Γ sa
D

and wh ∈ Xh,Γ sa
D

, the following relation is satisfied:

|bn
a(vh, wh)| � CB,sa

‖|vh‖| ‖|wh‖|. (6.31)

In addition, there exists a constant CB∗,sa
> 0 independent of h and τ such that for any v ∈ H2(Ω) +

Xh,Γ sa
D

and any wh ∈ Xh,Γ sa
D

, the following bound holds:

|bn
a(v, wh)| � CB∗,sa

‖|v‖|∗‖|wh‖|. (6.32)

Proof. The proof of this lemma is analogous to that of Lemma 6.4 and therefore is omitted. �
Corollary 6.10 There exists a unique solution to problem (4.11).

Proof. The coercivity Lemma 6.7 and boundedness Lemma 6.8 of asa
, together with the fact that φ and

ρa are strictly positive, imply, using the Lax–Milgram theorem, that problem (4.11) is well posed. �
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 19

6.3 Vapor saturation

Lemma 6.11 (Consistency of bv).

(φ(∂tsv)
n+1, wh) + b̃n+1

v (sn+1
v , wh) = f̃ n+1

v (wh), ∀ wh ∈ Xh, ∀ n � 0, (6.33)

where b̃n+1
v (sv, wh) = bv(sv, wh; pn+1

� , sn+1
a , sn+1

v ) and f̃ n+1
v (wh) = fv(wh; pn+1

� , sn+1
a , sn+1

v ).

Proof. The proof is similar to the other consistency lemma and therefore not shown here. �
Lemma 6.12 For all (vh, wh) ∈ Xh × Xh and any n � 0, the following relation is satisfied:

∣∣∣∣∣∣
∑
e∈Γh

∫
e

{
κλn

v

(
∂sv

pc,v

)n∇vh · ne

}[
wh

]∣∣∣∣∣∣
� Cλv

κ∗Cpc,v

⎛
⎝ ∑

K∈Eh

∑
e∈∂K

he‖∇vh|K · ne‖2
L2(e)

⎞
⎠

1/2

|wh|J. (6.34)

Proof. The proof of this lemma is completely analogous to the proof of (6.8). �
Now we can show that bv is coercive on Xh.

Lemma 6.13 (Coercivity of bv). Assume that αsv,∗ satisfies

αsv,∗ > 0.25
(

1 − θsv

)2(
Cλv

Cpc,v
κ∗)3(

Cλv
Cpc,v

κ∗
)−3

C2
tr, (6.35)

where Ctr results from the trace inequality (5.3). Then the bilinear form bn
v defined by (4.17) is coercive

on Xh,Γ sv
D

with respect to the norm ‖| · ‖| defined by (5.1), i.e., for all wh ∈ Xh,Γ sv
D

, the following relation
is satisfied:

bn
v(wh, wh) � Cα,sv

‖|wh‖|, (6.36)

with

Cα,sv
=

αsv,∗Cpc,v
Cλv

κ∗
(

Cpc,v
Cλv

κ∗
)−1 − 0.25

(
1 − θsv

)2(
Cpc,v

Cλv
κ∗

)2(
Cpc,v

Cλv
κ∗

)−2
C2

tr

1 + αsv,∗Cpc,v
Cλv

κ∗
(

Cpc,v
Cλv

κ∗
)−1 . (6.37)

Proof. The proof is analogous to that of (6.28) and therefore not shown here. �
Now we prove that bv is bounded.
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20 G. SOSA JONES ET AL.

Lemma 6.14 (Boundedness of bv). There exists a constant CB,sv
> 0 independent of h such that, for all

n � 0, vh ∈ Xh,Γ sv
D

and wh ∈ Xh,Γ sv
D

, the following relation is satisfied:

|bn
v(vh, wh)| � CB,sv

‖|vh‖| ‖|wh‖|. (6.38)

In addition, there exists a constant CB∗,sv
> 0 independent of h and τ such that for any v ∈ H2(Ω) +

Xh,Γ sv
D

and any wh ∈ Xh,Γ sv
D

, the following bound holds:

|bn
v(v, wh)| � CB∗,sv

‖|v‖|∗‖|wh‖|. (6.39)

Proof. The proof of this lemma follows that of Lemma 6.4 and therefore is not shown here. �
Corollary 6.15 There exists a unique solution to the discrete problem (4.16).

Proof. The coercivity Lemma 6.11 and boundedness Lemma 6.12 of asv
, together with the fact

that φ and ρv are strictly positive, imply, using the Lax–Milgram theorem, that problem (4.16) is
well posed. �

7. A priori error estimates

In this section we derive a priori error estimates. To do so, we introduce the following quantities:

en
ph

= Pn
h − πh,Γ

p�
D

pn
�, en

pπ
= pn

� − πh,Γ
p�

D
pn
�, (7.1a)

en
ah

= Sn
ah

− πh,Γ sa
D

sn
a, en

aπ
= sn

a − πh,Γ sa
D

sn
a, (7.1b)

en
vh

= Sn
vh

− πh,Γ sv
D

sn
v , en

vπ
= sn

v − πh,Γ sv
D

sn
v . (7.1c)

We can then decompose the errors as

pn
� − Pn

h = en
pπ

− en
ph

, (7.2a)

sn
a − Sn

ah
= en

pπ
− en

ph
, (7.2b)

sn
a − Sn

ah
= en

pπ
− en

ph
. (7.2c)

We note that, thanks to the definition of the L2-orthogonal projection, the errors above satisfy

(en
pπ

, wh) = (en
aπ

, wh) = (en
vπ

, wh) = 0 ∀ wh ∈ Xh. (7.3)

We will make use of the following two auxiliary lemmas.

