
1

Supplementary material

Numerical method. The incompressible Navier-Stokes equations with variable density ρ and dynamical viscosity
η are formulated as follows:

∂tρ+ ∇·(ρu) = 0,

∂tm + ∇(m⊗ u)− 2∇·(ηε(u)) + ∇p = f ,

∇·u = 0,

where ε(u) := 1
2 (∇u + (∇u)T), m := ρu and f is a forcing term. To approximate the above system, we developed

a method similar to the one proposed in [14]. We use the momentum m as dependent variable and we rewrite the
diffusion operator ∇·(ν̄ε(m))+∇·(−ν̄ε(m)+ηε(u)) with ν̄ ≥ η/ρ. The first term is treated implicitly while the second
term is made explicit so the algorithm is suitable for spectral methods. The main novelty consists of enforcing the
incompressibility condition using an artificial compression method and not a pressure-correction projection method
as we did in [14]. As a consequence, a term ∇(∇·u) appears in the momentum equation which is treated like the
diffusion operator. More precisely, it is rewritten ∇( 1

ρ̄∇·m) + ∇(− 1
ρ̄∇·m + ∇·u) with ρ̄ ≤ ρ. The first term is

treated implicitly while the second term is made explicit.
Convergence study. We perform two sets of tests that use the immiscible fluid pair Ga-Hg to show the convergence

properties of the above numerical method. We recall that the physical properties of the fluids are summarized in
Table I of the article. All the tests reported in the following are performed on a cell of size R = H1 = H2 = 2 cm.

The first series of tests consists of studying a hydrodynamic setting where we initialize the problem with a small
amplitude gravity wave (m,n) = (1, 1). It allows us to compare the frequency of oscillations ω and the viscous
damping λvisc we obtain numerically with the theoretical values obtained using the linear theory described in [8].
The tests are performed on three uniform grids of typical mesh size h ∈ {10−3, 5 × 10−4, 2.5 × 10−4} using various
time steps δt ∈ {2, 1, 0.5, 0.25}ms and a final time T = 5 s. The results are summarized in Table I and show that the
algorithm converges. Figure 1 (left) displays the time evolution of the kinetic energy of the azimuthal Fourier mode
m = 1 for various meshes. The viscous damping λvisc is computed by using a linear fit between the maxima of the
kinetic energy of the Fourier mode m = 1 over each oscillation. The relative error in viscous damping remains in the
range 3% − 15% even for the time step δt = 0.25 ms. This leads us to consider a smaller time step for the following
tests.

mesh size h in mm 0.5 0.25 0.125
time step δt in ms 2 1 0.5 0.25 2 1 0.5 0.25 2 1 0.5 0.25

ω in s−1 15.3 16.7 17.4 17.8 15.3 16.8 17.6 18.0 15.4 16.8 17.6 18.1
Relative Error eω 14.8E-2 7.0E-2 3.1E-2 0.8E-2 14.8E-2 6.4E-2 1.9E-2 0.3E-2 14.2E-2 6.4E-2 1.9E-2 0.8E-2

λvisc in s−1 -0.226 -0.164 -0.131 -0.118 -0.208 -0.161 -0.130 -0.113 -0.198 -0.158 -0.139 -0.126
Relative Error eλvisc 1.05 4.9E-1 1.9E-1 7.3E-2 8.9E-1 4.6E-1 1.8E-1 2.7E-2 8.0E-1 4.4E-1 2.6E-1 1.5E-1

TABLE I: Convergence tests on hydrodynamic setting using 16 real Fourier modes. The theoretical frequency is ωth = 17.95 s−1

and the theoretical viscous damping is λvisc = −0.110 s−1.

The second series of tests focuses on the magnetohydrodynamic (MHD) set up described in the section ”Numerical
simulations”. We show here that using the time step δt = 0.1 ms in the numerical simulations allows us to approximate
correctly the dynamics of the problem. We recall that to capture the viscous damping, we need to resolve viscous
boundary layers as thin as 0.08 mm. This leads us to perform tests on a nonuniform grid with a mesh size h = 0.5 mm
near the top/bottom of the cell (z = ±2 cm) where the flow magnitude is small and h = 0.075 mm near the plane
z = 0. We run three sets of tests with J ∈ {1.5, 2, 3} × 105 Am−2, Bz = 15 mT, time step δt ∈ {0.25, 0.1}ms and the
final time T = 5 s. The results are summarized in Table II and show that the magnetohydrodynamic simulations are
well resolved when using the time step δt = 0.1ms and a nonuniform mesh size h = 0.5− 0.075 mm. The evolution of
the kinetic energy of the Fourier mode m = 1 for J = 3× 105 Am−2 is displayed in semi-log scale in Figure 1 (right).
It is used to compute the growth rate λ via linear fit.
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FIG. 1: Time evolution of the kinetic energy associated to the Fourier mode m = 1. (left) Hydrodynamic setting for various
mesh sizes h in mm and the time step δt = 0.25ms. (right) MHD setting with J = 3×105 Am−2, Bz = 15mT, h = 0.5−0.075mm
and δt = 10−4s. The energy is plotted in semi-log scale.

J in 105 Am−2 1.5 2 3
time step δt in ms 0.25 0.1 0.25 0.1 0.25 0.1

λ in s−1 0.0325 0.0436 0.0845 0.0958 0.1800 0.2003
Relative Error eλ 1.9E-1 8.0E-2 9.5E-2 2.6E-2 9.8E-2 3.7E-3

TABLE II: Convergence tests on magnetohydrodynamic setting using 32 real Fourier modes for various values of J with
Bz = 15mT. The theoretical growth rate λ is respectively {0.040, 0.093, 0.200} for J in {1.5, 2, 3}105Am−2. Nonuniform mesh
size with h = 0.5mm near z = ±2 cm and h = 0.075mm near z = 0.


