Section 8.3 Hyperbolas

Definition: A *hyperbola* is the set of all points, the difference of whose distances from two fixed points is constant. Each fixed point is called a *focus* (plural = *foci*).

The *focal axis* is the line passing through the foci.

Basic “vertical” hyperbola:

- **Equation:** \(\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1 \)
- **Asymptotes:** \(y = \pm \frac{a}{b} x \)
- **Foci:** \((0, \pm c) \), where \(c^2 = a^2 + b^2 \)
- **Vertices:** \((0, \pm a) \)
- **Eccentricity:** \(\frac{c}{a} \) (\(> 1 \))

Basic “horizontal” hyperbola:

- **Equation:** \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \)
- **Asymptotes:** \(y = \pm \frac{b}{a} x \)
- **Foci:** \((\pm c, 0) \), where \(c^2 = a^2 + b^2 \)
- **Vertices:** \((\pm a, 0) \)
- **Eccentricity:** \(\frac{c}{a} \) (\(> 1 \))
Note: The **transverse axis** is the line segment joining the two vertices. The **conjugate axis** is the line segment perpendicular to the transverse axis, passing through the center and extending a distance \(b\) on either side of the center. (These terms will make more sense after we do the graphing examples.)

The **conjugate axis** of the hyperbola is the line segment through the center of the hyperbola and perpendicular to the transverse axis with endpoints \((0,-b)\) and \((0, b)\).

\[
\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1
\]

Center: \((0,0)\)

Foci: \((-c, 0)\) and \((c, 0)\), where \(c^2 = a^2 + b^2\)

Vertices: \(V_1(-a,0)\) and \(V_2(a,0)\)

Transverse Axis: \(V_1V_2\) \hspace{1cm} \text{Length of Transverse Axis:} \ 2a

Conjugate Axis: \(AB\) \hspace{1cm} \text{Length of Conjugate Axis:} \ 2b

The **eccentricity** of a hyperbola is given by the formula \(e = \frac{c}{a}\).

The lines \(y = \frac{b}{a}x\) and \(y = -\frac{b}{a}x\) are **slant asymptotes** for the hyperbola since it can be shown that as \(|x|\) becomes large, \(y \to \pm\frac{b}{a}x\).
Graphing hyperbolas:

To graph a hyperbola with center at the origin:

- Rearrange into the form \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) or \(\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1 \).

- Decide if it’s a “horizontal” or “vertical” hyperbola.
 - If \(x^2 \) comes first, it’s horizontal (vertices are on \(x \)-axis).
 - If \(y^2 \) comes first, it’s vertical (vertices are on \(y \)-axis).

- Use the square root of the number under \(x^2 \) to determine how far to measure in \(x \)-direction.

- Use the square root of the number under \(y^2 \) to determine how far to measure in \(y \)-direction.

- Draw a box with these measurements.

- Draw diagonals through the box. These are the asymptotes. Use the dimensions of the box to determine the slope and write the equations of the asymptotes.

- Put the vertices at the edge of the box on the correct axis. Then draw a hyperbola, making sure it approaches the asymptotes smoothly.

- \(c^2 = a^2 + b^2 \) where \(a^2 \) and \(b^2 \) are the denominators.

- The foci are located \(c \) units from the center, on the same axis as the vertices.

When graphing hyperbolas, you will need to find the orientation, center, values for \(a, b \) and \(c \), lengths of transverse and converse axes, vertices, foci, equations of the asymptotes, and eccentricity.
Example 1: Find all relevant information and graph $\frac{x^2}{36} - \frac{y^2}{4} = 1$.

Vertices:
Foci:
Eccentricity:
Transverse Axis:
Length of transverse axis:
Conjugate axis:
Length of conjugate axis:
Slant Asymptotes:
Example 2: Find all relevant information and graph \(\frac{y^2}{4} - \frac{x^2}{9} = 1 \).

Vertices:

Foci:

Eccentricity:

Transverse Axis:

Length of transverse axis:

Conjugate axis:

Length of conjugate axis:

Slant Asymptotes:
The equation of a hyperbola with center not at the origin:
Center: (h, k)

\[
\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \text{ or } \frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1
\]

To graph a hyperbola with center not at the origin:

- Rearrange (complete the square if necessary) to look like

\[
\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \text{ or } \frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1.
\]

- Start at the center \((h, k)\) and then graph it as before.

- To write down the equations of the asymptotes, start with the equations of the asymptotes for the similar hyperbola with center at the origin. Then replace \(x\) with \(x-h\) and replace \(y\) with \(y-k\).

Example 3: Write the equation in standard form, find all relevant information and graph

\[9x^2 - 16y^2 - 18x + 96y = 279.\]
Example 4: Write an equation of the hyperbola with center at (-2, 3), one vertex is at (-2, -2) and eccentricity is 2.

Example 5: Write an equation of the hyperbola if the vertices are (4, 0) and (4, 8) and the asymptotes have slopes ±1.