Lemma 7.1 For any 0 � n � N − 1, and any wh ∈ Xh, we have the following bounds:

∣∣∣b̃n+1
p (pn+1

� , wh) − b̃n
p(p

n+1
� , wh)

∣∣∣ � Cτ‖|wh‖|, (7.4a)
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 21

∣∣∣b̃n+1
a (sn+1

a , wh) − b̃n
a(s

n+1
a , wh)

∣∣∣ � Cτ‖|wh‖|, (7.4b)∣∣∣b̃n+1
v (sn+1

v , wh) − b̃n
v(s

n+1
v , wh)

∣∣∣ � Cτ‖|wh‖|. (7.4c)

Moreover, ∣∣∣f̃ n+1
p (wh) − f̃ n

p (wh)

∣∣∣ � Cτ‖|wh‖|, (7.5a)∣∣∣f̃ n+1
a (wh) − f̃ n

a (wh)

∣∣∣ � Cτ‖|wh‖|, (7.5b)∣∣∣f̃ n+1
v (wh) − f̃ n

v (wh)

∣∣∣ � Cτ‖|wh‖|. (7.5c)

Proof. The results can be obtained using the Lipschitz continuity of all the coefficients and the
smoothness of p�, sa, sv. �
Lemma 7.2 For any 0 � n � N, and any wh ∈ Xh, we have the bounds

∣∣∣b̃n
p(p

n+1
� , wh) − bn

p(p
n+1
� , wh)

∣∣∣ � C
(

h2 + ‖Sn
ah

− sn
a‖ + ‖Sn

vh
− sn

v‖
)

‖|wh‖|, (7.6a)∣∣∣b̃n
a(s

n+1
a , wh) − bn

a(s
n+1
a , wh)

∣∣∣ � C
(

h2 + ‖Sn
ah

− sn
a‖ + ‖Sn

vh
− sn

v‖
)

‖|wh‖|, (7.6b)∣∣∣b̃n
v(s

n+1
v , wh) − bn

v(s
n+1
v , wh)

∣∣∣ � C
(

h2 + ‖Sn
ah

− sn
a‖ + ‖Sn

vh
− sn

v‖
)

‖|wh‖|. (7.6c)

Moreover, ∣∣∣f̃ n
p (wh) − f n

p (wh)

∣∣∣ � C
(

h2 + ‖Sn
ah

− sn
a‖ + ‖Sn

vh
− sn

v‖
)

‖|wh‖|, (7.7a)∣∣∣f̃ n
a (wh) − f n

a (wh)

∣∣∣ � C
(

h + ‖|en+1
ph

‖| + ‖Sn
ah

− sn
a‖ + ‖Sn

vh
− sn

v‖
)

‖|wh‖|, (7.7b)∣∣∣f̃ n
v (wh) − f n

v (wh)

∣∣∣ � C
(

h + ‖|en+1
ph

‖| + ‖Sn
ah

− sn
a‖ + ‖Sn

vh
− sn

v‖
)

‖|wh‖|. (7.7c)

Proof. We start by showing (7.6a). Note that using the definition of bp (4.7), we obtain

∣∣∣b̃n
p(p

n+1
� , wh) − bn

p(p
n+1
� , wh)

∣∣∣ �
∑

K∈Eh

∫
K

∣∣∣(λ̃n
t − λn

t

)
κ∇pn+1

� · ∇wh

∣∣∣
+

∑
e∈Γh

∫
e

∣∣∣{ (
λ̃n

t − λn
t

)
κ∇pn+1

� · ne

}[
wh

]∣∣∣ . (7.8)

With the Lipschitz continuity assumptions H.2, we can write

∣∣∣λ̃n
t − λn

t

∣∣∣ � C(|Sn
vh

− sn
v | + |Sn

ah
− sn

a|).
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22 G. SOSA JONES ET AL.

The first term on the right-hand side of (7.8) is bounded by

∑
K∈Eh

∫
K

∣∣∣(λ̃n
t − λn

t

)
κ∇pn+1

� · ∇wh

∣∣∣ � C
(‖Sn

ah
− sn

a‖ + ‖Sn
vh

− sn
v‖

) ‖|wh‖|,

where we have used the Cauchy–Schwarz inequality, the boundedness of κ and the smoothness of p�.
For the second term on the right-hand side of (7.8), we have

∑
e∈Γh

∫
e

∣∣∣{ (
λ̃n

t − λn
t

)
κ∇pn+1

�
· ne

}[
wh

]∣∣∣ � C
∑
e∈Γh

∫
e

{
|Sn

vh
− sn

v | + |Sn
ah

− sn
a|

} ∣∣[wh
]∣∣

� C
∑
e∈Γh

∫
e

{
|en

vh
| + |en

ah
|
}∣∣[wh]

∣∣ + C
∑
e∈Γh

∫
e

{
|en

vπ
| + |en

aπ
|
} ∣∣[wh

]∣∣
� C

∑
e∈Γh

h1/2
e

(
‖en

vh
‖L2(e) + ‖en

ah
‖L2(e)

)
h−1/2

e ‖[wh]‖L2(e)

+ C
∑
e∈Γh

h1/2
e

(
‖en

vπ
‖L2(e) + ‖en

aπ
‖L2(e)

)
h−1/2

e ‖[wh]‖L2(e).

