Resistor Networks and Optimal Grids for Electrical Impedance Tomography with Partial Boundary Measurements

Alexander Mamonov ${ }^{1}$, Liliana Borcea², Vladimir Druskin ${ }^{3}$, Fernando Guevara Vasquez ${ }^{4}$

${ }^{1}$ Institute for Computational Engineering and Sciences, University of Texas at Austin,
${ }^{2}$ Rice University, ${ }^{3}$ Schlumberger-Doll Research, ${ }^{4}$ University of Utah

May 25, 2011

Support: Schlumberger R62860, NSF DMS-0604008, DMS-0934594.

Electrical Impedance Tomography

(1) EIT with resistor networks and optimal grids
(2) Conformal and quasi-conformal mappings
(3) Pyramidal networks and sensitivity grids

4 Two-sided problem and networks
(5) Numerical results

6 Conclusions

Electrical Impedance Tomography: Physical problem

- Physical problem: determine the electrical conductivity inside an object from the simultaneous measurements of voltages and currents on (a part of) its boundary
- Applications:
- Original: geophysical prospection
- More recent: medical imaging
- Both cases in practice have measurements restricted to a part of object's boundary

Electrode $=\perp$

Partial data EIT: mathematical formulation

- Two-dimensional problem $\Omega \subset \mathbb{R}^{2}$

- Equation for electric potential u

$$
\nabla \cdot(\sigma \nabla u)=0, \quad \text { in } \Omega
$$

- Dirichlet data $\left.u\right|_{\mathcal{B}}=\phi \in H^{1 / 2}(\mathcal{B})$ on $\mathcal{B}=\partial \Omega$
- Dirichlet-to-Neumann (DtN) map $\Lambda_{\sigma}: H^{1 / 2}(\mathcal{B}) \rightarrow H^{-1 / 2}(\mathcal{B})$

$$
\Lambda_{\sigma} \phi=\left.\sigma \frac{\partial u}{\partial \nu}\right|_{\mathcal{B}}
$$

Partial data case:

- Split the boundary $\mathcal{B}=\mathcal{B}_{A} \cup \mathcal{B}_{l}$, accessible \mathcal{B}_{A}, inaccessible \mathcal{B}_{l}
- Dirichlet data: $\operatorname{supp} \phi_{A} \subset \mathcal{B}_{A}$
- Measured current flux: $J_{A}=\left.\left(\Lambda_{\sigma} \phi_{A}\right)\right|_{\mathcal{B}_{A}}$
- Partial data EIT: find σ given all pairs $\left(\phi_{A}, J_{A}\right)$

Existence, uniqueness and stability

Existence and uniqueness:

- Full data: solved completely for any positive $\sigma \in L^{\infty}(\Omega)$ in 2D (Astala, Päivärinta, 2006)
- Partial data: for $\sigma \in C^{4+\alpha}(\bar{\Omega})$ and an arbitrary open \mathcal{B}_{A} (Imanuvilov, Uhlmann, Yamamoto, 2010)
Stability (full data):
- For $\sigma \in L^{\infty}(\Omega)$ the problem is unstable (Alessandrini, 1988)
- Logarithmic stability estimates (Barcelo, Faraco, Ruiz, 2007) under certain regularity assumptions

$$
\left\|\sigma_{1}-\sigma_{2}\right\|_{\infty} \leq C\left|\log \left\|\Lambda_{\sigma_{1}}-\Lambda_{\sigma_{2}}\right\|_{H^{1 / 2}(\mathcal{B}) \rightarrow H^{-1 / 2}(\mathcal{B})}\right|^{-a}
$$

- The estimate is sharp (Mandache, 2001), additional regularity of σ does not help
- Exponential ill-conditioning of the discretized problem
- Resolution is severely limited by the noise, regularization is required

Numerical methods for EIT

(1) Linearization: Calderon's method, one-step Newton, backprojection.
(2) Optimization: typically output least squares with regularization.
(3) Layer peeling: find σ close to \mathcal{B}, peel the layer, update Λ_{σ}, repeat.
(4) D-bar method: non-trivial implementation.
(5) Resistor networks and optimal grids

