Data-to-Born transform for multiple removal, inversion and imaging with waves

Alexander V. Mamonov ${ }^{1}$,
Liliana Borcea ${ }^{2}$, Vladimir Druskin ${ }^{3}$, and Mikhail Zaslavsky ${ }^{4}$

${ }^{1}$ University of Houston,
${ }^{2}$ University of Michigan Ann Arbor,
${ }^{3}$ Worcester Polytechnic Institute,
${ }^{4}$ Schlumberger-Doll Research Center

Support: NSF DMS-1619821, ONR N00014-17-1-2057

Introduction

- Inversion with waves: determine properties of a medium in the bulk from response measured at or near the surface
- Highly nonlinear problem due to, in part, multiple scattering
- Given the full waveform response, can we compute the response of the same medium if waves propagated in the single scattering regime, i.e. in Born regime?
- Turns out we can!
- A highly nonlinear transform takes full waveform data to single scattering data: Data-to-Born (DtB) transform
- Can use as preprocessing step and integrate into existing workflows

Forward model

- Generic wave equation: DtB works for both acoustics and elasticity (also electromagnetics):

$$
\partial_{t}^{2} \mathbf{P}(t, \mathbf{x})+L_{q} L_{q}^{T} \mathbf{P}(t, \mathbf{x})=0, \quad \mathbf{x} \in \Omega, \quad t>0
$$

here L_{q} is a first order differential operator, q is the reflectivity

- Model m shots with corresponding wavefields in a single matrix

$$
\mathbf{P}(t, \mathbf{x})=\left[\mathbf{P}^{(1)}(t, \mathbf{x}), \ldots, \mathbf{P}^{(m)}(t, \mathbf{x})\right]
$$

- Shots modeled by initial conditions

$$
\mathbf{P}(0, \mathbf{x})=\mathbf{b}(\mathbf{x})=\left[\mathbf{b}^{(1)}(\mathbf{x}), \ldots, \mathbf{b}^{(m)}(\mathbf{x})\right], \quad \partial_{t} \mathbf{P}(0, \mathbf{x})=0
$$

- Solution

$$
\mathbf{P}(t, \mathbf{x})=\cos \left(t \sqrt{L_{q} L_{q}^{T}}\right) \mathbf{b}(\mathbf{x})
$$

Data model and wavefield snapshots

- Collocated sources and receivers: receiver matrix is also $\mathbf{b}(\mathbf{x})$
- Data is sampled in time at $2 n$ instants $t_{k}=k \tau$, close to Nyquist rate
- Data model becomes
$\mathbf{D}_{k}=\int_{\Omega} \mathbf{b}(\mathbf{x})^{T} \cos \left(t \sqrt{L_{q} L_{q}^{T}}\right) \mathbf{b}(\mathbf{x}) d \mathbf{x} \in \mathbb{R}^{m \times m}, \quad k=0,1, \ldots, 2 n-1$,
or simply

$$
\mathbf{D}_{k}=\int_{\Omega} \mathbf{b}(\mathbf{x})^{T} \mathbf{P}_{k}(\mathbf{x}) d \mathbf{x} \in \mathbb{R}^{m \times m}
$$

where

$$
\mathbf{P}_{k}(\mathbf{x})=\mathbf{P}\left(t_{k}, \mathbf{x}\right)=\cos \left(k \tau \sqrt{L_{q} L_{q}^{T}}\right) \mathbf{b}(\mathbf{x})
$$

are wavefield snapshots

The propagator

- Important object: propagator operator

$$
\mathscr{P}_{q}=\cos \left(\tau \sqrt{L_{q} L_{q}^{T}}\right),
$$

think of it as Green's function

- Using propagator, snapshots admit representation

$$
\mathbf{P}_{k}=\mathcal{T}_{k}\left(\mathscr{P}_{q}\right) \mathbf{b}, \quad k=0,1, \ldots, 2 n-1,
$$

via Chebyshev polynomials \mathcal{T}_{k}

- Notation: let T denote both transpose and $L_{2}(\Omega)$ inner product, then the data model becomes

$$
\mathbf{D}_{k}=\mathbf{b}^{\top} \mathbf{P}_{k}=\mathbf{b}^{\top} \mathcal{T}_{k}\left(\mathscr{P}_{q}\right) \mathbf{b}, \quad k=0,1, \ldots, 2 n-1
$$

