Nonlinear acoustic imaging via reduced order model backprojection

Alexander V. Mamonov ${ }^{1}$,
Vladimir Druskin ${ }^{2}$, Andrew Thaler ${ }^{3}$ and Mikhail Zaslavsky ${ }^{2}$

${ }^{1}$ University of Houston,
${ }^{2}$ Schlumberger-Doll Research Center,
${ }^{3}$ The Mathworks, Inc.

Motivation: seismic oil and gas exploration

- Seismic exploration

- Seismic waves in the subsurface induced by sources (shots)
- Measurements of seismic signals on the surface or in a well bore
- Determine the acoustic or elastic parameters of the subsurface

Forward model: acoustic wave equation

- Consider an acoustic wave equation in the time domain

$$
u_{t t}=\mathbf{A} u \quad \text { in } \Omega, \quad t \in[0, T]
$$

with initial conditions

$$
\left.u\right|_{t=0}=u_{0},\left.\quad u_{t}\right|_{t=0}=0
$$

- The spatial operator $\mathbf{A} \in \mathbb{R}^{N \times N}$ is a fine grid discretization of

$$
A(c)=c^{2} \Delta
$$

with the appropriate boundary conditions

- The solution is

$$
u(t)=\cos (t \sqrt{-\mathbf{A}}) u_{0}
$$

Source model

- We stack all p sources in a single tall skinny matrix $\mathbf{S} \in \mathbb{R}^{N \times p}$ and introduce them in the initial condition

$$
\left.\mathbf{u}\right|_{t=0}=\mathbf{S},\left.\quad \mathbf{u}_{t}\right|_{t=0}=0
$$

- The solution matrix $\mathbf{u}(t) \in \mathbb{R}^{N \times p}$ is

$$
\mathbf{u}(t)=\cos (t \sqrt{-\mathbf{A}}) \mathbf{S}
$$

- We assume the form of the source matrix

$$
\mathbf{S}=q^{2}(\mathbf{A}) \mathbf{C E}
$$

where p columns of \mathbf{E} are point sources on the surface, $q^{2}(\omega)$ is the Fourier transform of the source wavelet and $\mathbf{C}=\operatorname{diag}(c)$

- Here we take $q^{2}(\omega)=e^{\sigma \omega}$ with small σ so that \mathbf{S} is localized near E

Receiver and data model

- For simplicity assume that the sources and receivers are collocated
- Then the receiver matrix $\mathbf{R} \in \mathbb{R}^{N \times p}$ is

$$
\mathbf{R}=\mathbf{C}^{-1} \mathbf{E}
$$

- Combining the source and receiver we get the data model

$$
\mathbf{F}(t ; c)=\mathbf{R}^{T} \cos (t \sqrt{-\mathbf{A}(c)}) \mathbf{S}
$$

a $p \times p$ matrix function of time

- The data model can be fully symmetrized

$$
\mathbf{F}(t)=\mathbf{B}^{T} \cos (t \sqrt{-\widehat{\mathbf{A}}}) \mathbf{B}
$$

with $\widehat{\mathbf{A}}=\mathbf{C} \boldsymbol{\Delta} \mathbf{C}$ and $\mathbf{B}=q(\widehat{\mathbf{A}}) \mathbf{E}$

Seismic inversion and imaging

(1) Seismic inversion: determine c from the knowledge of measured data $\mathbf{F}^{\star}(t)$ (full waveform inversion, FWI); highly nonlinear since $\mathbf{F}(\cdot ; c)$ is nonlinear in c

- Conventional approach: non-linear least squares (output least squares, OLS)

$$
\underset{c}{\operatorname{minimize}}\left\|\mathbf{F}^{\star}-\mathbf{F}(\cdot ; c)\right\|_{2}^{2}
$$

- Abundant local minima
- Slow convergence
- Low frequency data needed
(2) Seismic imaging: estimate c or its discontinuities given $\mathbf{F}(t)$ and also a smooth kinematic model c_{0}
- Conventional approach: linear migration (Kirchhoff, reverse time migration - RTM)
- Major difficulty: multiple reflections