- Uses the close connection between the continuum inverse problem and its discrete analogue for resistor networks
- Fit the measured continuum data exactly with a resistor network
- Interpret the resistances as averages over a special (optimal) grid
- Compute the grid once for a known conductivity (constant)
- Optimal grid depends weakly on the conductivity, grid for constant conductivity can be used for a wide range of conductivities
- Obtain a pointwise reconstruction on an optimal grid
- Use the network and the optimal grid as a non-linear preconditioner, to improve the reconstruction using a single step of traditional (regularized) Gauss-Newton iteration

Finite volume discretization and resistor networks

$$
\begin{aligned}
\gamma_{i, j+1 / 2}^{(1)} & =\frac{L\left(P_{i+1 / 2, j+1 / 2}, P_{i-1 / 2, j+1 / 2}\right)}{L\left(P_{i, j+1}, P_{i, j}\right)} \\
\gamma_{i, j+1 / 2} & =\sigma\left(P_{i, j+1 / 2}\right) \gamma_{i, j+1 / 2}^{(1)}
\end{aligned}
$$

- Finite volume discretization, staggered grid
- Kirchhoff matrix
$K=A \operatorname{diag}(\gamma) A^{T} \succeq 0$
- Interior I, boundary $B,|B|=n$
- Potential u is γ-harmonic $K_{l,:} u=0, u_{B}=\phi$
- Discrete DtN map $\wedge_{\gamma} \in \mathbb{R}^{n \times n}$
- Schur complement: $\Lambda_{\gamma}=K_{B B}-K_{B I} K_{\| I}^{-1} K_{I B}$
- Discrete inverse problem: knowing \wedge_{γ}, A, find γ
- What network topologies are good?

Discrete inverse problem: circular planar graphs

- Planar graph 「
- I embedded in the unit disk \mathbb{D}
- B in cyclic order on $\partial \mathbb{D}$
- Circular pair $(P ; Q), P \subset B, Q \subset B$
- $\pi(\Gamma)$ all $(P ; Q)$ connected through Γ by disjoint paths
- Critical 「: removal of any edge breaks some connection in $\pi(\Gamma)$
- Uniquely recoverable from \wedge iff Γ is critical (Curtis, Ingerman, Morrow, 1998)
- Characterization of DtN maps of critical networks Λ_{γ}
- Symmetry $\Lambda_{\gamma}=\Lambda_{\gamma}^{T}$
- Conservation of current

$$
\wedge_{\gamma} \mathbf{1}=\mathbf{0}
$$

- Total non-positivity $\operatorname{det}\left[-\Lambda_{\gamma}(P ; Q)\right] \geq 0$

Discrete vs. continuum

- Measurement (electrode) functions $\chi_{j}, \operatorname{supp} \chi_{j} \subset \mathcal{B}_{A}$
- Measurement matrix $\mathcal{M}_{n}\left(\Lambda_{\sigma}\right) \in \mathbb{R}^{n \times n}:\left[\mathcal{M}_{n}\left(\Lambda_{\sigma}\right)\right]_{i, j}=\int_{\mathcal{B}} \chi_{i} \Lambda_{\sigma} \chi_{j} d S, i \neq j$
- $\mathcal{M}_{n}\left(\Lambda_{\sigma}\right)$ has the properties of a DtN map of a resistor network (Morrow, Ingerman, 1998)
- How to interpret γ obtained from $\Lambda_{\gamma}=\mathcal{M}_{n}\left(\Lambda_{\sigma}\right)$?
- From finite volumes define the reconstruction mapping $\mathcal{Q}_{n}\left[\Lambda_{\gamma}\right]: \sigma^{\star}\left(P_{\alpha, \beta}\right)=\frac{\gamma_{\alpha, \beta}}{\gamma_{\alpha, \beta}^{(1)}}$, piecewise linear interpolation away from $P_{\alpha, \beta}$
- Optimal grid nodes $P_{\alpha, \beta}$ are obtained from $\gamma_{\alpha, \beta}^{(1)}$, a solution of the discrete problem for constant conductivity $\Lambda_{\gamma^{(1)}}=\mathcal{M}_{n}\left(\Lambda_{1}\right)$.
- The reconstruction is improved using a single step of preconditioned Gauss-Newton iteration with an initial guess σ^{\star}

$$
\min _{\sigma}\left\|\mathcal{Q}_{n}\left[\mathcal{M}_{n}\left(\Lambda_{\sigma}\right)\right]-\sigma^{\star}\right\|
$$

