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Reduced order models for diffusive inverse problems

Diffusive inverse problems: motivation

General formulation: determine electrical conductivity inside an object
from the electromagnetic excitations and measurements on its boundary

Controlled Source Electromagnetic Method (CSEM): low frequency
EM leads to a parabolic PDE approximation of Maxwell’s equations

Electrical Impedance Tomography (EIT): zero frequency (direct
current) leads to an elliptic equation for the potential

Accessible boundary

Electrode =

Lung

Heart

Lung

Accessible skin
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Reduced order models for diffusive inverse problems

Problem formulation: EIT

�

�

Two-dimensional problem Ω ⊂ R2,
possibly with partial data
Equation for electric potential u

∇ · (σ∇u) = 0, in Ω

Dirichlet data u|B = φ on B = ∂Ω
Dirichlet-to-Neumann (DtN) map
Λσ : H1/2(B)→ H−1/2(B)

Λσφ = σ
∂u
∂ν

∣∣∣∣
BPartial data:

Split the boundary B = BA ∪ BI , accessible BA, inaccessible BI
Similarly to the full DtN map define the partial map

Λ̃σφ̃ =
(

Λσφ̃
)∣∣∣
BA

, where supp φ̃ ⊂ BA

Partial data EIT: find σ given the map Λ̃σ
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Reduced order models for diffusive inverse problems

Problem formulation: CSEM

Time-dependent diffusion equation for the potential u:

ut = ∇ · (σ∇u), in Ω, t > 0

Also a partial data setting: B = ∂Ω = BA ∪ BI

Boundary conditions

u|BI = 0,
∂u
∂ν

∣∣∣∣
BA

= 0

Initial conditions

u(x ,0) =

∫
BA

φ(z)δ(x − z)dSz , x ∈ Ω ∪ B

Measurements yσ(x , t) = u(x , t) for x ∈ BA, t > 0
Partial data CSEM: find σ given yσ(x , t) for x ∈ BA, t > 0
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Reduced order models for diffusive inverse problems

Diffusive inversion stability and optimization
Both elliptic (EIT) and parabolic (CSEM) inverse problems with boundary
data are ill-posed due to the instability

At most logarithmic stability can be achieved under certain regularity
assumptions

‖σ1 − σ2‖∞ ≤ C |log ‖dσ1 − dσ2‖BA |
−a
,

where the data dσ = Λ̃σ for EIT and dσ = yσ for CSEM

Exponential ill-conditioning of any discretization

Resolution is severely limited by the noise, regularization is required

Conventional solution method: non-linear output least squares (OLS)
minimization

minimize
σ

‖d? − dσ‖2
2 + µP(σ), (1)

where d? is the measured data, P is a penalty functional and µ is a
penalty parameter

Due to ill-conditioning (1) is hard to solve, the misfit functional is
non-convex, large µ may be needed, convergence is slow
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Reduced order models for diffusive inverse problems

Reduced order models for inversion

In practice a finite number n of data measurements is takenMn(dσ)

Our approach is based on constructing a reduced order model (ROM)
of size related to n that fits the measured data exactly

Mn(γ) =Mn(dσ),

here Mn(γ) is the discrete response of the ROM parametrized by γ

The parameters γ are chosen in such way that the mapping

Q : σ → dσ →Mn(dσ)→ Mn(γ)→ γ

is an approximate identity

The optimization problem (1) is replaced by

minimize
σ

‖γ? −Q(σ)‖2
2 + µP(σ), (2)

where γ? is computed from data interpolation Mn(γ?) =Mn(d?)

Since Q approximates identity, the misfit functional in (2) is close to
quadratic and thus convex, easy to minimize
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Reduced order models for diffusive inverse problems

Features of inversion with ROMs

In practice often a single Gauss-Newton iteration is enough to obtain
quality reconstructions of σ

Unlike conventional OLS approach regularization is not required for
convergence, but can be added to incorporate prior information about σ

Optimization (2) is a well-posed problem

Where did the ill-posedness go?