Reduced order models

- The data is always discretely sampled, say uniformly at $t_{k}=k \tau$
- The choice of τ is very important, optimally we want τ around Nyquist rate
- The discrete data samples are

$$
\begin{aligned}
\mathbf{F}_{k} & =\mathbf{F}(k \tau)=\mathbf{B}^{T} \cos (k \tau \sqrt{-\widehat{\mathbf{A}}}) \mathbf{B}= \\
& =\mathbf{B}^{T} \cos (k \arccos (\cos \tau \sqrt{-\widehat{\mathbf{A}}})) \mathbf{B}=\mathbf{B}^{T} T_{k}(\mathbf{P}) \mathbf{B}
\end{aligned}
$$

where T_{k} is Chebyshev polynomial and the propagator is

$$
\mathbf{P}=\cos (\tau \sqrt{-\widehat{\mathbf{A}}})
$$

- We want a reduced order model (ROM) $\widetilde{\mathbf{P}}, \widetilde{\mathbf{B}}$ that fits the measured data

$$
\mathbf{F}_{k}=\mathbf{B}^{T} T_{k}(\mathbf{P}) \mathbf{B}=\widetilde{\mathbf{B}}^{T} T_{k}(\widetilde{\mathbf{P}}) \widetilde{\mathbf{B}}, \quad k=0,1, \ldots, 2 n-1
$$

Projection ROMs

- Projection ROMs are obtained from

$$
\widetilde{\mathbf{P}}=\mathbf{V}^{\top} \mathbf{P V}, \quad \widetilde{\mathbf{B}}=\mathbf{V}^{\top} \mathbf{B}
$$

where \mathbf{V} is an orthonormal basis for some subspace

- How do we get a ROM that fits the data?
- Consider a matrix of solution snapshots

$$
\mathbf{U}=\left[\mathbf{u}_{0}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{n-1}\right] \in \mathbb{R}^{N \times n p}, \quad \mathbf{u}_{k}=T_{k}(\mathbf{P}) \mathbf{B}
$$

Theorem (ROM data interpolation)

If $\operatorname{span}(\mathbf{V})=\operatorname{span}(\mathbf{U})$ and $\mathbf{V}^{\top} \mathbf{V}=\mathbf{I}$ then

$$
\mathbf{F}_{k}=\mathbf{B}^{T} T_{k}(\mathbf{P}) \mathbf{B}=\widetilde{\mathbf{B}}^{T} T_{k}(\widetilde{\mathbf{P}}) \widetilde{\mathbf{B}}, \quad k=0,1, \ldots, 2 n-1
$$

where $\widetilde{\mathbf{P}}=\mathbf{V}^{\top} \mathbf{P V} \in \mathbb{R}^{n p \times n p}$ and $\widetilde{\mathbf{B}}=\mathbf{V}^{\top} \mathbf{B} \in \mathbb{R}^{n p \times p}$.

ROM from measured data

- We do not know the solutions in the whole domain \mathbf{U} and thus \mathbf{V} is unknown
- How do we obtain the ROM from just the data \mathbf{F}_{k} ?
- The data does not give us \mathbf{U}, but it gives us the inner products!
- A basic property of Chebyshev polynomials is

$$
T_{i}(x) T_{j}(x)=\frac{1}{2}\left(T_{i+j}(x)+T_{|i-j|}(x)\right)
$$

- Then we can obtain

$$
\begin{aligned}
\left(\mathbf{U}^{T} \mathbf{U}\right)_{i, j} & =\mathbf{u}_{i}^{T} \mathbf{u}_{j}=\frac{1}{2}\left(\mathbf{F}_{i+j}+\mathbf{F}_{i-j}\right), \\
\left(\mathbf{U}^{T} \mathbf{P} \mathbf{U}\right)_{i, j} & =\mathbf{u}_{i}^{T} \mathbf{P} \mathbf{u}_{j}=\frac{1}{4}\left(\mathbf{F}_{j+i+1}+\mathbf{F}_{j-i+1}+\mathbf{F}_{j+i-1}+\mathbf{F}_{j-i-1}\right)
\end{aligned}
$$

ROM from measured data

- Suppose \mathbf{U} is orthogonalized by a block QR (Gram-Schmidt) procedure

$$
\mathbf{U}=\mathbf{V L}^{T} \text {, equivalently } \mathbf{V}=\mathbf{U L}^{-T}
$$

where \mathbf{L} is a block Cholesky factor of the Gramian $\mathbf{U}^{\top} \mathbf{U}$ known from the data

$$
\mathbf{U}^{T} \mathbf{U}=\mathbf{L L}^{T}
$$

- The projection is given by

$$
\widetilde{\mathbf{P}}=\mathbf{V}^{T} \mathbf{P} \mathbf{V}=\mathbf{L}^{-1}\left(\mathbf{U}^{T} \mathbf{P} \mathbf{U}\right) \mathbf{L}^{-T}
$$

where $\mathbf{U}^{T} \mathbf{P U}$ is also known from the data

- The use of Cholesky for orthogonalization is essential, (block) lower triangular structure is the linear algebraic equivalent of causality