Optimal grids in the unit disk: full data

$\mathrm{m}=5, \mathrm{~m}_{1 / 2}=1, \mathrm{n}=25$

- Tensor product grids uniform in θ, adaptive in r
- Layered conductivity $\sigma=\sigma(r)$
- Admittance $\wedge_{\sigma} e^{i k \theta}=R(k) e^{i k \theta}$
- For $\sigma \equiv 1 R(k)=|k|$,
$\Lambda_{1}=\sqrt{-\frac{\partial^{2}}{\partial \theta^{2}}}$
- Discrete analogue

$$
\mathcal{M}_{n}\left(\Lambda_{1}\right)=\sqrt{\operatorname{circ}(-1,2,-1)}
$$

- Discrete admittance $R_{n}(\lambda)=$ 1
$\frac{1}{\frac{1}{\gamma_{1}}+\frac{1}{\widehat{\gamma}_{2} \lambda^{2}+\ldots+\frac{1}{\widehat{\gamma}_{m+1} \lambda^{2}+\gamma_{m+1}}}}$
- Rational interpolation

$$
R(k)=\frac{k}{\omega_{k}^{(n)}} R_{n}\left(\omega_{k}^{(n)}\right)
$$

- Optimal grid $R_{n}^{(1)}\left(\omega_{k}^{(n)}\right)=\omega_{k}^{(n)}$
- Closed form solution available (Biesel, Ingerman, Morrow, Shore, 2008)
- Vandermonde-like system, exponential ill-conditioning

Transformation of the EIT under diffeomorphisms

- Optimal grids were used successfully to solve the full data EIT in \mathbb{D}
- Can we reduce the partial data problem to the full data case?
- Conductivity under diffeomorphisms G of Ω : push forward $\widetilde{\sigma}=G_{*}(\sigma)$, $\widetilde{u}(x)=u\left(G^{-1}(x)\right)$,

$$
\widetilde{\sigma}(x)=\left.\frac{G^{\prime}(y) \sigma(y)\left(G^{\prime}(y)\right)^{T}}{\left|\operatorname{det} G^{\prime}(y)\right|}\right|_{y=G^{-1}(x)}
$$

- Matrix valued $\widetilde{\sigma}(x)$, anisotropy!
- Anisotropic EIT is not uniquely solvable
- Push forward for the DtN: $\left(g_{*} \Lambda_{\sigma}\right) \phi=\Lambda_{\sigma}(\phi \circ g)$, where $g=\left.G\right|_{\mathcal{B}}$
- Invariance of the DtN: $g_{*} \Lambda_{\sigma}=\Lambda_{G_{*} \sigma}$
- Push forward, solve the EIT for $g_{*} \wedge_{\sigma}$, pull back
- Must preserve isotropy, $G^{\prime}(y)\left(G^{\prime}(y)\right)^{T}=I \Rightarrow$ conformal G
- Conformal automorphisms of the unit disk are Möbius transforms

Conformal automorphisms of the unit disk

$F: \theta \rightarrow \tau, G: \tau \rightarrow \theta$. Primary \times, dual $\circ, n=13, \beta=3 \pi / 4$.
Positions of point-like electrodes prescribed by the mapping.

Conformal mapping grids: limiting behavior

Primary \times, dual \circ, limits ∇,

$$
n=37, \beta=3 \pi / 4
$$

- No conformal limiting mapping
- Single pole moves towards $\partial \mathbb{D}$ as $n \rightarrow \infty$
- Accumulation around $\tau=0$
- No asymptotic refinement in angle as $n \rightarrow \infty$
- Hopeless?
- Resolution bounded by the instability, $n \rightarrow \infty$ practically unachievable