Reduced order model (ROM)

- Obviously, impossible to find \mathscr{P}_{q} from finite data $\mathbf{D}_{k} \in \mathbb{R}^{m \times m}$, $k=0,1, \ldots, 2 n-1$
- What can we find? Reduced order model (ROM) for \mathscr{P}_{q} !
- Specifically, projection ROM

$$
\widetilde{\mathscr{P}}_{q}=\mathbf{V}^{T} \mathscr{P}_{q} \mathbf{V} \in \mathbb{R}^{n m \times n m}, \quad \widetilde{\mathbf{b}}=\mathbf{V}^{\top} \mathbf{b} \in \mathbb{R}^{n m \times m}
$$

where "columns" of \mathbf{V} form orthonormal basis for some subspace

- Of course, ROM must fit the data

$$
\mathbf{D}_{k}=\mathbf{b}^{T} \mathcal{T}_{k}\left(\mathscr{P}_{q}\right) \mathbf{b}=\widetilde{\mathbf{b}}^{T} \mathcal{T}_{k}\left(\widetilde{\mathscr{P}}_{q}\right) \widetilde{\mathbf{b}}, \quad k=0,1, \ldots, 2 n-1
$$

- Data interpolation uniquely defines projection (Krylov) subspace range($\boldsymbol{\Pi})$,
spanned by snapshots, "columns" of snapshot matrix

$$
\boldsymbol{\Pi}=\left[\mathbf{P}_{0}, \mathbf{P}_{1}, \ldots, \mathbf{P}_{n-1}\right]
$$

Mass and stiffness matrices from data

- If we knew internal data, snapshots Π, we could orthogonalize them to find

$$
\mathbf{V}=\left[\mathbf{V}_{0}, \mathbf{V}_{1}, \ldots, \mathbf{V}_{n-1}\right]
$$

- Multiplicative property of Chebyshev polynomials to the rescue!

$$
\mathcal{T}_{j}(x) \mathcal{T}_{k}(x)=\frac{1}{2}\left[\mathcal{T}_{j+k}(x)+\mathcal{T}_{|j-k|}(x)\right]
$$

- Recall snapshots and data

$$
\mathbf{P}_{k}=\mathcal{T}_{k}\left(\mathscr{P}_{q}\right) \mathbf{b}, \quad \mathbf{D}_{k}=\mathbf{b}^{T} \mathcal{T}_{k}\left(\mathscr{P}_{q}\right) \mathbf{b}
$$

- Can find inner products from the data:

$$
\begin{aligned}
\left(\boldsymbol{\Pi}^{T} \boldsymbol{\Pi}\right)_{j, k} & =\mathbf{P}_{j}^{T} \mathbf{P}_{k}=\frac{1}{2}\left[\mathbf{D}_{j+k}+\mathbf{D}_{|j-k|}\right] \\
\left(\boldsymbol{\Pi}^{T} \mathscr{P}_{q} \boldsymbol{\Pi}\right)_{j, k} & =\mathbf{P}_{j}^{T} \mathscr{P}_{q} \mathbf{P}_{k}=\frac{1}{4}\left[\mathbf{D}_{j+k+1}+\mathbf{D}_{|j+k-1|}+\mathbf{D}_{|j-k+1|}+\mathbf{D}_{|j-k-1|}\right]
\end{aligned}
$$

ROM from data

- Orthogonalized snapshots \mathbf{V} can be related to $\boldsymbol{\Pi}$ via block Gram-Schmidt orthogonalization (block QR factorization)

$$
\boldsymbol{\Pi}=\mathbf{V R}, \quad \mathbf{V}=\boldsymbol{\Pi} \mathbf{R}^{-1},
$$

with block upper triangular \mathbf{R} ($m \times m$ blocks)

- Then

$$
\boldsymbol{\Pi}^{\top} \boldsymbol{\Pi}=\mathbf{R}^{\top} \mathbf{R}
$$

is block Cholesky factorization of mass matrix $\boldsymbol{\Pi}^{\top} \boldsymbol{\Pi}$ known from the data