Image from the ROM

- How to extract an image form the ROM?
- ROM is a projection, we can use backprojection
- If $\operatorname{span}(\mathbf{U})$ is suffiently rich, then columns of $\mathbf{V} \mathbf{V}^{T}$ should be good approximations of δ-functions, hence

$$
\mathbf{P} \approx \mathbf{V} \mathbf{V}^{T} \mathbf{P} \mathbf{V} \mathbf{V}^{T}=\mathbf{V} \widetilde{\mathbf{P}} \mathbf{V}^{T}
$$

- Problem: snapshots \mathbf{U} in the whole domain are unknown, so are orthogonalized snapshots V
- In imaging we have a rough idea of kinematics, i.e. we know approximately the travel times
- This is equivalent to knowing a kinematic model, a smooth non-reflective sound speed c_{0}
- Once c_{0} is fixed, we know everything associated with it

$$
\widehat{\mathbf{A}}_{0}, \quad \mathbf{P}_{0}, \quad \mathbf{U}_{0}, \quad \mathbf{V}_{0}, \quad \widetilde{\mathbf{P}}_{0}
$$

Approximate backprojection

- We take the backprojection $\mathbf{P} \approx \mathbf{V} \widetilde{\mathbf{P}} \mathbf{V}^{\top}$ and make another approximation replacing unknown \mathbf{V} with the kinematic model basis \mathbf{V}_{0} :

$$
\mathbf{P} \approx \mathbf{V}_{0} \widetilde{\mathbf{P}} \mathbf{V}_{0}^{T}
$$

- For the kinematic model we know the basis exactly

$$
\mathbf{P}_{0} \approx \mathbf{V}_{0} \widetilde{\mathbf{P}}_{0} \mathbf{V}_{0}^{T}
$$

- If δ_{x} is a δ-function centered at point x, then

$$
\mathbf{P} \delta_{x}=\cos (\tau \sqrt{-\widehat{\mathbf{A}}}) \delta_{x}=w(\tau)
$$

where $w(t)$ is a solution to

$$
w_{t t}=\widehat{\mathbf{A}} w, \quad w(0)=\delta_{x}, \quad w_{t}(0)=0
$$

i.e. it is a Green's function $G(x, \cdot, \tau)$

Green's function and imaging

- Diagonal entries of \mathbf{P} are Green's function evaluated at the same point

$$
G(x, x, \tau)=\delta_{x}^{T} \mathbf{P} \delta_{x}
$$

- By taking the diagonals of backprojections we may extract the approximate Green's functions
$G(\cdot, \cdot, \tau)-G_{0}(\cdot, \cdot, \tau)=\operatorname{diag}\left(\mathbf{P}-\mathbf{P}_{0}\right) \approx \operatorname{diag}\left(\mathbf{V}_{0}\left(\widetilde{\mathbf{P}}-\widetilde{\mathbf{P}}_{0}\right) \mathbf{V}_{0}^{T}\right)=\mathcal{I}$
- Approximation quality depends only on how well columns of $\mathbf{V V}_{0}^{T}$ and $\mathbf{V}_{0} \mathbf{V}_{0}^{T}$ approximate δ-functions
- It appears that \mathcal{I} works well as an imaging functional to image the discontinuities of c
- Despite the name "backprojection" our method is nonlinear in the data since obtaining $\widetilde{\mathbf{P}}$ from \mathbf{F}_{k} is a nonlinear procedure (block Lanczos and matrix inversion)

Simple example: layered model

True sound speed c

 sources/receivers (black \times)

- Constant velocity kinematic model $c_{0}=1500 \mathrm{~m} / \mathrm{s}$
- Multiple reflections from waves bouncing between layers and surface
- Each multiple creates an RTM artifact below actual layers

Backprojection: $c_{0}+\alpha \mathcal{I}$

RTM image

Why ROM backprojection imaging works?