Using the trace inequality (5.3) and the projection estimates (5.6), we have

∑
e∈Γh

∫
e

∣∣∣{ (
λ̃n

t − λn
t

)
κ∇pn+1

� · ne

}[
wh

]∣∣∣ � C
(
‖en

vh
‖ + ‖en

ah
‖
)
‖|wh‖| + Ch2‖|wh‖|.

Combining these bounds we obtain

∣∣∣b̃n
p(p

n+1
� , wh) − bn

p(p
n+1
� , wh)

∣∣∣ � C
(

h2 + ‖Sn
ah

− sn
a‖ + ‖Sn

vh
− sn

v‖
)

‖|wh‖|.

The proofs for (7.6b) and (7.6c) are analogous to that of (7.6a) and therefore not shown here.
Next we show (7.7a). Using the definition of fp, see (4.8), we obtain

∣∣∣f n
p (wh) − f̃ n

p (wh)

∣∣∣ =
∣∣∣fp(wh; Pn

h, Sn
ah

, Sn
vh

) − fp(wh; pn
� , sn

a, sn
v)

∣∣∣ � |T1| + |T2| + |T3|,

with

T1 = −
∑

K∈Eh

∫
K

(
λn

vκ∇pn
c,v − λn

aκ∇pn
c,a − κ

(
ρλ

)n

t
g
)

· ∇wh

+
∑

K∈Eh

∫
K

(
λ̃n

vκ∇p̃n
c,v − λ̃n

aκ∇p̃n
c,a − κ

(
ρ̃λ̃

)n

t
g
)

· ∇wh, (7.9)
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T2 =
∑
e∈Γh

∫
e

{
λn

vκ∇pn
c,v · ne − λ̃n

vκ∇p̃n
c,v · ne

}[
wh

]

−
∑
e∈Γh

∫
e

{
λn

aκ∇pn
c,a · ne − λ̃n

aκ∇p̃n
c,a · ne

}[
wh

]
,

T3 = −
∑
e∈Γh

∫
e

{
κλn

t g · ne

}[
wh

]
+

∑
e∈Γh

∫
e

{
κλ̃n

t g · ne

}[
wh

]
. (7.10)

Using the boundedness and growth conditions of ∇pc,a, ∇pc,v (see H.3), the boundedness of the rest of
the coefficients and H.2, the volume terms T1 are bounded as

|T1| � C
(‖Sn

ah
− sn

a‖ + ‖Sn
vh

− sn
v‖

) ‖|wh‖|.

With the same assumptions, for the face terms T2 we have

|T2| � C
∑
e∈Γh

∫
e

(
|Sn

ah
− sn

a| + |Sn
vh

− sn
v |

)
|[wh]| = C

∑
e∈Γh

∫
e

h1/2
e

(
|en

ah
| + |en

vh
|
)

h−1/2
e |[wh]|

+ C
∑
e∈Γh

∫
e

h1/2
e

(
|en

aπ
| + |en

vπ
|
)

h−1/2
e |[wh]| � C

(‖Sn
ah

− sn
a‖ + ‖Sn

vh
− sn

v‖
) ‖|wh‖| + Ch2‖|wh‖|,

(7.11)

where we have used the trace inequality (5.3), (7.2) and the projection estimates (5.6). Similarly, the
terms in T3 are bounded by

|T3| � C
(

h2 + ‖Sn
ah

− sn
a‖ + ‖Sn

vh
− sn

v‖
)

‖|wh‖|,

which concludes the proof.
To prove (7.7b), note that

∣∣∣f n
a (wh) − f̃ n

a (wh)

∣∣∣ =
∣∣∣fa(wh; Pn+1

h , Sn
ah

, Sn
vh

) − fa(wh; pn+1
� , sn

a, sn
v)

∣∣∣ � |T1| + |T2| + |T3|,

with

T1 =
∑

K∈Eh

∫
K

(
λn

aun+1
h + ρaλ

n
ag

)
· ∇wh −

∑
K∈Eh

∫
K

(
λ̃n

aun+1 + ρaλ̃
n
ag

)
· ∇wh,

T2 = −
∑
e∈Γh

∫
e

(
λn

a

)↑
sa

un+1
h · ne

[
wh

]
+

∑
e∈Γh

∫
e
λ̃n

aun+1 · ne

[
wh

]
,

T3 = −
∑
e∈Γh

∫
e

{
ρaκλn

ag · ne

}[
wh

]
+

∑
e∈Γh

∫
e

{
ρaκλ̃n

ag · ne

}[
wh

]
,
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24 G. SOSA JONES ET AL.

where we recall that un+1
h = ΠRT(−κ∇Pn+1

h ) and we denote un+1 = −κ∇pn+1
� . Note that we have

|T1| �
∑

K∈Eh

∫
K

∣∣∣(λn
aun+1

h − λ̃n
aun+1

)
· ∇wh

∣∣∣ +
∑

K∈Eh

∫
K

∣∣∣(ρaλ
n
ag − ρaλ̃

n
ag

)
· ∇wh

∣∣∣.
The second term is bounded by

∑
K∈Eh

∫
K

∣∣∣(ρaλ
n
ag − ρaλ̃

n
ag

)
· ∇wh

∣∣∣ � C
(‖Sn

ah
− sn

a‖ + ‖Sn
vh

− sn
v‖

) ‖|wh‖|.

