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Motivation: inverse scattering

Incident wave @ Reduced order model
% (ROM) framework for
Receiver inverse scattering:
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Classical formulation

@ Classical inverse scattering: Schrédinger equation
[—A +g(x) — kz} u(x;k)=0, xeRY d=23
@ Wavefield decomposition: incoming + scattered
u(x; k) = uM°(x; k) + us(x; k)

@ Radiation condition, e.g., Sommerfeld

lim rz" (gr - zk) u*®@(x; k) = 0,

@ Measure 1% (x; k) at r = ||x|| — oo for various u'"°(x; k) and k to
estimate the scattering potential g(x)
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Our formulation: forward model

@ Schrddinger equation in Q only:
[—A +q(x) — kz} uS(x;k) =0, xeQ,

@ The radiation condition is approximated by a first order
absorbing boundary condition + sources

[n(x) -V — k] U (x; k) = ps(x), x€dQ, s=1,...,m,
where the sources
ps(x) = £ (x) [n(x) - V — k] 4" (x; k), x€dQ, s=1,....m,

are restrictions of the incoming waves to “windows” on 992 llll
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Our formulation: inverse scattering

@ For n sampling wavenumbers
O<ki<hko<...<kp

illuminate the medium with each of m sources ps(x), s=1,...,m,
and measure the boundary data

_ J(s) _ ,(9)
D_{¢/ =Y e

J ) (9k¢,(-s) = 3kU,(s)

o }j:1 sl 8=1,00m

— 1y

@ Inverse Scattering Problem (ISP): estimate the scattering
potential g(x) in Q from the data D

|
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Projection ROM

@ Consider wavefield snapshots for all frequencies and sources
u}s)(x) =u®x k), j=1,...,n, s=1,....m
@ We want to get a ROM of the forward problem by projecting onto
X = span {u}s)}

@ The ROM consists of mn x mn mass (M), stiffness (S) and
boundary (B) matrices with blocks

[S/]]rs:/vul(r) Vuj(s)dx—i-/ qpuj(s)dx,
Q Q

j=1,..,n; s=1,..m

Mjlrs = / dDuDdx,  [ogls = / uygs,
Q [2)9]
and takes the form
(S— KM+ kB)uU® =pS, s=1,....m lll'l
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Data-driven ROM

@ Big issue: wavefield shapshots are unknown in Q, only
measured at Q2. How to compute the ROM?

@ Need a data-driven process for ROM computation
@ Two-stage process:
First, given the data D, compute boundary integrals

[bjlrs = /BQ ¢,('r)¢j('s)dz)
[ei]rs = /8 ) [—qb}’)am}s) + <z>,(-s)ak¢>§”} as,
== | _profdr.

[akdj]rs:/ Prakéﬁ/('s)dza
o0

fori,j=1,...,n, r,s=1,....m llll
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Data-driven ROM

@ Second stage: from the boundary integrals compute the blocks
of stiffness and mass matrices:

| kPdr — KPd;  (Kik? + KPK))by

Sj = —1 NE
k2 — kj? K2 — kj2
1 ok?
sj = 5 (KR(kd) + 2R(d))) + ¢,
_d; —d; b; .
1
m/'j == ﬂ%(@kd ) + C/,
fori,j=1,...,n
@ Resemble classical Lowner product formulas
@ Note that b; and c; are non-linear in the data llll

@ Derivatives w.r.t. k only needed for digonal blocks
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Orthogonal projection ROM

@ Recall the blocks of the stiffness matrix
[silrs = /QVU,V) Vul®dx + /Q qﬁufs)dx

@ This is not an orthogonal projection ROM, since the snapshots
u; are not orthonormal
@ Can transform the ROM to an orthogonal projection ROM via
block Lanczos process applied to S with M-inner product to
obtain - L
[ti]rs = / v v dx + / qv"v®ax,
Q Q

the blocks of a block-tridiagonal matrix T, where {v;}[_, is an
orthonormal basis for the projection space X llll
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Using ROM to solve ISP

@ How can the ROM be used to solve the ISP?

@ Conventional data misfit a.k.a. Full Waveform Inversion (FWI) is
a non-linear least squares problem

n m

“a (s),meas 8)ra 2

minimize E E o; — ¢; axr
€ oo /arz‘ / ;1

@ We propose instead to use

minimize 7(q) + pR(Q),
qeQ

with either )
Fs(G) = ||Triu(s™= — s[q])||3

or
Fr(g) = ||Triu(T™e* — T(q))|5 llll
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Advantages of using ROMs for solving ISP

@ Why is ROM-based ISP better than conventional frequency
domain FWI?

@ Data least squares misfit functional is known to be highly
non-convex, leading to optimization getting stuck in local
minima, slow convergence, dependence on initial guess
and other issues

@ ROM misfit is much better behaved in the time domain case

@ We expect similar behavior in the frequency domain case

|
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Numerical example

@ q(x) with two inclusions in the unit square Q2 = [0, 1] x [0, 1]
@ m = 8 sources along the top boundary of Q

@ n = 8 sampling wavenumbers k = 20, 25, 30, 35, 40,45, 50, 55

2.5% noise added to the data, ROM computation regularized with
spectral truncation

Search space Q with 20 x 20 = 400 basis functions

10 Gauss-Newton iterations regularized with Tikhonov with
adaptive choice of u

|
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Numerical example: results

True medium Conventional FWI
1000 1 1000
800 0.8 f 800
600 0.6 o 1600
-
400 0.4 400
200 0.2 200
0 0 0 0
0 02 04 06 08 1 0 02 04 06 08 1
ROM Fg-minimization ROM Ft-minimization
1000 1000
800 800
600 1600
400 400
200 200 m
0 0 0
0 02 04 06 08 1 0 02 04 06 08 1
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Numerical example: quality control
x; = 0.35 x; = 0.55 x; = 0.75
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Conclusions and future work

@ We introduced ROM framework numerical solution of inverse
scattering for Schrédinger equation with frequency domain
measurements

@ Separate the ISP into two steps:
@ Construct the ROM from data

@ Use ROM misfit as optimization objective

@ Much better numerical results than conventional FWI least
squares data misfit
Future work:

@ Extend to Helmholtz equation to account for kinematic effects

@ Use the ROM to estimate internal solutions to use in a modified
Lippmann-Schwinger formulation for solving the IPS
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