- Suppression of multiples: implicit causal orhthogonalization (block Gram-Schmidt) of snapshots \mathbf{U} removes the "tail" with reflections and produces a focused, localized pulse
- Compare \mathbf{U} and \mathbf{V} for various times
- Approximation

$$
G(\cdot, \cdot, \tau)-G_{0}(\cdot, \cdot, \tau) \approx \operatorname{diag}\left(\mathbf{V}_{0}\left(\widetilde{\mathbf{P}}-\widetilde{\mathbf{P}}_{0}\right) \mathbf{V}_{0}^{T}\right)
$$

only works if columns of $\mathbf{V} \mathbf{V}_{0}^{T}$ and $\mathbf{V}_{0} \mathbf{V}_{0}^{T}$ are good approximations of δ-functions

- Plot columns of $\mathbf{V} \mathbf{V}_{0}^{T}$ and $\mathbf{V}_{0} \mathbf{V}_{0}^{T}$ for various points in the domain
- ROM computation resolves the dynamics fully, so image imperfections are mostly due to deficiencies of the kinematic model

Snapshot orthogonalization

Snapshots U

Orthogonalized snapshots V

Snapshot orthogonalization

Snapshots U

Orthogonalized snapshots V

$$
t=25 \tau
$$

$$
t=30 \tau
$$

$$
t=35 \tau
$$

Approximation of δ-functions

$\begin{array}{lllllllll}0.3 & 0.6 & 0.9 & 1.2 & 1.5 & 1.8 & 2.1 & 2.4 & 2.7\end{array}$

$y=345 m$
$y=510 m$
$y=675 m$

Approximation of δ-functions

Columns of $\mathbf{V}_{0} \mathbf{V}_{0}^{T}$

Columns of $\mathbf{V V}_{0}^{T}$

$y=840 m$
$\begin{array}{lllllllll}0.3 & 0.6 & 0.9 & 1.2 & 1.5 & 1.8 & 2.1 & 2.4 & 2.7\end{array}$

$y=1020 m$
$y=1185 m$

TiT

High contrast example: hydraulic fractures

True c

Backprojection image \mathcal{I}

- Important application: acoustic monitoring of hydraulic fracturing
- Multiple thin fractures (down to 1 cm in width, here 10 cm)
- Very high contrasts: $c=4500 \mathrm{~m} / \mathrm{s}$ in the surrounding rock, $c=1500 \mathrm{~m} / \mathrm{s}$ in the fluid inside fractures

High contrast example: hydraulic fractures

True c

RTM image

- Important application: acoustic monitoring of hydraulic fracturing
- Multiple thin fractures (down to 1 cm in width, here 10 cm)
- Very high contrasts: $c=4500 \mathrm{~m} / \mathrm{s}$ in the surrounding rock, $c=1500 \mathrm{~m} / \mathrm{s}$ in the fluid inside fractures

Large scale example: Marmousi model

- Standard Marmousi model, $13.5 \mathrm{~km} \times 2.7 \mathrm{~km}$
- Forward problem is discretized on a 15 m grid with $N=900 \times 180=162,000$ nodes
- Kinematic model c_{0} : smoothed out true c (465m horizontally, 315 m vertically)
- Time domain data sample rate $\tau=33.5 \mathrm{~ms}$, source frequency about $15 \mathrm{~Hz}, n=35$ data samples measured
- Number of sources/receivers $p=90$ uniformly distributed with spacing 150 m
- Data is split into 17 overlapping windows of 10 sources/receivers each (1.5km max offset)
- Reflecting boundary conditions
- No data filtering, everything used as is (surface wave, reflections from the boundaries, multiples)

Backprojection imaging: Marmousi model

$\begin{array}{ll}0.3 & 0.6 & 0.9 & 1.2 & 1.5 & 1.8 & 2.1 & 2.4 & 2.7 & 3 & 3.3 & 3.6 & 3.9 & 4.2 & 4.5 & 4.8 & 5.1 & 5.4 & 5.7 & 6 & 6.3 & 6.6 & 6.9 & 7.2 & 7.5 & 7.8 & 8.1 & 8.4 & 8.7 & 9 & 9.3 & 9.6 & 9.9 & 10.210 .510 .811 .111 .411 .7 & 12 & 12.312 .612 .913 .2\end{array}$