For the first term in T1 we have

∑
K∈Eh

∫
K

λn
a

∣∣∣(un+1
h − un+1

)
· ∇wh

∣∣∣ +
∑

K∈Eh

∫
K

∣∣∣(λn+1
a − λ̃n+1

a )un+1 · ∇wh

∣∣∣. (7.12)

We write

∑
K∈Eh

∫
K

∣∣∣λn
a

(
un+1

h − un+1
)

· ∇wh

∣∣∣ � C‖un+1
h − un+1‖ ‖|wh‖|.

Using the triangle inequality, (5.5) and (5.9) we have

‖un+1
h − un+1‖ � ‖un+1

h + κ∇hPn+1
h ‖ + ‖κ∇h(P

n+1
h − pn+1

� )‖ � C‖|en+1
ph

‖| + Ch.

For the second term in (7.12) we have

∑
K∈Eh

∫
K

∣∣∣(λn
a − λ̃n

a)κ∇pn+1
� · ∇wh

∣∣∣ � C
(‖Sn

ah
− sn

a‖ + ‖Sn
vh

− sn
v‖

) ‖|wh‖|,

where we have used that p� ∈ C0(0, T; H3(Ω)). So combining the bounds above, we obtain

|T1| � C
(

h + ‖|en+1
ph

‖| + ‖Sn
ah

− sn
a‖ + ‖Sn

vh
− sn

v‖
)

‖|wh‖|.

The term T2 can be written as

|T2| �
∑
e∈Γh

∫
e

∣∣∣ (λn
a

)↑
sa

(un+1
h − un+1) · ne[wh]

∣∣∣ +
∑
e∈Γh

∫
e

∣∣∣((
λn

a

)↑
sa

− λ̃n
a

)
un+1 · ne[wh]

∣∣∣ . (7.13)

The first term in (7.13) is bounded by

∑
e∈Γh

∫
e

∣∣∣ (λn+1
a

)↑
sa

(un+1
h − un+1) · ne[wh]

∣∣∣ � C‖|wh‖|
⎛
⎝∑

e∈Γh

he‖un+1
h − un+1‖2

L2(e)

⎞
⎠

1/2

.
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 25

We fix a face e and we choose one neighboring element Ke such that e ⊂ ∂Ke:

‖un+1
h − un+1‖L2(e) � ‖un+1

h + κ∇Pn+1
h |Ke

‖L2(e) + ‖κ∇(Pn+1
h |Ke

− pn+1
� )‖L2(e).

Using the trace inequality (5.3) and the Raviart–Thomas projection estimate (5.9), we have

⎛
⎝∑

e∈Γh

he‖un+1
h + κ∇Pn+1

h |Ke
‖2

L2(e)

⎞
⎠

1/2

� ‖un+1
h + κ∇hPn+1

h ‖ � C‖|en+1
ph

‖| + Ch.

Adding and subtracting πh,Γ
p�

D
pn+1
� and using (5.7) and the trace inequality (5.3) yields

⎛
⎝∑

e∈Γh

he‖∇(Pn+1
h |Ke

− pn+1
� )‖2

L2(e)

⎞
⎠

1/2

� C‖|en+1
ph

‖| + Ch.

Therefore, the first term in (7.13) is bounded as

∑
e∈Γh

∫
e

∣∣∣(λn
a

)↑
sa

(un+1
h − un+1) · ne[wh]

∣∣∣ � C(h + ‖|en+1
ph

‖|)‖|wh‖|.

The second term in (7.13) can be bounded as

∑
e∈Γh

∫
e

∣∣∣((
λn

a

)↑
sa

− λ̃n
a

)
un+1 · ne[wh]

∣∣∣ � C
(

h2 + ‖Sn
ah

− sn
a‖ + ‖Sn

vh
− sn

v‖
)

‖|wh‖|.

Therefore, combining the bounds above and using that h � 1 so that h2 � h, we have

|T2| � C
(

h + ‖|en+1
ph

‖| + ‖Sn
ah

− sn
a‖ + ‖Sn

vh
− sn

v‖
)

‖|wh‖|.

Finally, the term T3 is bounded by

|T3| � C
(

h2 + ‖Sn
ah

− sn
a‖ + ‖Sn

vh
− sn

v‖
)

‖|wh‖|.

Combining all the bounds above gives the result.
The proof for (7.7c) is analogous to that of (7.7b). �

7.1 Liquid pressure

The following lemma gives an equation for the error en
ph

.
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26 G. SOSA JONES ET AL.

