
Waveform inversion via reduced order modeling

Alexander V. Mamonov1,
Liliana Borcea2, Josselin Garnier3 and Jörn Zimmerling4

1University of Houston,
2University of Michigan Ann Arbor, 3Ecole Polytechnique, 4Uppsala University

Support: ONR N00014-21-1-2370

A.V. Mamonov Waveform inversion with ROMs 1 / 21



Motivation: seismic exploration

Reduced order model
(ROM) framework for
acoustic velocity
estimation:

1 Construct a data-driven
ROM from the data

2 Formulate velocity
estimation as ROM misfit
optimization problem
ROM misfit objective is
much better behaved than
conventional FWI least
squares data misfit
objective
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Velocity estimation problem

Setting: array of m sources/receivers (collocated at xs) drives
pressure waves[

∂2
t − c2(x)∆

]
ps(t ,x) = f ′(t)θ(x − xs), s = 1, . . . ,m,

ps(t ,x) ≡ 0, t ≪ 0,

Measured data M(t) ∈ Rm×m with entries

Mrs(t) =
∫
Ω

dx θ(x − xr )ps(t ,x), r , s = 1, . . . ,m

Velocity estimation problem: given M(t), estimate
quantitatively acoustic velocity c(x)
Remark: source/receiver collocation condition can be relaxed
via data interpolation (numerical results available)
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Symmetrized forward model
Symmetrize the forward model, move source to initial condition
(Duhamel-like argument), discretize in x on an N node grid

∂2
t u = Au, t > 0,

u(0) = b ∈ RN×m, ∂tu(0) = 0,

solved by
u(t) = cos

(
t
√

A
)

b ∈ RN×m

A is discretization of −c(x)∆c(x)
Source/receiver matrix b depends on f , θ, c near xs
Data becomes

D(t) = bT cos
(

t
√

A
)

b ∈ Rm×m,

related to M(t) via

Drs(t) =
Mrs(t) +Mrs(−t)

c(xr )c(xs)
, t > 0
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Projection based ROM

Data is sampled discretely Dk = D(kτ), k = 0,1, . . . ,2n − 2
Define wavefield snapshots sampled at the same instants

uk = u(kτ) = cos
(

kτ
√

A
)

b

Obtain ROM of A by projecting onto

Kn = colspan(U), U = [u0,u1, . . . ,un−1] ∈ RN×mn

If columns of V ∈ RN×mn form orthonormal basis for Kn, then

Ã = VT AV ∈ Rmn×mn, b̃ = VT b ∈ Rmn×m

Difficulty: U and V contain wavefields in the whole domain,
hence they are unknown!
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Data-driven ROM: mass matrix

Define mn × mn mass matrix

M = UT U

Use trigonometric identity

cosα cosβ =
1
2
(cos(α+ β) + cos(α− β))

to compute mass matrix blocks (using AT = A)

Mij = uT
i uj

= bT cos
(

iτ
√

A
)
cos

(
jτ
√

A
)

b

=
1
2

bT
[
cos

(
(i + j)τ

√
A
)
+ cos

(
|i − j |τ

√
A
)]

b

=
1
2
(
Di+j + D|i−j|

)
∈ Rm×m,

for i , j = 0,1, . . . ,n − 1, from data!
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Data-driven ROM: stiffness matrix

Similarly to M, define mn × mn stiffness matrix

S = UT AU

To compute S we need to know D̈k = −bT A cos(kτ
√

A)b that can
be obtained from D(t) via Fourier domain differentiation
Given second derivative data D̈k , k = 0,1, . . . ,2n − 2, compute

Sij = uT
i Auj =

= bT cos
(

iτ
√

A
)

A cos
(

jτ
√

A
)

b

=
1
2

bT
[
A cos

(
(i + j)τ

√
A
)
+ A cos

(
|i − j |τ

√
A
)]

b

= −1
2

(
D̈i+j + D̈|i−j|

)
∈ Rm×m,

for i , j = 0,1, . . . ,n − 1, again from data!
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Data-driven ROM: block Cholesky factorization

Suppose U is orthogonalized by a block QR (block
Gram-Schmidt) process

U = VR, equivalently, V = UR−1,

where R is an upper-block-triangular block Cholesky factor of the
mass matrix M = UT U known from the data

M = RT R

Projection ROM is given by

Ã = VT AV = R−T
(

UT AU
)

R−1 = R−T SR−1,

where the stiffness matrix S = UT AU is also known from
the data
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Conventional FWI vs ROM inversion