$\begin{array}{lllllllllllllllllllllllllllllllllllll}0.3 & 0.6 & 0.9 & 1.2 & 1.5 & 1.8 & 2.1 & 2.4 & 2.7 & 3 & 3.3 & 3.6 & 3.9 & 4.2 & 4.5 & 4.8 & 5.1 & 5.4 & 5.7 & 6 & 6.3 & 6.6 & 6.9 & 7.2 & 7.5 & 7.8 & 8.1 & 8.4 & 8.7 & 9 & 9.3 & 9.6 & 9.9 & 10.210 .510 .811 .111 .411 .7 & 12 & 12.312 .612 .913 .2\end{array}$

$\begin{array}{lll}0.3 & 0.6 & 0.9 & 1.2 & 1.5 & 1.8 & 2.1 & 2.4 & 2.7 & 3 & 3.3 & 3.6 & 3.9 & 4.2 & 4.5 & 4.8 & 5.1 & 5.4 & 5.7 & 6 & 6.3 & 6.6 & 6.9 & 7.2 & 7.5 & 7.8 & 8.1 & 8.4 & 8.7 & 9 & 9.3 & 9.6 & 9.9 & 10.210 .510 .811 .111 .411 .7 & 12 & 12.312 .612 .913 .2\end{array}$ Mamonov, Druskin, Thaler, Zaslavsky

Backprojection imaging

Backprojection imaging: Marmousi model

$\begin{array}{ll}0.3 & 0.6 & 0.9 & 1.2 & 1.5 & 1.8 & 2.1 & 2.4 & 2.7 & 3 & 3.3 & 3.6 & 3.9 & 4.2 & 4.5 & 4.8 & 5.1 & 5.4 & 5.7 & 6 & 6.3 & 6.6 & 6.9 & 7.2 & 7.5 & 7.8 & 8.1 & 8.4 & 8.7 & 9 & 9.3 & 9.6 & 9.9 & 10.210 .510 .811 .111 .411 .7 & 12 & 12.312 .612 .913 .2\end{array}$

$\begin{array}{ll}0.3 & 0.6 & 0.9 & 1.2 & 1.5 & 1.8 & 2.1 & 2.4 & 2.7 & 3 & 3.3 & 3.6 & 3.9 & 4.2 & 4.5 & 4.8 & 5.1 & 5.4 & 5.7 & 6 & 6.3 & 6.6 & 6.9 & 7.2 & 7.5 & 7.8 & 8.1 & 8.4 & 8.7 & 9 & 9.3 & 9.6 & 9.9 & 10.210 .510 .811 .111 .411 .7 & 12 & 12.312 .612 .913 .2\end{array}$

Marmousi backprojection image: well log

$0.30 .60 .91 .21 .51 .82 .12 .42 .7 \quad 3 \quad 3.33 .63 .94 .24 .54 .85 .15 .45 .7 \quad 6 \quad 6.36 .66 .97 .27 .57 .88 .18 .48 .7 \quad 9 \quad 9.39 .69 .910 .210 .510 .811 .111 .411 .71212 .312 .612 .913 .2$

0.30 .60 .91 .21 .51 .82 .12 .42 .733 .33 .63 .94 .24 .54 .85 .15 .45 .766 .36 .66 .97 .27 .57 .88 .18 .48 .799 .39 .69 .910 .210 .510 .811 .111 .411 .71212 .312 .612 .913 .2 $\mathrm{x}=4.50 \mathrm{~km}$

Backprojection imaging

Marmousi backprojection image: well log

$0.30 .60 .91 .21 .51 .82 .12 .42 .7 \quad 3 \quad 3.33 .63 .94 .24 .54 .85 .15 .45 .7 \quad 6 \quad 6.36 .66 .97 .27 .57 .88 .18 .48 .7 \quad 9 \quad 9.39 .69 .910 .210 .510 .811 .111 .411 .71212 .312 .612 .913 .2$
0.30 .60 .91 .21 .51 .82 .12 .42 .733 .33 .63 .94 .24 .54 .85 .15 .45 .766 .36 .66 .97 .27 .57 .88 .18 .48 .799 .39 .69 .910 .210 .510 .811 .111 .411 .71212 .312 .612 .913 .2 $\mathrm{X}=6.00 \mathrm{~km}$