Quasi-conformal mappings

- Conformal w, Cauchy-Riemann: $\frac{\partial w}{\partial \bar{z}}=0$, how to relax?
- Quasi-conformal w, Beltrami: $\frac{\partial w}{\partial \bar{z}}=\mu(z) \frac{\partial w}{\partial z}$
- Push forward $w_{*}(\sigma)$ is no longer isotropic
- Anisotropy of $\widetilde{\sigma} \in \mathbb{R}^{2 \times 2}$ is $\kappa(\widetilde{\sigma}, z)=\frac{\sqrt{L(z)}-1}{\sqrt{L(z)}+1}, L(z)=\frac{\lambda_{1}(z)}{\lambda_{2}(z)}$

Lemma

Anisotropy of the push forward is given by $\kappa\left(w_{*}(\sigma), z\right)=|\mu(z)|$.

- Mappings with fixed values at \mathcal{B} and $\min \|\mu\|_{\infty}$ are extremal
- Extremal mappings are Teichmüller (Strebel, 1972)

$$
\mu(z)=\|\mu\|_{\infty} \frac{\overline{\phi(z)}}{|\phi(z)|}, \phi \text { holomorphic in } \Omega
$$

Computing the extremal quasi-conformal mappings

- Polygonal Teichmüller mappings
- Polygon is a unit disk with N marked points on the boundary circle
- Can be decomposed as

$$
W=\psi^{-1} \circ A_{K} \circ \Phi
$$

where $\psi=\int \sqrt{\psi(z)} d z, \Phi=\int \sqrt{\phi(z)} d z, A_{K}$ - constant affine stretching

- ϕ, ψ are rational with poles and zeros of order one on $\partial \mathbb{D}$
- Recall Schwarz-Christoffel $s(z)=a+b \int \prod_{k=1}^{N}\left(1-\frac{\zeta}{z_{k}}\right)^{\alpha_{k}-1} d \zeta$
- Ψ, Φ are Schwarz-Christoffel mappings to rectangular polygons

Polygonal Teichmüller mapping: the grids

The optimal grid with $n=15$ under the Teichmüller mappings. Left: $K=0.8$; right: $K=0.66$.

EIT with pyramidal networks: motivation

- Pyramidal (standard) graphs Σ_{n}

- Topology of a network accounts for the inaccessible boundary
- Criticality and reconstruction algorithm proved for pyramidal networks
- How to obtain the grids?
- Grids have to be purely 2D (no tensor product)
- Use the sensitivity analysis (discrete an continuum) to obtain the grids
- General approach works for any simply connected domain

Special solutions and recovery

Theorem

Pyramidal network $\left(\Sigma_{n}, \gamma\right), n=2 m$ is uniquely recoverable from its DtN map $\wedge^{(n)}$ using the layer peeling algorithm. Conductances are computed with

$$
\begin{aligned}
& \gamma\left(e_{p, h}\right)=\left(\Lambda_{p, E(p, h)}+\Lambda_{p, C} \Lambda_{Z, C}^{-1} \Lambda_{Z, E(p, h)}\right) \mathbf{1}_{E(p, h)}, \\
& \gamma\left(e_{p, v}\right)=\left(\Lambda_{p, E(p, v)}+\Lambda_{p, C} \Lambda_{Z, C}^{-1} \Lambda_{Z, E(p, v)}\right) \mathbf{1}_{E(p, v)}
\end{aligned}
$$

The DtN map is updated using

$$
\Lambda^{(n-2)}=-K_{S}-K_{S B} P^{T}\left(P\left(\Lambda^{(n)}-K_{B B}\right) P^{T}\right)^{-1} P K_{B S}
$$

The formulas are applied recursively to $\Sigma_{n}, \Sigma_{n-2}, \ldots, \Sigma_{2}$.

Sensitivity grids: motivation

A.V. Mamonov (UT Austin, ICES)

Sensitivity grids

Sensitivity grid, $n=16$.

- Proposed by F. Guevara Vasquez
- Sensitivity functions

$$
\frac{\delta \gamma_{\alpha, \beta}}{\delta \sigma}=\left[\left(\frac{\partial \Lambda_{\gamma}}{\partial \gamma}\right)^{-1} \mathcal{M}_{n}\left(\frac{\delta \Lambda_{\sigma}}{\delta \sigma}\right)\right]_{\alpha, \beta}
$$

where $\Lambda_{\gamma}=\mathcal{M}_{n}\left(\Lambda_{\sigma}\right)$

- The optimal grid nodes $P_{\alpha, \beta}$ are roughly

$$
P_{\alpha, \beta} \approx \arg \max _{x \in \Omega} \frac{\delta \gamma_{\alpha, \beta}}{\delta \sigma}(x)
$$

- Works for any domain and any network topology!