Lemma 7.3 (Error equation for the liquid pressure). We have that, for all wh ∈ Xh,Γ
p�

D
and all 0 � n �

N − 1, there exists a constant C > 0 independent of h and τ such that

bn
p(e

n+1
ph

, wh) � bn
p(e

n+1
pπ

, wh) + C
(
τ + h2 + ‖Sn

ah
− sn

a‖ + ‖Sn
vh

− sn
v‖

)
‖|wh‖|. (7.14)

Proof. Subtracting the consistency of the scheme (6.1) from the discretization (4.6), we have

bn
p(P

n+1
h , wh) − b̃n+1

p (pn+1
� , wh) = f n

p (wh) − f̃ n+1
p (wh). (7.15)

This is equivalent to

bn
p(P

n+1
h , wh)−b̃n

p(p
n+1
� , wh) = f n

p (wh) − f̃ n
p (wh) + f̃ n

p (wh) − f̃ n+1
p (wh)−b̃n

p(p
n+1
� , wh)+b̃n+1

p (pn+1
� , wh).

(7.16)

Thanks to (7.4a) and (7.5a) we have

bn
p(P

n+1
h , wh) − b̃n

p(p
n+1
� , wh) = f n

p (wh) − f̃ n
p (wh) + Cτ‖|wh‖|. (7.17)

This is also equivalent to

bn
p(P

n+1
h , wh) − bn

p(p
n+1
� , wh) = f n

p (wh) − f̃ n
p (wh) + Cτ‖|wh‖| + b̃n

p(p
n+1
� , wh) − bn

p(p
n+1
� , wh). (7.18)

Owing to (7.6a), (7.7a), this is equivalent to

bn
p(P

n+1
h − pn+1

� , wh) � C
(
τ + h2 + ‖Sn

ah
− sn

a‖ + ‖Sn
vh

− sn
v‖

)
‖|wh‖|. (7.19)

The result is obtained by using (7.2a). �
Lemma 7.4 (Error estimates for the liquid pressure). We have that, for all 0 � n � N − 1,

C̃τ‖|en+1
ph

‖|2 � Cτ(τ 2 + h2) + Cτ
(
‖Sn

ah
− sn

a‖2 + ‖Sn
vh

− sn
v‖2

)
, (7.20)

where C, C̃ > 0 are independent of h and τ .

Proof. Letting wh = τen+1
ph

in (7.14), it reads

τbn
p(e

n+1
ph

, en+1
ph

) � τbn
p(e

n+1
pπ

, en+1
ph

) + Cτ
(
τ + h2 + ‖Sn

ah
− sn

a‖ + ‖Sn
vh

− sn
v‖

)
‖|en+1

ph
‖|. (7.21)

Applying coercivity (6.11) and boundedness (6.19) of bn
p, we obtain

Cα,p�
τ‖|en+1

ph
‖|2 � CB∗,p�

τ‖|en+1
pπ

‖|∗‖|en+1
ph

‖| + Cτ
(
τ + h2 + ‖Sn

ah
− sn

a‖ + ‖Sn
vh

− sn
v‖

)
‖|en+1

ph
‖|.

(7.22)
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 27

Using Young’s inequality on the right-hand side, we have

Cτ‖|en+1
ph

‖|2 � Cτ‖|en+1
pπ

‖|2∗ + Cτ
(
τ 2 + h4 + ‖Sn

ah
− sn

a‖2 + ‖Sn
vh

− sn
v‖2

)
. (7.23)

The result is obtained after using the L2-orthogonal projection estimates (5.8) and recalling that
h4 � h2. �

7.2 Aqueous saturation

The following lemma gives an equation for the error en
ah

.

Lemma 7.5 (Error equation for the aqueous saturation). We have that, for all wh ∈ Xh,Γ sa
D

, and all
0 � n � N − 1, there exists a constant C > 0 independent of h and τ such that

1

τ
(φ(Sn+1

ah
− sn+1

a ), wh) + bn
a(e

n+1
ah

, wh) = 1

τ
(φ(Sn

ah
− sn

a), wh) + bn
a(e

n+1
aπ

, wh)

+ C
(
τ + h + ‖|en+1

ph
‖| + ‖Sn

ah
− sn

a‖ + ‖Sn
vh

− sn
v‖

)
‖|wh‖| + σa(wh), (7.24)

where

σa(wh) = 1

τ
(βn+1

a , wh), βn+1
a = φ

∫ tn+1

tn
(t − tn)∂ttsa dt. (7.25)

Proof. Using a Taylor series expansion we have

sn
a = sn+1

a − τ
(
∂tsa

)n+1 +
∫ tn+1

tn

(
t − tn

)
∂ttsa dt, (7.26)

Rearranging the terms, multiplying by φ and a test function wh ∈ Xh and integrating over Ω yields

1

τ
(φsn+1

a , wh) = 1

τ
(φsn

a, wh) + (φ(∂tsa)
n+1, wh) − σa(wh). (7.27)

where σa(wh) is defined in (7.25). Using the consistency of scheme (6.25) on the second term on the
right-hand side, rearranging terms and subtracting the result from (4.11) reads

1

τ
(φ(Sn+1

ah
− sn+1

a ), wh) + bn
a(S

n+1
ah

, wh) − b̃n+1
a (sn+1

a , wh) = 1

τ
(φ(Sn

ah
− sn

a), wh)

+ f n
a (wh) − f̃ n+1

a (wh) + σa(wh). (7.28)
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28 G. SOSA JONES ET AL.

