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Motivation: inverse scattering

Figure from: DOI: 10.1109/TAP.2023.3312818

Reduced order model
(ROM) framework for
inverse scattering:

(1) Construct a data-driven
ROM from the data

(2) Formulate inverse
scattering problem as
ROM misfit minimization
Similar approach works
very well in the
time domain setting
Extend to frequency
domain
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Classical formulation

Classical inverse scattering: Schrödinger equation[
−∆+ q(x)− k2

]
u(x; k) = 0, x ∈ Rd , d = 2,3

Wavefield decomposition: incoming + scattered

u(x; k) = uinc(x; k) + uscat(x; k)

Radiation condition, e.g., Sommerfeld

lim
r→∞

r
d−1

2

(
∂

∂r
− ık

)
uscat(x; k) = 0,

Measure uscat(x; k) at r = ∥x∥ → ∞ for various uinc(x; k) and k to
estimate the scattering potential q(x)
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Our formulation: forward model

Schrödinger equation in Ω only:[
−∆+ q(x)− k2

]
u(s)(x; k) = 0, x ∈ Ω,

The radiation condition is approximated by a first order
absorbing boundary condition + sources

[n(x) · ∇ − ık ]u(s)(x; k) = ps(x), x ∈ ∂Ω, s = 1, . . . ,m,

where the sources

ps(x) = ξ(s)(x) [n(x) · ∇ − ık ]uinc,(s)(x; k), x ∈ ∂Ω, s = 1, . . . ,m,

are restrictions of the incoming waves to “windows” on ∂Ω
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Our formulation: inverse scattering

For n sampling wavenumbers

0 < k1 < k2 < . . . < kn

illuminate the medium with each of m sources ps(x), s = 1, . . . ,m,
and measure the boundary data

D =
{
ϕ
(s)
j = u(s)

j

∣∣∣
∂Ω

, ∂kϕ
(s)
j = ∂ku(s)

j

∣∣∣
∂Ω

}
j=1,...,n; s=1,...,m

Inverse Scattering Problem (ISP): estimate the scattering
potential q(x) in Ω from the data D
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Projection ROM

Consider wavefield snapshots for all frequencies and sources

u(s)
j (x) = u(s)(x; kj), j = 1, . . . ,n, s = 1, . . . ,m

We want to get a ROM of the forward problem by projecting onto

X = span
{

u(s)
j

}
j=1,...,n; s=1,...,m

The ROM consists of mn × mn mass (M), stiffness (S) and
boundary (B) matrices with blocks

[sij ]rs =

∫
Ω
∇u(r)

i · ∇u(s)
j dx +

∫
Ω

qu(r)
i u(s)

j dx,

[mij ]rs =

∫
Ω

u(r)
i u(s)

j dx, [bij ]rs =

∫
∂Ω

u(r)
i u(s)

j dΣ,

and takes the form

(S − k2M + ıkB)ũ(s) = ps, s = 1, . . . ,m
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Data-driven ROM

Big issue: wavefield snapshots are unknown in Ω, only
measured at ∂Ω. How to compute the ROM?
Need a data-driven process for ROM computation
Two-stage process:
First, given the data D, compute boundary integrals

[bij ]rs =

∫
∂Ω

ϕ
(r)
i ϕ

(s)
j dΣ,

[cj ]rs =

∫
∂Ω

[
−ϕ

(r)
j ∂kϕ

(s)
j + ϕ

(s)
j ∂kϕ

(r)
j

]
dΣ,

[dj ]rs =

∫
∂Ω

prϕ
(s)
j dΣ,

[∂kdj ]rs =

∫
∂Ω

pr∂kϕ
(s)
j dΣ,

for i , j = 1, . . . ,n, r , s = 1, . . . ,m
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Data-driven ROM

Second stage: from the boundary integrals compute the blocks
of stiffness and mass matrices:

sij =
k2

i d∗
i − k2

j dj

k2
i − k2

j
− ı

(kik2
j + k2

i kj)bij

k2
i − k2

j
, i ̸= j

sjj =
1
2

(
kjℜ(∂kdj) + 2ℜ(dj)

)
+

ık2
j

2
cj ,

mij =
d∗

i − dj

k2
i − k2

j
− ı

bij

kj − ki
, i ̸= j

mjj =
1

2kj
ℜ(∂kdj) +

ı

2
cj ,

for i , j = 1, . . . ,n.
Resemble classical Löwner product formulas
Note that bij and cj are non-linear in the data
Derivatives w.r.t. k only needed for digonal blocks
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Orthogonal projection ROM

Recall the blocks of the stiffness matrix

[sij ]rs =

∫
Ω
∇u(r)

i · ∇u(s)
j dx +

∫
Ω

qu(r)
i u(s)

j dx

This is not an orthogonal projection ROM, since the snapshots
uj are not orthonormal
Can transform the ROM to an orthogonal projection ROM via
block Lanczos process applied to S with M-inner product to
obtain

[t ij ]rs =

∫
Ω
∇v (r)

i · ∇v (s)
j dx +

∫
Ω

qv (r)
i v (s)

j dx,

the blocks of a block-tridiagonal matrix T, where {vj}n
j=1 is an

orthonormal basis for the projection space X
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Using ROM to solve ISP

How can the ROM be used to solve the ISP?
Conventional data misfit a.k.a. Full Waveform Inversion (FWI) is
a non-linear least squares problem

minimize
q̂∈Q

n∑
j=1

m∑
s=1

∫
∂Ω

∣∣∣ϕ(s),meas
j − ϕ

(s)
j [q̂]

∣∣∣2 dΣ

We propose instead to use

minimize
q̂∈Q

F(q̂) + µR(q̂),

with either
FS(q̂) =

∥∥Triu(Smeas − S[q̂])
∥∥2

2

or
FT(q̂) =

∥∥Triu(Tmeas − T[q̂])
∥∥2

2
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Advantages of using ROMs for solving ISP

Why is ROM-based ISP better than conventional frequency
domain FWI?

Data least squares misfit functional is known to be highly
non-convex, leading to optimization getting stuck in local
minima, slow convergence, dependence on initial guess
and other issues

ROM misfit is much better behaved in the time domain case

We expect similar behavior in the frequency domain case

A.V. Mamonov Inverse scattering with ROMs 11 / 16



Numerical example

q(x) with two inclusions in the unit square Ω = [0,1]× [0,1]

m = 8 sources along the top boundary of Ω

n = 8 sampling wavenumbers k = 20,25,30,35,40,45,50,55

2.5% noise added to the data, ROM computation regularized with
spectral truncation

Search space Q with 20 × 20 = 400 basis functions

10 Gauss-Newton iterations regularized with Tikhonov with
adaptive choice of µ
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Numerical example: results
True medium Conventional FWI

ROM FS-minimization ROM FT-minimization
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Numerical example: quality control
x1 = 0.35 x1 = 0.55 x1 = 0.75

FS
a
a
a

FT
a
a
a

FWI
a
a
a
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Conclusions and future work

We introduced ROM framework numerical solution of inverse
scattering for Schrödinger equation with frequency domain
measurements

Separate the ISP into two steps:
1 Construct the ROM from data
2 Use ROM misfit as optimization objective

Much better numerical results than conventional FWI least
squares data misfit

Future work:
Extend to Helmholtz equation to account for kinematic effects

Use the ROM to estimate internal solutions to use in a modified
Lippmann-Schwinger formulation for solving the IPS
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