Two sided problem and networks

Two-sided problem: \mathcal{B}_{A} consists of two disjoint segments of the boundary. Example: cross-well measurements.

- Two-sided optimal grid problem is known to be irreducible to 1D (Druskin, Moskow)
- Special choice of topology is needed
- Network with a two-sided graph T_{n} is proposed (left: $n=10$)
- Network with graph T_{n} is critical and well-connected
- Can be recovered with layer peeling
- Grids are computed using the sensitivity analysis exactly like in the pyramidal case

Sensitivity grids for the two-sided problem

Two-sided graph T_{n} lacks the top-down symmetry. Resolution can be doubled by also fitting the data with a network turned upside-down.

Left: single optimal grid; right: double resolution grid; $n=16$.

Numerical results: test conductivities

Numerical results: smooth $\sigma+$ conformal

Numerical results: smooth $\sigma+$ quasiconformal

Numerical results: smooth $\sigma+$ pyramidal

Numerical results: smooth $\sigma+$ two-sided

Left: piecewise linear; right: one step Gauss-Newton, $n=16, \mathcal{B}_{A}$ is solid red.

三

Numerical results: piecewise constant $\sigma+$ conformal

$$
\beta=0.65 \pi, n=17, \omega_{0}=-3 \pi / 10 .
$$

三

Numerical results: piecewise constant $\sigma+$ quasiconf.

Numerical results: piecewise constant $\sigma+$ pyramidal

Numerical results: piecewise constant $\sigma+$ two-sided

Numerical results: high contrast conductivity

Test conductivity, contrast 10^{4}.

- We solve the full non-linear problem
- No artificial regularization
- No linearization
- Big advantage: can capture really high contrast behavior
- Test case: piecewise constant conductivity, contrast 10^{4}
- Most existing methods fail
- Our method: relative error less than 5\% away from the interface

Numerical results: high contrast conductivity

High contrast reconstruction, $n=14, \omega_{0}=-11 \pi / 20$, contrast 10^{4}. Left: reconstruction; right: pointwise relative error.

Numerical results: EIT in the half plane

Can be used in different domains. Example: half plane, smooth σ.

Left: true; right: reconstruction, $n=16$.

Numerical results: EIT in the half plane

Can be used in different domains. Example: half plane, layered σ.

Conclusions

Two distinct computational approaches to the partial data EIT:
(1) Circular networks and (quasi)conformal mappings

- Uses existing theory of optimal grids in the unit disk
- Tradeoff between the uniform resolution and anisotropy
- Conformal: isotropic solution, rigid electrode positioning, grid clustering leads to poor resolution
- Quasiconformal: artificial anisotropy, flexible electrode positioning, uniform resolution, some distortions
- Geometrical distortions can be corrected by preconditioned Gauss-Newton
(2) Sensitivity grids and special network topologies (pyramidal, two-sided)
- No anisotropy or distortions due to (quasi)conformal mappings
- Theory of discrete inverse problems developed
- Sensitivity grids work well
- Independent of the domain geometry

References

- Uncertainty quantification for electrical impedance tomography with resistor networks, L. Borcea, F. Guevara Vasquez and A.V. Mamonov. Preprint: arXiv:1105.1183 [math-ph]
- Pyramidal resistor networks for electrical impedance tomography with partial boundary measurements, L. Borcea, V. Druskin, A.V. Mamonov and F. Guevara Vasquez. Inverse Problems 26(10):105009, 2010.
- Circular resistor networks for electrical impedance tomography with partial boundary measurements, L. Borcea, V. Druskin and A.V. Mamonov. Inverse Problems 26(4):045010, 2010.
- Electrical impedance tomography with resistor networks, L. Borcea, V. Druskin and F. Guevara Vasquez. Inverse Problems 24(3):035013, 2008.