Owing to (7.6b) and (7.7b), this is equivalent to

1

τ
(φ(Sn+1

ah
− sn+1

a ), wh) + bn
a(S

n+1
ah

− sn+1
a , wh) = 1

τ
(φ(Sn

ah
− sn

a), wh)

+ C
(
τ + h + ‖|en+1

ph
‖| + ‖Sn

ah
− sn

a‖ + ‖Sn
vh

− sn
v‖

)
‖|wh‖| + σa(wh). (7.29)

Using (7.2) gives the result. �
Lemma 7.6 (Error estimates for the aqueous saturation). We have that, for all 0 � n � N − 1,

‖Sn+1
ah

− sn+1
a ‖2 + C̃τ‖|en+1

ah
‖|2 � (1 + Cτ)‖Sn

ah
− sn

a‖2 + Cτ‖Sn
vh

− sn
v‖2 + Cτ(τ 2 + h2), (7.30)

where C, C̃ > 0 are independent of h and τ .

Proof. Let wh = τen+1
ah

in (7.24):

φ(Sn+1
ah

− sn+1
a , en+1

ah
) + τbn

a(e
n+1
ah

, en+1
ah

) = φ(Sn
ah

− sn
a, en+1

ah
) + τbn

a(e
n+1
aπ

, en+1
ah

)

+ Cτ
(
τ + h + ‖|en+1

ph
‖| + ‖Sn

ah
− sn

a‖
)

‖|en+1
ah

‖| + τσa(e
n+1
ah

). (7.31)

Using the coercivity of bn
a (6.28) on the second term of the left-hand side, and the boundedness of bn

a
(6.32) on the first term of the right-hand side, we obtain

φ(Sn+1
ah

− sn+1
a , en+1

ah
) + Cα,sa

τ‖|en+1
ah

‖|2 � φ(Sn
ah

− sn
a, en+1

ah
) + CB∗,sa

τ‖|en+1
aπ

‖|∗‖|en+1
ah

‖|
+ Cτ

(
τ + h + ‖|en+1

ph
‖| + ‖Sn

ah
− sn

a‖
)

‖|en+1
ah

‖| + τσa(e
n+1
ah

). (7.32)

Note that (Sn+1
ah

− sn+1
a , en+1

ah
) = ‖Sn+1

ah
− sn+1

a ‖2 + (Sn+1
ah

− sn+1
a , en+1

aπ
) and (Sn

ah
− sn

a, en+1
ah

) = (Sn
ah

−
sn

a, Sn+1
ah

− sn+1
a ) + (Sn

ah
− sn

a, en+1
aπ

). Moreover,

(Sn
ah

− sn
a, Sn+1

ah
− sn+1

a ) = 1

2
‖Sn+1

ah
− sn+1

a ‖2 + 1

2
‖Sn

ah
− sn

a‖2 − 1

2
‖Sn+1

ah
− sn+1

a − Sn
ah

+ sn
a‖2,

where we have used that ab = 1
2 a2 + 1

2 b2 − 1
2 (a − b)2. Thus,

φ

2
‖Sn+1

ah
− sn+1

a ‖2 + Cα,sa
τ‖|en+1

ah
‖|2 � φ

2
‖Sn

ah
− sn

a‖2 + φ(Sn
ah

− Sn+1
ah

, en+1
aπ

) + φ(sn+1
a − sn

a, en+1
aπ

)

+ CB∗,sa
τ‖|en+1

aπ
‖|∗‖|en+1

ah
‖| + Cτ

(
τ + h + ‖|en+1

ph
‖| + ‖Sn

ah
− sn

a‖
)

‖|en+1
ah

‖| + τσa(e
n+1
ah

). (7.33)
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 29

The second term on the right-hand side is zero due to (7.3). Moreover, the third term on the right-hand
side is bounded above by Cτ‖en+1

aπ
‖ � Cτh2. Thus,

φ

2
‖Sn+1

ah
− sn+1

a ‖2 + Cα,sa
τ‖|en+1

ah
‖|2 � φ

2
‖Sn

ah
− sn

a‖2 + CB∗,sa
τ‖|en+1

aπ
‖|∗‖|en+1

ah
‖|

+ Cτ
(
τ + h + ‖|en+1

ph
‖| + ‖Sn

ah
− sn

a‖
)

‖|en+1
ah

‖| + τσa(e
n+1
ah

) + Cτh2. (7.34)

Note that, using the Cauchy–Schwarz inequality, we have τσa(e
n+1
ah

) � ‖βn+1
a ‖ ‖en+1

ah
‖. Moreover,

‖βn+1
a ‖2 =

∫
Ω

(
φ

∫ tn+1

tn
(t − tn)∂ttsa dt

)2
� C

∫
Ω

(∫ tn+1

tn
(t − tn)∂ttsa dt

)2

� C
∫

Ω

(∫ tn+1

tn
(t − tn)

2 dt
)(∫ tn+1

tn
(∂ttsa)

2 dt
)

� Cτ 3
∫

Ω

∫ tn+1

tn
(∂ttsa)

2 dt

� Cτ 4 max
t∈[tn,tn+1]

∫
Ω

(∂ttsa)
2

= Cτ 4 max
t∈[tn,tn+1]

‖∂ttsa‖2

� Cτ 4,

where we have used that sa ∈ C2(0, T; L2(Ω)). Using this, Young’s inequality on the right-hand side
and estimates (5.8), we obtain

φ

2
‖Sn+1

ah
− sn+1

a ‖2 + Cτ‖|en+1
ah

‖|2 � φ

2
‖Sn

ah
− sn

a‖2 + Cτ
(
τ 2 + h2 + ‖|en+1

ph
‖|2 + ‖Sn

ah
− sn

a‖2
)

.