- Finally, projection ROM is given by

$$
\widetilde{\mathscr{P}}_{q}=\mathbf{V}^{\top} \mathscr{P}_{q} \mathbf{V}=\mathbf{R}^{-T}\left(\boldsymbol{\Pi}^{T} \mathscr{P}_{q} \boldsymbol{\Pi}\right) \mathbf{R}^{-1},
$$

with both \mathbf{R} and stiffness matrix $\boldsymbol{\Pi}^{\top} \mathscr{P}_{q} \boldsymbol{\Pi}$ known from data

ROM properties

- ROM computation is entirely data-driven, no a priori information on continuum problem needed
- Gram-Schmidt orthogonalization (Cholesky) preserves causality: only looks backwards in time
- Reduced order propagator $\widetilde{\mathscr{P}}_{q}$ is block tridiagonal, blocks correspond to layers of equal travel time from the source array, can be seen as a (block) second-order difference scheme
- Orthogonalized snapshots V depend on the medium only kinematically, reflections are effectively suppressed in V (will see later in numerics)
- A version robust to noise and modeling errors exists: based on spectral truncation of the mass matrix $\Pi^{T} \Pi$, block Cholesky replaced with block Lanczos

Second order difference formulation

- We computed ROM propagator $\widetilde{\mathscr{P}}_{q}$, can we find reduced model for L_{q} itself?
- Wavefield snapshots satisfy exactly the second order difference scheme

$$
\begin{aligned}
& \frac{\mathbf{P}_{k+1}-2 \mathbf{P}_{k}+\mathbf{P}_{k-1}}{\tau^{2}}+\mathcal{L}_{q} \mathcal{L}_{q}^{T} \mathbf{P}_{k}=0, \quad k \geq 0 \\
& \mathbf{P}_{0}=\mathbf{b}, \quad \mathbf{P}_{-1}=\mathbf{P}_{1}
\end{aligned}
$$

with

$$
\frac{2}{\tau^{2}}\left(\mathcal{I}-\mathscr{P}_{q}\right)=\mathcal{L}_{q} \mathcal{L}_{q}^{T}
$$

- Can show

$$
\mathcal{L}_{q}=L_{q}+O\left(\tau^{2}\right)
$$

- This construction has a reduced order analogue

ROM propagator factorization

- Reduced order snapshots $\widetilde{\mathbf{P}}_{k}=\mathcal{T}_{k}\left(\widetilde{\mathscr{P}}_{q}\right) \widetilde{\mathbf{b}}$ also satisfy a second order scheme

$$
\begin{aligned}
& \frac{\widetilde{\mathbf{P}}_{k+1}-2 \widetilde{\mathbf{P}}_{k}+\widetilde{\mathbf{P}}_{k-1}}{\tau^{2}}+\widetilde{\mathbf{L}}_{q} \widetilde{\mathbf{L}}_{q}^{\top} \widetilde{\mathbf{P}}_{k}=0, \quad k \geq 0, \\
& \widetilde{\mathbf{P}}_{0}=\widetilde{\mathbf{b}}=\mathbf{R} \mathbf{E}_{1}, \quad \widetilde{\mathbf{P}}_{-1}=\widetilde{\mathbf{P}}_{1},
\end{aligned}
$$

- To compute $\widetilde{\mathbf{L}}_{q}$ perform second block Cholesky factorization

$$
\frac{2}{\tau^{2}}\left(\mathbf{I}-\widetilde{\mathscr{P}}_{q}\right)=\widetilde{\mathbf{L}}_{q} \widetilde{\mathbf{L}}_{q}^{T}
$$

- So we have $\widetilde{\mathbf{L}}_{q} \in \mathbb{R}^{n m \times n m}$, a finite dimensional approximation of L_{q}
- Since $\widetilde{\mathscr{P}}_{q}$ is block tridiagonal, $\widetilde{\mathrm{L}}_{q}$ is block lower bi-diagonal
- Why is $\tilde{\mathrm{L}}_{q}$ useful?