Marmousi backprojection image: well log

$0.30 .60 .91 .21 .51 .82 .12 .42 .7 \quad 3 \quad 3.33 .63 .94 .24 .54 .85 .15 .45 .7666 .36 .66 .97 .27 .57 .88 .18 .48 .7 \quad 9 \quad 9.39 .69 .910 .210 .510 .811 .111 .411 .71212 .312 .612 .913 .2$
0.30 .60 .91 .21 .51 .82 .12 .42 .733 .33 .63 .94 .24 .54 .85 .15 .45 .766 .36 .66 .97 .27 .57 .88 .18 .48 .799 .39 .69 .910 .210 .510 .811 .111 .411 .71212 .312 .612 .913 .2 $\mathrm{X}=6.90 \mathrm{~km}$

Marmousi backprojection image: well log

$0.30 .60 .91 .21 .51 .82 .12 .42 .7 \quad 3 \quad 3.33 .63 .94 .24 .54 .85 .15 .45 .7 \quad 6 \quad 6.36 .66 .97 .27 .57 .88 .18 .48 .7 \quad 9 \quad 9.39 .69 .910 .210 .510 .811 .111 .411 .71212 .312 .612 .913 .2$

$0.30 .60 .91 .21 .51 .82 .12 .42 .7 \quad 3 \quad 3.3 \quad 3.63 .94 .24 .54 .85 .15 .45 .7 \quad 6 \quad 6.36 .66 .97 .27 .57 .88 .18 .48 .7 \quad 9 \quad 9.39 .6 \quad 9.910 .210 .510 .811 .111 .411 .71212 .312 .612 .913 .2$ $\mathrm{x}=7.65 \mathrm{~km}$

Backprojection imaging

Marmousi backprojection image: well log

$0.30 .60 .91 .21 .51 .82 .12 .42 .7 \quad 3 \quad 3.33 .63 .94 .24 .54 .85 .15 .45 .7 \quad 6 \quad 6.36 .66 .97 .27 .57 .88 .18 .48 .7 \quad 9 \quad 9.39 .69 .910 .210 .510 .811 .111 .411 .71212 .312 .612 .913 .2$

$0.30 .60 .91 .21 .51 .82 .12 .42 .7 \quad 3 \quad 3.33 .63 .94 .24 .54 .85 .15 .45 .7 \quad 6 \quad 6.36 .66 .97 .27 .57 .88 .18 .48 .7 \quad 9 \quad 9.39 .69 .910 .210 .510 .811 .111 .411 .71212 .312 .612 .913 .2$ $x=10.50 \mathrm{~km}$

Marmousi backprojection image: well log

$0.30 .60 .91 .21 .51 .82 .12 .42 .7 \quad 3 \quad 3.33 .63 .94 .24 .54 .85 .15 .45 .7 \quad 6 \quad 6.36 .66 .97 .27 .57 .88 .18 .48 .7 \quad 9 \quad 9.39 .69 .910 .210 .510 .811 .111 .411 .71212 .312 .612 .913 .2$

$0.30 .60 .91 .21 .51 .82 .12 .42 .733 .33 .63 .94 .24 .54 .85 .15 .45 .766 .36 .66 .97 .27 .57 .88 .18 .48 .7 \quad 9 \quad 9.39 .69 .910 .210 .510 .811 .111 .411 .71212 .312 .612 .913 .2$ $\mathrm{X}=12.00 \mathrm{~km}$

Backprojection imaging

Other possible applications: ultrasound tomography

True c

Backprojection image

- Ultrasound screening for early detection of breast cancer
- Conventional ultrasound imaging techniques are rather crude, advanced methods originating in geophysics are in demand

Conclusions and future work

- Novel approach to acoustic imaging using reduced order models
- Time domain formulation is essential, makes use of causality (linear algebraic analogues - Gram-Schmidt, Cholesky decomposition)
- Nonlinear imaging: strong suppression of multiple reflection artifacts; improved resolution compared to RTM

Future work:

- Non-symmetric forward model and ROM for non-collocated sources/receivers
- Better theoretical understanding, relation of \mathcal{I} to c
- Use for ROMs for full waveform inversion

References:

[1] A.V. Mamonov, V. Druskin, M. Zaslavsky, Nonlinear seismic imaging via reduced order model backprojection, SEG Technical Program Expanded Abstracts 2015: pp. 4375-4379.
[2] V. Druskin, A. Mamonov, A.E. Thaler and M. Zaslavsky,
Direct, nonlinear inversion algorithm for hyperbolic problems via projection-based model reduction. arXiv:1509.06603 [math.NA], 2015.