(7.35)

Using the liquid pressure error estimates (7.20) gives the result. �

7.3 Vapor saturation

The following two lemmas state error estimates for the error en
vh

. Proofs are similar to those of
Lemmas 7.5 and 7.6 and thus are skipped for brevity.
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30 G. SOSA JONES ET AL.

Lemma 7.7 (Error equation for the vapor saturation). We have that, for all wh ∈ Xh,Γ sv
D

and all 0 � n �
N − 1, there exists a constant C > 0 independent of h and τ such that

1

τ
(φ(Sn+1

vh
− sn+1

v ), wh) + bn
v(e

n+1
vh

, wh) = 1

τ
(φ(Sn

vh
− sn

v), wh) + bn
v(e

n+1
vπ

, wh)

+ C
(
τ + h + ‖|en+1

ph
‖| + ‖Sn

ah
− sn

a‖ + ‖Sn
vh

− sn
v‖

)
‖|wh‖| + σv(wh), (7.36)

where

σv(wh) = 1

τ
(βn+1

v , wh), βn+1
v = φ

∫ tn+1

tn
(t − tn)∂ttsv dt. (7.37)

Lemma 7.8 (Error estimates for the vapor saturation). We have that, for all 0 � n � N − 1,

‖Sn+1
vh

− sn+1
v ‖2 + C̃τ‖|en+1

vh
‖|2 � (1 + Cτ)‖Sn

vh
− sn

v‖2 + Cτ‖Sn
ah

− sn
a‖2 + Cτ(τ 2 + h2), (7.38)

where C, C̃ > 0 are independent of h and τ .

7.4 Final estimates

In this section we combine the error estimates (7.20), (7.30) and (7.38), and use induction to give the
final error bounds. We first denote the errors made with the starting values by E (t0):

E (t0) = ‖S0
ah

− s0
a‖2 + ‖S0

vh
− s0

v‖2.

Theorem 7.1 There exists a constant C independent of h and τ such that the following error estimates
hold:

‖SN
ah

− sN
a ‖2 + ‖SN

vh
− sN

v ‖2 + Cτ
(
‖|eN

ph
‖|2 + ‖|eN

ah
‖|2 + ‖|eN

vh
‖|2

)
� eCT

(
E (t0) + C(τ 2 + h2)

)
.

(7.39)

Proof. Let An+1 = ‖Sn+1
ah

−sn+1
a ‖2+‖Sn+1

vh
−sn+1

v ‖2, Bn+1 = Cτ
(
‖|en+1

ph
‖|2 + ‖|en+1

ah
‖|2 + ‖|en+1

vh
‖|2

)
and D = Cτ(τ 2 + h2). Then, adding up all three estimates (7.20), (7.30) and (7.38), we obtain

An+1 + Bn+1 � (1 + Cτ)An + D.

Applying induction, we have that, for any 1 � n � N,

An + Bn � (1 + Cτ)nA0 + D
n−1∑
k=0

(1 + Cτ)k.
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DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA 31

We apply this with n = N. Since (1 + Cτ)k � (1 + Cτ)N � eCNτ = eCT we have

AN + BN � eCTA0 + D
n−1∑
k=0

eCT � eCTA0 + (N − 1)DeCT � eCT(A0 + C(τ 2 + h2)),

which concludes the proof. �
Corollary 7.1 Assume that the initial solutions S0

ah
, S0

vh
satisfy (4.20). Then we have

‖SN
ah

− sN
a ‖2 + ‖SN

vh
− sN

v ‖2 + Cτ
(
‖|eN

ph
‖|2 + ‖|eN

ah
‖|2 + ‖|eN

vh
‖|2

)
� CeCT

(
τ 2 + h2

)
. (7.40)

Proof. This follows from (7.39). �
Remark 7.1 Note that, as expected, the convergence rates in space are suboptimal. As we show in
Section 8, by setting τ = h2, we can recover second-order convergence. In order to obtain optimal rates
of convergence in space, a duality argument is needed.