Conventional full waveform inversion (FWI): nonlinear least
squares

minimize
c(x)∈C

2n−2∑
k=0

∥Dk (c(x))− Dmeas
k ∥2

F , (1)

where Dk (c(x)) is the forward map and Dmeas
k is measured data

Objective of (1) is notoriously non-convex, optimization easily
gets stuck in abundant local minima, especially when lacking
low-frequency data (cycle skipping)
Replace (1) with

minimize
c(x)∈C

∥∥∥Ã(c(x))− Ãmeas
∥∥∥2

F
, (2)

where Ãmeas is computed from Dmeas
k , D̈meas

k , k = 0,1, . . . ,2n − 2
Why objective (2) is better than (1)?
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Objective topography: FWI vs ROM inversion
Objective topography for a single
interface model (left) with two
parameters: interface position and
velocity contrast
Non-convexity of FWI objective (1):
cycle-skipping results in horizontal
stripes, also local minima
ROM objective (2) has a global
minimum at the true parameter values

log of FWI objective (1) log of ROM objective (2)
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Numerical experiments
Band-limited source wavelet

f (t) =
cos(ω0t)√

2πBω

e− (Bω t)2

2 ,

with central frequency ω0 = 2π(6Hz) and bandwidth
Bω = 2π(4Hz)

ROM based velocity estimation is solved via Gauss-Newton
iteration regularized with adaptive Tikhonov regularization

Four numerical examples:
1 “Camembert” model with reflection data
2 Section of the Marmousi model
3 2004 BP Salt model
4 Random medium model

Marmousi velocity estimation is for noisy data (1% noise) using
regularized ROM construction
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Camembert model
Conventional FWI (1) vs. ROM estimation (2) after 10 GN iterations

True c(x) ROM estimate Conventional FWI estimate

Camembert model with reflection data
Circular inclusion (c(x) = 4000m/s) of radius 600m in a homogeneous
background (c(x) = 3000m/s), data collected at m = 10 sensors
Very challenging for FWI, difficult to fill in the inclusion
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Camembert model
Conventional FWI (1) vs. ROM estimation (2) after 40 GN iterations

True c(x) ROM estimate Conventional FWI estimate

Camembert model with reflection data
Circular inclusion (c(x) = 4000m/s) of radius 600m in a homogeneous
background (c(x) = 3000m/s), data collected at m = 10 sensors
Very challenging for FWI, difficult to fill in the inclusion
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Camembert model
Conventional FWI (1) vs. ROM estimation (2) after 60 GN iterations

True c(x) ROM estimate Conventional FWI estimate

Camembert model with reflection data
Circular inclusion (c(x) = 4000m/s) of radius 600m in a homogeneous
background (c(x) = 3000m/s), data collected at m = 10 sensors
Very challenging for FWI, difficult to fill in the inclusion
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Marmousi model

Top: section of Marmousi
model 5.25km × 3km
Bottom: initial guess is a 1D
gradient in depth
Data collected at m = 30
sensors
Perform 18 regularized
Gauss-Newton iterations
Compare to conventional FWI:
it gets stuck in a low quality
solution, likely not enough
low-frequency information
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Marmousi model: velocity estimates
True c(x) ROM refined velocity

Conventional FWI ROM velocity estimate
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2004 BP Salt model: velocity estimates
True c(x) Initial velocity model

Conventional FWI ROM velocity estimate

Section of 2004
BP Salt model
6km × 5.25km
Initial guess is a
1D gradient in
depth
Data collected at
m = 40 sensors
Perform 35
regularized
Gauss-Newton
iterations
Conventional
FWI gets stuck
in a low quality
solution
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Random medium model

Top: random medium model
6.75km × 6.75km
Bottom: ROM velocity
reconstruction after 135
regularized Gauss-Newton
iterations
Random fluctuations around
c = 1.5km/s with amplitude 15%
ROM estimate correlates with true
velocity with correlation
coefficient 0.613
Estimate quality can be assessed
with time reversal focusing
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Conclusions and future work

We introduced ROM framework for acoustic velocity estimation

Time domain formulation is essential, linear algebraic analogues
of causality: Gram-Schmidt, Cholesky

Separate velocity estimation problem into two steps:
1 Construct wave equation operator ROM from data
2 Use ROM misfit as optimization objective

Much better behaved than conventional FWI least squares data
misfit even for band-limited sources: ROM misfit optimization
objective is very close to convex

Robust version exists for noisy and/or incomplete data, requires
non-trivial regularization of ROM construction process

Future work:
Extend to vectorial problems, e.g., electromagnetics, elasticity
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