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Introduction

Inversion with waves: determine properties of a medium in the
bulk from response measured at or near the surface

Highly nonlinear problem due to, in part, multiple scattering

Given the full waveform response, can we compute the response
of the same medium if waves propagated in the single
scattering regime, i.e. in Born regime?

Turns out we can!

A highly nonlinear transform takes full waveform data to single
scattering data: Data-to-Born (DtB) transform

Can use as preprocessing step and integrate into existing
workflows
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Forward model

Generic wave equation: DtB works for both acoustics and
elasticity (also electromagnetics):

∂2
t P(t ,x) + LqLT

q P(t ,x) = 0, x ∈ Ω, t > 0,

here Lq is a first order differential operator, q is the reflectivity
Model m shots with corresponding wavefields in a single matrix

P(t ,x) =
[
P(1)(t ,x), . . . ,P(m)(t ,x)

]
Shots modeled by initial conditions

P(0,x) = b(x) =
[
b(1)(x), . . . ,b(m)(x)

]
, ∂tP(0,x) = 0

Solution
P(t ,x) = cos

(
t
√

LqLT
q

)
b(x)
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Data model and wavefield snapshots

Collocated sources and receivers: receiver matrix is also b(x)

Data is sampled in time at 2n instants tk = kτ , close to Nyquist
rate
Data model becomes

Dk =

∫
Ω

b(x)T cos
(

t
√

LqLT
q

)
b(x)dx ∈ Rm×m, k = 0,1, . . . ,2n−1,

or simply

Dk =

∫
Ω

b(x)T Pk (x)dx ∈ Rm×m,

where
Pk (x) = P(tk ,x) = cos

(
kτ
√

LqLT
q

)
b(x)

are wavefield snapshots
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The propagator

Important object: propagator operator

Pq = cos
(
τ
√

LqLT
q

)
,

think of it as Green’s function
Using propagator, snapshots admit representation

Pk = Tk (Pq)b, k = 0,1, . . . ,2n − 1,

via Chebyshev polynomials Tk

Notation: let T denote both transpose and L2(Ω) inner product,
then the data model becomes

Dk = bT Pk = bTTk (Pq)b, k = 0,1, . . . ,2n − 1
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Reduced order model (ROM)

Obviously, impossible to find Pq from finite data Dk ∈ Rm×m,
k = 0,1, . . . ,2n − 1
What can we find? Reduced order model (ROM) for Pq!
Specifically, projection ROM

P̃PPq = VT PqV ∈ Rnm×nm, b̃ = VT b ∈ Rnm×m,

where “columns” of V form orthonormal basis for some subspace
Of course, ROM must fit the data

Dk = bTTk (Pq)b = b̃TTk (P̃PPq)b̃, k = 0,1, . . . ,2n − 1

Data interpolation uniquely defines projection (Krylov) subspace

range(Π),

spanned by snapshots, “columns” of snapshot matrix

Π =
[
P0,P1, . . . ,Pn−1

]
A.V. Mamonov Data-to-Born transform 6 / 22



Mass and stiffness matrices from data

If we knew internal data, snapshots Π, we could orthogonalize
them to find

V =
[
V0,V1, . . . ,Vn−1

]
Multiplicative property of Chebyshev polynomials to the rescue!

Tj(x)Tk (x) =
1
2

[
Tj+k

(
x) + T|j−k |(x)

]
Recall snapshots and data

Pk = Tk (Pq)b, Dk = bTTk (Pq)b

Can find inner products from the data:

(ΠTΠ)j,k =PT
j Pk =

1
2

[
Dj+k + D|j−k |

]
(ΠTPqΠ)j,k =PT

j PqPk =
1
4

[
Dj+k+1 + D|j+k−1| + D|j−k+1| + D|j−k−1|

]
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ROM from data

Orthogonalized snapshots V can be related to Π via block
Gram-Schmidt orthogonalization (block QR factorization)

Π = VR, V = ΠR−1,

with block upper triangular R (m ×m blocks)
Then

ΠTΠ = RT R

is block Cholesky factorization of mass matrix ΠTΠ known from
the data
Finally, projection ROM is given by

P̃PPq = VT PqV = R−T (ΠT PqΠ)R−1,

with both R and stiffness matrix ΠT PqΠ known from data
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ROM properties

ROM computation is entirely data-driven, no a priori information
on continuum problem needed

Gram-Schmidt orthogonalization (Cholesky) preserves causality:
only looks backwards in time

Reduced order propagator P̃PPq is block tridiagonal, blocks
correspond to layers of equal travel time from the source array,
can be seen as a (block) second-order difference scheme

Orthogonalized snapshots V depend on the medium only
kinematically, reflections are effectively suppressed in V
(will see later in numerics)

A version robust to noise and modeling errors exists: based on
spectral truncation of the mass matrix ΠTΠ, block Cholesky
replaced with block Lanczos
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Second order difference formulation

We computed ROM propagator P̃PPq, can we find reduced model
for Lq itself?
Wavefield snapshots satisfy exactly the second order
difference scheme

Pk+1 − 2Pk + Pk−1

τ2 + LqLT
q Pk = 0, k ≥ 0,

P0 = b, P−1 = P1,

with
2
τ2 (I −Pq) = LqLT

q

Can show
Lq = Lq + O(τ2)