It is in the computation of the data fit

Mn(γ?) =Mn(d?)

where we assume that Mn(γ?) can be inverted for γ?, i.e. we know how
to solve the discrete inverse problem

Discrete inversion typically takes a form of rational interpolation

Instability of data fitting is controlled by limiting n

Also, images can be obtained from ROM parameters γ? directly
without optimization using the optimal grids
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EIT with resistor networks

Resistor networks for EIT

C(5, 11)

Circular planar graph with
n = |B| = 11 boundary nodes
shown as ×

Appropriate ROMs for EIT in 2D are
resistor networks with circular
planar graphs
Network is a graph (V, E) with positive
weights γ on the edges E
Vertices V are split into interior I and
boundary B
Graph can be embedded into the unit
disk D so that B are on ∂D
Discrete derivative D on a graph
defines a Kirchhoff matrix

K = DT diag(γ)D

Discrete DtN map is a Schur
complement

Mn(γ) = KBB − KBIK−1
II KIB
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EIT with resistor networks

Data measurements and fitting
Data measured with disjoint electrode functions ψj , suppψj ⊂ BA

Measurement matrixMn(Λ̃σ) ∈ Rn×n given by[
Mn(Λ̃σ)

]
k,j

=

∫
BA

ψk Λ̃σψjdS, i 6= j

with the diagonal determined by current conservation

Morrow, Ingerman, 1998: Mn(Λ̃σ) has the properties of a DtN map of a
resistor network

Thus Mn(γ?) =Mn(Λ̃?) for some network

Curtis, Ingerman, Morrow, 1998: γ? is uniquely recoverable from
Mn(γ?) iff the network’s graph is well-connected and critical

Well-connected: certain subsets of B can be connected with disjoint
paths through the network

Critical: removal of any edge breaks some connection

Constructive direct method for network recovery: layer peeling
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EIT with resistor networks

Sensitivity analysis, optimal grids and reconstructions
Why is the mapping γ = Q(σ) an approximate identity?

Can be studied by considering the sensitivity functions[
δQ
δσ

]
k

=

[(
∂Mn(γ)

∂γ

)−1

Mn

(
δΛ̃σ
δσ

)]
k

,

where Mn(γ) =Mn(Λ̃σ)

Sensitivity functions of resistor networks are localized

Roughly, γk is an average of σ near the optimal grid node

xk = argmax
[
δQ
δσ

]
k

Thus, γk may be used to define an interpolated (e.g. piecewise linear)
reconstruction on the optimal grid

σ(xk ) ≈ γk

γ
(1)
k

,

where γ(1) = Q(1), i.e. resistors computed for σ(1) ≡ 1
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EIT with resistor networks

Sensitivity functions
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EIT with resistor networks

Network topologies and optimal grids
Pyramidal network Two-sided network

v1

v2

v3 v4

v5

v6

Circular planar
networks do not
have to look
circular
Other topologies
are better suited for
partial data
problem
Pyramidal: if BA is
simply connected
Two-sided: if BA is
doubly connected
Both are well-
connected and
critical
Top: network
topology; Bottom:
optimal grid.
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EIT with resistor networks

Reconstructions: smooth σ, n=16
True σ Pyramidal network Two-sided network

Top: piecewise linear
interpolated reconstruc-
tions.
Bottom: single Gauss-
Newton iteration recon-
structions.
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EIT with resistor networks

Reconstructions: piecewise constant σ, n=16
True σ Pyramidal network Two-sided network

Top: piecewise linear
interpolated reconstruc-
tions.
Bottom: single Gauss-
Newton iteration recon-
structions.
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CSEM with projection ROMs

Single measurement CSEM

Recall the CSEM equation

ut = ∇ · (σ∇u) = Aσu, in Ω, t > 0

with boundary conditions

u|BI = 0,
∂u
∂ν

∣∣∣∣
BA

= 0

and an initial condition

u(x ,0) =

∫
BA

φ(z)δ(x − z)dSz =

∫
Ω

b(z)δ(x − z)dz, x ∈ Ω ∪ B,

with a transducer function b(z) satisfying supp b ⊆ BA

Let us consider a single measurement

yσ(t) =

∫
Ω

b(z)u(z, t)dz
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CSEM with projection ROMs

Projection-based model order reduction
Define the transfer function via Laplace transform

gσ(s) =

∫ +∞

0
yσ(t)e−stdt = b∗(sI − Aσ)−1b, s > 0

Transfer function of a reduced model An ∈ Rn×n, bn ∈ Rn

gn(s) = b∗n(sIn − An)−1bn

Projection-based model reduction

An = V ∗AσV , bn = V ∗b, V ∗V = In
The n “columns” of V span the projection subspace
Choice of subspace is determined by matching conditions

