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Motivation: seismic exploration

@ Reduced order model
(ROM) framework for
acoustic velocity
estimation:

Construct a data-driven
ROM from the data

Formulate velocity
estimation as ROM misfit
optimization problem
ROM misfit objective is
much better behaved than
conventional FWI least
squares data misfit

objective lﬂl

A.V. Mamonov Waveform inversion with ROMs 2/21




Velocity estimation problem

@ Setting: array of m sources/receivers (collocated at x) drives
pressure waves

92 — cz(x)A ps(t,x) =f()o(Xx—Xs), s=1,....m,
t
ps(t,x)=0, t<O0,

@ Measured data M(t) € R™™ with entries
MB(t) = / axo(x —x,)p%(t,x), r,s=1,....m
Q

@ Velocity estimation problem: given M(t), estimate
quantitatively acoustic velocity ¢(x)

@ Remark: source/receiver collocation condition can be relaxed
via data interpolation (numerical results available) llll
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Symmetrized forward model

@ Symmetrize the forward model, move source to initial condition
(Duhamel-like argument), discretize in x on an N node grid

dPu=Au, t>0,
u(0) =b e RN*™ Hu(0) =0,
solved by
u(t) = cos (tﬂ) b € RN*™

@ A is discretization of —c(x)Ac(x)
@ Source/receiver matrix b depends on f, 6, ¢ near Xs
@ Data becomes

D(t) =b’ cos (t\/f-\) b c R™™
related to M(t) via
M(t) + MS(—t)

oo 0 70 llll
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Projection based ROM

@ Data is sampled discretely Dy, = D(k7), k =0,1,...,2n -2
@ Define wavefield snapshots sampled at the same instants

ux = u(kt) = cos (kT\/K) b
@ Obtain ROM of A by projecting onto
Kn = colspan(U), U =[ug,uy,...,u,_¢] € RN*™
@ If columns of V € RN*™" form orthonormal basis for K, then
A=VTAV e R™ M b= VTp c R™™M

@ Difficulty: U and V contain wavefields in the whole domain,
hence they are unknown! llll
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Data-driven ROM: mass matrix

@ Define mn x mn mass matrix
M=U"U

@ Use trigonometric identity

cos a cos 3 = % (cos(a + f3) + cos(a — B3))

to compute mass matrix blocks (using A7 = A)
T
Mj = ujy;

= b’ cos (I'T\/K> cos (jT\/K) b

= %bT {cos <(i+j)T\/K> + cos (]I —j’T\/K>} b

]

= 5 (Diyj+Dyijy) € R™, llll
fori,j=0,1,...,n—1, from data!
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Data-driven ROM: stiffness matrix

@ Similarly to M, define mn x mn stiffness matrix
S=U’AU

@ To compute S we need to know Dy = —b7 A cos(k7+v/A)b that can
be obtained from D(¢) via Fourier domain differentiation

@ Given second derivative data Dy, k = 0,1,...,2n — 2, compute
S,’j = U,-TAUj =

=b’ cos (iT\/K> A cos (jT\/K> b

= %bT [Acos ((/ —i—j)r\/K) + Acos <\I —j’T\/K):| b
_ _% (Bij+Byiy) € R,
fori,j=0,1,...,n— 1, again from data! llll
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Data-driven ROM: block Cholesky factorization

@ Suppose U is orthogonalized by a block QR (block
Gram-Schmidt) process

U = VR, equivalently, V= UR™",

where R is an upper-block-triangular block Cholesky factor of the
mass matrix M = UU known from the data

M=R'R
@ Projection ROM is given by
A-VAV=R T (UTAU) R'-R TSR,

where the stiffness matrix S = U’ AU is also known from llll
the data
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Conventional FWI vs ROM inversion

@ Conventional full waveform inversion (FWI): nonlinear least
squares
2n-2

m|n|m|ze Z Dk (c(x)) — D (|2 (1)

where Dg(c(x)) is the forward map and Di** is measured data

@ Objective of (1) is notoriously nhon-convex, optimization easily
gets stuck in abundant local minima, especially when lacking
low-frequency data (cycle skipping)

@ Replace (1) with

m|n|m|ze HA(C X)) — Ameals

: (@)

F

where A" is computed from D, Bess k = 0,1,...,2n — 2 lﬂ'l
@ Why objective (2) is better than (1)?
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Objective topography: FWI vs ROM inversion