Example: acoustic wave equation

- Consider acoustic wave equation for pressure $p(t, \mathbf{x})$ in the form

$$
\partial_{t}^{2} p(t, \mathbf{x})-\sigma(\mathbf{x}) c(\mathbf{x}) \nabla \cdot\left[\frac{c(\mathbf{x})}{\sigma(\mathbf{x})} \nabla p(t, \mathbf{x})\right]=0,
$$

with velocity $c(\mathbf{x})$ and impedance $\sigma(\mathbf{x})$

- Assume kinematics is known, seek Born approximation with respect to perturbation of $\sigma(\mathbf{x})$
- Liouville transform converts wave equation to first order system

$$
\partial_{t}\binom{\mathbf{P}(t, \mathbf{x})}{\mathbf{P}(t, \mathbf{x})}=\left(\begin{array}{cc}
0 & -L_{q} \\
L_{q}^{T} & 0
\end{array}\right)\binom{\mathbf{P}(t, \mathbf{x})}{\mathbf{P}(t, \mathbf{x})},
$$

with corresponding second order form

$$
\partial_{t}^{2} \mathbf{P}(t, \mathbf{x})+L_{q} L_{q}^{\top} \mathbf{P}(t, \mathbf{x})=0
$$

The reflectivity

- The operators L_{q} and L_{q}^{T} are given by

$$
\begin{aligned}
& L_{q}=-\sqrt{c(\mathbf{x})} \nabla \cdot \sqrt{c(\mathbf{x})}+\frac{c(\mathbf{x})}{2}[\nabla q(\mathbf{x})] \cdot \\
& L_{q}^{T}=\sqrt{c(\mathbf{x})} \nabla \sqrt{c(\mathbf{x})}+\frac{c(\mathbf{x})}{2}[\nabla q(\mathbf{x})],
\end{aligned}
$$

with reflectivity $q(\mathbf{x})=\ln \sigma(\mathbf{x})$

- If $c(\mathbf{x})$ is known and fixed, then L_{q} and L_{q}^{T} are affine in $q(\mathbf{x})$
- Since

$$
\widetilde{\mathbf{L}}_{q} \approx L_{q}
$$

then $\widetilde{\mathbf{L}}_{q}$ is approximately affine in reflectivity $q(\mathbf{x})$!

- Perturbing with respect to $q(\mathbf{x})$ becomes easy!

First order reduced order system

- Reduced order analogue of the first order system

$$
\begin{aligned}
& \frac{\widetilde{\mathbf{P}}_{k+1}-\widetilde{\mathbf{P}}_{k}}{\tau}=-\widetilde{\mathbf{L}}_{q} \widehat{\widetilde{\mathbf{P}}}_{k}, \quad k=0, \ldots, 2 n-2, \\
& \frac{\widehat{\widetilde{\mathbf{P}}}_{k}-\widehat{\widetilde{\mathbf{P}}}_{k-1}}{\tau}=\widetilde{\mathbf{L}}_{q}^{T} \widetilde{\mathbf{P}}_{k}, \quad k=1, \ldots, 2 n-1,
\end{aligned}
$$

with initial conditions

$$
\widetilde{\mathbf{P}}_{0}=\widetilde{\mathbf{b}}, \quad \widehat{\tilde{\mathbf{P}}}_{0}+\widehat{\widetilde{\mathbf{P}}}_{-1}=\mathbf{0}
$$

- The right hand side is approximately affine in $q(\mathbf{x})$
- Perturbing $\widetilde{\mathbf{L}}_{q}$ with respect to q simply gives

$$
\delta \widetilde{\mathbf{L}}=\widetilde{\mathbf{L}}_{q}-\widetilde{\mathbf{L}}_{0}
$$

where $\widetilde{\mathrm{L}}_{0}$ is computed in reference medium with $q \equiv 0$