[Mn(yσ)]k,j =
∂k gσ
∂sk

∣∣∣∣
s=sj

=
∂k gn

∂sk

∣∣∣∣
s=sj

, j = 1, . . . ,m, k = 1, . . . ,2kj−1

at interpolation nodes sj ∈ [0,+∞) with

n =
m∑

j=1

kj
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CSEM with projection ROMs

Rational Krylov model order reduction
Partial fraction expansion

gn(s) =
n∑

j=1

cj

s + θj
, cj > 0, θj > 0,

with negative poles −θj and positive residues cj

Rational gn, hence rational interpolation

Typical choices of projection subspaces in model reduction: rational
Krylov subspaces

Kn(s) = span
{

(sj I − Aσ)−k b | j = 1, . . . ,m; k = 1, . . . , kj
}

Popular special cases for forward modeling: moment matching

Kn(+∞) = span
{

b,Aσb, . . . ,An−1
σ b

}
Kn(0) = span

{
A−1
σ b,A−2

σ b, . . . ,A−n
σ b

}
Kn(+∞) is bad for inversion
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CSEM with projection ROMs

Connection to resistor networks: S-fraction form
Write the reduced model response as a Stieltjes continued fraction
(S-fraction)

gn(s;γ) =
1

γ̂−1
1 s +

1

γ−1
1 +

1
. . . +

1
γ̂−1

n s + γn

This is a boundary response w1(s) of a second-order finite difference
scheme

γ̂j (γj (wj+1 − wj )− γj−1(wj − wj−1))− swj = 0
The coefficients γ = {γj , γ̂j}n

j=1 are the analogue of the resistor network
coefficients
They are exactly the same for a rotationally symmetric circular network
Once we have γ we can define

[Mn(γ)]k,j =
∂k gn( · ;γ)

∂sk

∣∣∣∣
s=sj
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CSEM with projection ROMs

CSEM with multiple measurements: backscattering
To deal with multiple measurements consider many transducer
functions bα(z), α = 1, . . . ,p with disjoint supports supp bα ⊆ BA

For each α = 1, . . . ,p perform a rational interpolation

Mn(γα) =Mn(yασ )

and express the interpolant gαn (s;γα) as an S-fraction to obtain the
coefficients γα

Form a joint misfit functional out of all S-fraction coefficients

minimize
σ

p∑
α=1

‖γα −Qα(σ)‖2
2 + µP(σ),

and solve with (a single step of) Gauss-Newton iteration

Reminder: the mapping Qα is defined as a chain

Qα : σ → yασ →Mn(yασ )→ Mn(γα)→ γα

Similarly to the resistor networks we can consider the sensitivity
functions

[
∂Qα

∂σ

]
j , j = 1, . . . ,n
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CSEM with projection ROMs

Sensitivity functions
Sensitivity func-
tions of γ̂−1

j (left)
and γ−1

j (right) for
j = 1, . . . , n (top to
bottom), n = 5 for
a single transducer
(α = 4, yellow ◦) out
of p = 8 (black ×).
Simple Pade approx-
imant at s = 60.
Sensitivities resem-
ble propagating
spherical waves.
Higher s means
lower speed of prop-
agation. Should
avoid reflections from
boundaries.
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CSEM with projection ROMs

Reconstructions: piecewise constant σ
True σ Reconstruction

Reconstuctions after a single Gauss-Newton iteration with a constant intial
guess σ0 ≡ 1. Locations of p = 8 transducers are black ×.
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Discussion

Conclusions and future work
Conclusions:

A framework of ROM-based inversion for diffusive problems is proposed
Ill-posed inverse problem is separated into two stages: ROM
construction and reconstruction from ROM parameters
The instability is confined to ROM construction, it is controlled by ROM
size
The reconstruction stage is formulated as a stable problem of minimizing
the ROM parameter misfit
The parameters are chosen so that they depend almost linearly on the
unknown PDE coefficient
Thus the ROM parameter misfit minimization is close to quadratic and
can be solved with a single step of Gauss-Newton iteration

Future work:

EIT with resistor networks currently works in 2D or for limited subsets of
3D data, a full 3D approach is yet to be developed
ROM-based CSEM inversion works in any dimension, but uses only
the backscattering data
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Discussion
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