8. Numerical results

For the numerical results, we consider manufactured solutions under different scenarios. The solution
of the problem is given by

p�(t, x, y) = 2 + xy2 + x2 sin(t + y), (8.1a)

sa(t, x, y) = 1 + 2x2y2 + cos(t + x)

8
, (8.1b)

sv(t, x, y) = 3 − cos(t + x)

8
. (8.1b)

The computational domain is taken as Ω = [0, 1] × [0, 1], and the final time of the problem is T = 1.
The porosity φ is taken to be constant equal to 0.2, while the absolute permeability κ is taken to be
constant equal to 1. The phase viscosities are set as

μ� = 0.75, μv = 0.25, μa = 0.5. (8.2)

The phase relative permeabilities and the capillary pressures are defined as (Bentsen & Anli, 1976; Chen
et al., 2006)

kr� = s�(s� + sa)(1 − sa), krv = s2
v , kra = s2

a, (8.3a)

pc,v = 3.9

ln(0.01)
ln(1.01 − sv), pc,a = 6.3

ln(0.01)
ln(sa + 0.01). (8.3b)

We consider Dirichlet boundary conditions on all the boundaries of the domain. The source terms q�, qv
and qa are computed according to the manufactured solutions and other parameters of the problem.
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Table 1 Rates of convergence for test case in Section 8.1, with τ = h

p� sa sv
h DOFs L2(Ω)-error Rate L2(Ω)-error Rate L2(Ω)-error Rate

0.25 64 3.18e−2 — 7.41e−3 — 5.84e−2 —
0.125 256 1.14e−2 1.48 4.67e−3 0.66 9.64e−3 2.60
0.0625 1,024 2.78e−3 2.04 2.27e−3 1.04 4.77e−3 1.02
0.03125 4,096 9.22e−4 1.59 1.18e−3 0.94 2.15e−3 1.15
0.015625 16,384 3.41e−4 1.44 6.01e−4 0.97 1.08e−3 1.01

Table 2 Rates of convergence for test case in Section 8.1, with τ = h2

p� sa sv
h DOFs L2(Ω)-error Rate L2(Ω)-error Rate L2(Ω)-error Rate

0.5 16 1.36e−1 — 6.48e−3 — 5.11e−2 —
0.25 64 3.40e−2 2.00 1.51e−3 2.10 3.37e−3 3.92
0.125 256 8.43e−3 2.01 3.74e−4 2.01 6.95e−4 2.28
0.0625 1,024 2.11e−3 2.00 9.35e−5 2.00 1.85e−4 1.91
0.03125 4,096 5.32e−4 1.99 2.32e−5 2.01 5.07e−5 1.87

Table 3 Rates of convergence for test case in Section 8.2, with τ = h

p� sa sv
h DOFs L2(Ω)-error Rate L2(Ω)-error Rate L2(Ω)-error Rate

0.25 64 3.20e−2 — 8.10e−3 — 6.05e−2 —
0.125 256 1.20e−2 1.42 5.06e−3 0.68 1.11e−2 2.45
0.0625 1,024 2.78e−3 2.11 2.42e−3 1.06 5.03e−3 1.14
0.03125 4,096 9.78e−4 1.51 1.27e−3 0.93 2.08e−3 1.27
0.015625 16,384 3.66e−4 1.42 6.47e−4 0.97 1.04e−3 1.00

8.1 Constant densities

First, we consider the case in which the phase densities are constant and taken as

ρ� = 3, ρv = 1, ρa = 5. (8.4)

For this test case, gravity is not considered. We take θp�
= θsa

= θsv
= 1 and αp�,e = αsa,e = αsv,e = 1

on all the edges of the mesh. The simulation is performed on six uniform meshes with an initial mesh
size of h = 0.5. We compute the L2-errors at the final time. In Tables 1 and 2, we show the results with
the time step τ taken equal to h and to h2, respectively. We observe that, as expected from the results in
Section 7, when τ = h, the scheme is first order. Moreover, we can recover second order when taking
τ = h2.

8.2 Gravity

Finally, we consider the effect of gravity. We take g = [0 − 0.1]T, and the phase densities as taken
as in (8.4). The simulation is performed on six uniform meshes with an initial mesh size of h = 0.5.
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Table 4 Rates of convergence for test case in Section 8.2, with τ = h2

p� sa sv
h DOFs L2(Ω)-error Rate L2(Ω)-error Rate L2(Ω)-error Rate

0.5 16 1.36e−1 — 6.53e−3 — 5.50e−2 —
0.25 64 3.43e−2 1.99 1.56e−3 2.07 3.72e−3 3.89
0.125 256 8.47e−3 2.02 3.79e−4 2.04 6.55−4 2.51
0.0625 1,024 2.13e−3 1.99 9.51e−5 1.99 1.81e−4 1.86
0.03125 4,096 5.35e−4 1.99 2.37e−5 2.00 5.03e−5 1.85

We compute the L2-errors at the final time. In Tables 3 and 4, we show the results with the time step τ

taken equal to h and to h2, respectively. We observe that, as expected from the results in Section 7, when
τ = h, the scheme is first order. Moreover, we can recover second order when taking τ = h2.

9. Conclusions

We presented and analyzed a first-order discontinuous Galerkin method for the incompressible three-
phase flow problem in porous media. Our method does not require a subiteration scheme, which makes
it computationally cheaper. We obtained a priori error estimates by assuming Lipschitz continuity of
the coefficients. The numerical test cases show, under different scenarios, that our scheme is first-order
convergent. For future work, we would like to extend the numerical analysis to variable density flow
and to a second-order scheme by using a BDF2 time stepping. Moreover, we plan to extend this scheme
to the black oil problem where mass transfer can occur between the liquid and vapor phases and study
the performance of such methods on setups that include wells or viscous fingering effects (Bangerth
et al., 2006; Li & Rivière, 2016).
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