Data-to-Born transform

- Born approximation is a linearized perturbation
- Perturbed reduced order first order system

$$
\begin{aligned}
& \frac{\delta \widetilde{\mathbf{P}}_{k+1}-\delta \widetilde{\mathbf{P}}_{k}}{\tau}=-\widetilde{\mathbf{L}}_{0} \delta \widehat{\tilde{\mathbf{P}}}_{k}-\left(\widetilde{\mathbf{L}}_{q}-\widetilde{\mathbf{L}}_{0}\right) \widehat{\tilde{\mathbf{P}}}_{0, k}, \quad k=0, \ldots, 2 n-2, \\
& \frac{\delta \widetilde{\widetilde{\mathbf{P}}}_{k}-\delta \widetilde{\mathbf{P}}_{k-1}}{\tau}=\widetilde{\mathbf{L}}_{0}^{T} \delta \widetilde{\mathbf{P}}_{k}+\left(\widetilde{\mathbf{L}}_{q}^{T}-\widetilde{\mathbf{L}}_{0}^{T}\right) \widetilde{\mathbf{P}}_{0, k}, \quad k=1, \ldots, 2 n-1,
\end{aligned}
$$

with initial conditions

$$
\delta \widetilde{\mathbf{P}}_{0}=\mathbf{0}, \quad \delta \widehat{\widetilde{\mathbf{P}}}_{0}+\delta \widehat{\widetilde{\mathbf{P}}}_{-1}=\mathbf{0}
$$

- Here $\widetilde{\mathbf{P}}_{0, k}, \widehat{\widetilde{\mathbf{P}}}_{0, k}$ are reduced order snapshots in reference media
- Data-to-Born transform is

$$
\mathbf{D}_{k}^{D t B}=\mathbf{D}_{0, k}+\widetilde{\mathbf{b}}^{T} \delta \widetilde{\mathbf{P}}_{k}, \quad k=0,1, \ldots, 2 n-1
$$

compare to full waveform data $\mathbf{D}_{k}=\widetilde{\mathbf{b}}^{\top} \widetilde{\mathbf{P}}_{k}$

Numerical results: Acoustic snapshots

- Array with $m=50$ sensors \times
- Snapshots plotted for a single source \circ

Numerical results: Acoustic true Born vs. DtB

- Single row of data matrix corresponding to source o
- Vertical: time (in units of τ)
- Horizontal: receiver index (out of $m=50$)

Full waveform data

True Born data

DtB

Numerical results: Acoustic DtB + RTM

RTM from full waveform data

- Reverse time migration (RTM) image computed from both measured full waveform data and DtB transformed data

RTM from DtB

Numerical results: Elasticity, two cracks

Numerical results: Elasticity, salt dome

- Transform elasticity problem to first order form: Liouville transform
- If both velocities are fixed (here $c_{p}=2 c_{s}$), there is only one independent impedance σ_{p}
- Source: horizontal force, $m=25$

Full waveform data

True Born data

DtB

Conclusions and future work

- Data-to-Born: transform full waveform data to single scattered Born data for the same medium
- Based on techniques of model order reduction
- Data-driven approach relying on classical linear algebra algorithms (Cholesky, Lanczos), no computations in the continuum
- Works for all linear waves: acoustic, elastic, electromagnetic
- Easy to integrate into existing workflows as a preprocessing step
- Enables the use of linearized inversion algorithms

Future work:

- Test linearized inversion (e.g. LS-RTM) on DtB data
- Extend to frequency domain wave equation (Helmholtz)
- Use DtB-like approach to extract higher orders of scattering from full waveform data

References

- Robust nonlinear processing of active array data in inverse scattering via truncated reduced order models, L. Borcea, V. Druskin, A.V. Mamonov, M. Zaslavsky, Journal of Computational Physics 381:1-26, 2019.
- Untangling the nonlinearity in inverse scattering with data-driven reduced order models, L. Borcea, V. Druskin, A.V. Mamonov, M. Zaslavsky, Inverse Problems 34(6):065008, 2018.

Related work:

- A nonlinear method for imaging with acoustic waves via reduced order model backprojection, V. Druskin, A.V. Mamonov, M. Zaslavsky, SIAM Journal on Imaging Sciences, 11(1):164-196, 2018.
- Direct, nonlinear inversion algorithm for hyperbolic problems via projection-based model reduction, V. Druskin, A. Mamonov, A.E. Thaler and M. Zaslavsky, SIAM Journal on Imaging Sciences 9(2):684-747 2016.