This construction has a reduced order analogue
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ROM propagator factorization

Reduced order snapshots P̃k = Tk (P̃PPq)b̃ also satisfy a second
order scheme

P̃k+1 − 2P̃k + P̃k−1

τ2 + L̃qL̃T
q P̃k = 0, k ≥ 0,

P̃0 = b̃ = RE1, P̃−1 = P̃1,

To compute L̃q perform second block Cholesky factorization

2
τ2 (I− P̃PPq) = L̃qL̃T

q

So we have L̃q ∈ Rnm×nm, a finite dimensional approximation of Lq

Since P̃PPq is block tridiagonal, L̃q is block lower bi-diagonal

Why is L̃q useful?
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Example: acoustic wave equation

Consider acoustic wave equation for pressure p(t ,x) in the form

∂2
t p(t ,x)− σ(x)c(x)∇ ·

[c(x)

σ(x)
∇p(t ,x)

]
= 0,

with velocity c(x) and impedance σ(x)

Assume kinematics is known, seek Born approximation with
respect to perturbation of σ(x)

Liouville transform converts wave equation to first order
system

∂t

(
P(t ,x)

P̂(t ,x)

)
=

(
0 −Lq

LT
q 0

)(
P(t ,x)

P̂(t ,x)

)
,

with corresponding second order form

∂2
t P(t ,x) + LqLT

q P(t ,x) = 0
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The reflectivity

The operators Lq and LT
q are given by

Lq =−
√

c(x)∇ ·
√

c(x) +
c(x)

2
[∇q(x)]·,

LT
q =

√
c(x)∇

√
c(x) +

c(x)

2
[∇q(x)],

with reflectivity q(x) = lnσ(x)

If c(x) is known and fixed, then Lq and LT
q are affine in q(x)

Since
L̃q ≈ Lq,

then L̃q is approximately affine in reflectivity q(x)!
Perturbing with respect to q(x) becomes easy!
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First order reduced order system

Reduced order analogue of the first order system

P̃k+1 − P̃k

τ
= −L̃q

̂̃Pk , k = 0, . . . ,2n − 2,̂̃Pk −
̂̃Pk−1

τ
= L̃T

q P̃k , k = 1, . . . ,2n − 1,

with initial conditions

P̃0 = b̃, ̂̃P0 +
̂̃P−1 = 0

The right hand side is approximately affine in q(x)

Perturbing L̃q with respect to q simply gives

δL̃ = L̃q − L̃0,

where L̃0 is computed in reference medium with q ≡ 0
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Data-to-Born transform

Born approximation is a linearized perturbation
Perturbed reduced order first order system

δP̃k+1 − δP̃k

τ
= −L̃0δ

̂̃Pk − (L̃q − L̃0)
̂̃P0,k , k = 0, . . . ,2n − 2,

δ
̂̃Pk − δ

̂̃Pk−1

τ
= L̃T

0 δP̃k + (L̃T
q − L̃T

0 )P̃0,k , k = 1, . . . ,2n − 1,

with initial conditions

δP̃0 = 0, δ
̂̃P0 + δ

̂̃P−1 = 0

Here P̃0,k ,
̂̃P0,k are reduced order snapshots in reference media

Data-to-Born transform is

DDtB
k = D0,k + b̃T δP̃k , k = 0,1, . . . ,2n − 1,

compare to full waveform data Dk = b̃T P̃k
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Numerical results: Acoustic snapshots
σ c

P0,k V0,k Pk Vk

Array with m = 50 sensors ×
Snapshots plotted for a single source ◦
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Numerical results: Acoustic true Born vs. DtB

Single row of data matrix
corresponding to source ◦
Vertical: time (in units of τ )
Horizontal: receiver index
(out of m = 50)

Full waveform data True Born data DtB
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Numerical results: Acoustic DtB + RTM

Reverse time migration (RTM)
image computed from both
measured full waveform data
and DtB transformed data

RTM from full waveform data RTM from DtB
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Numerical results: Elasticity, two cracks

Transform elasticity problem to first
order form: Liouville transform

If both velocities are fixed (here
cp = 2cs), there is only one
independent impedance σp

Source: horizontal force, m = 25

Full waveform data True Born data DtB
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Numerical results: Elasticity, salt dome

Transform elasticity problem to first
order form: Liouville transform

If both velocities are fixed (here
cp = 2cs), there is only one
independent impedance σp

Source: horizontal force, m = 25

Full waveform data True Born data DtB
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Conclusions and future work

Data-to-Born: transform full waveform data to single scattered
Born data for the same medium
Based on techniques of model order reduction
Data-driven approach relying on classical linear algebra
algorithms (Cholesky, Lanczos), no computations in the continuum
Works for all linear waves: acoustic, elastic, electromagnetic
Easy to integrate into existing workflows as a preprocessing step
Enables the use of linearized inversion algorithms

Future work:
Test linearized inversion (e.g. LS-RTM) on DtB data
Extend to frequency domain wave equation (Helmholtz)
Use DtB-like approach to extract higher orders of scattering
from full waveform data
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