[ R | @ Obijective topography for a single
interface model (left) with two

parameters: interface position and
velocity contrast

@ Non-convexity of FWI objective (1):
cycle-skipping results in horizontal
stripes, also local minima

@ ROM objective (2) has a global
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Numerical experiments

@ Band-limited source wavelet

cos(wot) & 0

f(t)y=——e 2,
O V2B,
with central frequency wy = 27(6Hz) and bandwidth

B, = 2n(4Hz)

@ ROM based velocity estimation is solved via Gauss-Newton
iteration regularized with adaptive Tikhonov regularization

@ Four numerical examples:

@ “Camembert” model with reflection data
@ Section of the Marmousi model

© 2004 BP Salt model

© Random medium model

@ Marmousi velocity estimation is for noisy data (1% noise) usingllll
regularized ROM construction
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Camembert model

@ Conventional FWI (1) vs. ROM estimation (2) after 10 GN iterations
ROM estimate Conventional FWI estimate
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@ Camembert model with reflection data

@ Circular inclusion (c(x) = 4000m/s) of radius 600m in a homogeneous
background (c(x) = 3000m/s), data collected at m = 10 sensors lﬂl

@ Very challenging for FWI, difficult to fill in the inclusion
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Camembert model

@ Conventional FWI (1) vs. ROM estimation (2) after 20 GN iterations
ROM estimate Conventional FWI estimate
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@ Camembert model with reflection data

@ Circular inclusion (c(x) = 4000m/s) of radius 600m in a homogeneous
background (c(x) = 3000m/s), data collected at m = 10 sensors lﬂl

@ Very challenging for FWI, difficult to fill in the inclusion
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Camembert model

@ Conventional FWI (1) vs. ROM estimation (2) after 40 GN iterations
ROM estimate Conventional FWI estimate
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@ Camembert model with reflection data

@ Circular inclusion (c(x) = 4000m/s) of radius 600m in a homogeneous
background (c(x) = 3000m/s), data collected at m = 10 sensors lﬂl

@ Very challenging for FWI, difficult to fill in the inclusion
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Camembert model

@ Conventional FWI (1) vs. ROM estimation (2) after 60 GN iterations
ROM estimate Conventional FWI estimate
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@ Camembert model with reflection data

@ Circular inclusion (c(x) = 4000m/s) of radius 600m in a homogeneous
background (c(x) = 3000m/s), data collected at m = 10 sensors lﬂl

@ Very challenging for FWI, difficult to fill in the inclusion
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Marmousi model
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Waveform inversion with ROMs

Top: section of Marmousi
model 5.25km x 3km

Bottom: initial guessisa 1D
gradient in depth

Data collected at m = 30
sensors

Perform 18 regularized
Gauss-Newton iterations

Compare to conventional FWI:
it gets stuck in a low quality
solution, likely not enough
low-frequency information

16/21



Marmousi model: velocity estimates
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2004 BP Salt model: velocity estimates

True c(x) Initial velocity model

@ Section of 2004

0.75 BP Salt model
15 6km x 5.25km
225 @ Initial guess is a
3 1D gradient in
375 depth
4.5
. @ Data collected at
R R RS B IR m = 40 sensors
Conventional FWI ROM velocity estimate @ Perform 35
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1 iterations

@ Conventional
FWI gets stuck
in a low quality

solution
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Random medium model

e )| 1800

1700 @ Top: random medium model
| 1600 6.75km x 6.75km

1200

with time reversal focusing llll

4
: =0 @ Bottom: ROM velocity
1400 reconstruction after 135
525 [ _ 1300 regularized Gauss-Newton
PR H”Uo iterations

NN R RSN @ Random fluctuations around

iU [ ¢ = 1.5km/s with amplitude 15%
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Conclusions and future work

@ We introduced ROM framework for acoustic velocity estimation
@ Time domain formulation is essential, linear algebraic analogues
of causality: Gram-Schmidt, Cholesky

@ Separate velocity estimation problem into two steps:
@ Construct wave equation operator ROM from data

@ Use ROM misfit as optimization objective
@ Much better behaved than conventional FWI least squares data

misfit even for band-limited sources: ROM misfit optimization
objective is very close to convex

@ Robust version exists for noisy and/or incomplete data, requires
non-trivial regularization of ROM construction process
Future work:

@ Extend to vectorial problems, e.g., electromagnetics, elasticity lll'l
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