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Problem formulation

Motivation

Problem: Time-domain Controlled Source Electromagnetic (CSEM) method
in oil and gas exploration
@ Determine the resistivity in the subsurface from time-resolved surface
measurements
@ Quasi-stationary parabolic Maxwell system
@ Highly non-linear inverse problem, local minima, slow convergence

@ Expensive forward modeling
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Problem formulation

Continuum problem

@ Layered medium, one-dimensional equation

;({r(x)a“éix)}:‘a“glzx), xc[01], t>0

@ Boundary and initial conditions
ux(t,0) =u(t,1) =0, u(0,x)=10d(x)

@ Measurements: boundary time-domain response

y(t)=u(t,0), t>0
@ Inverse problem: given y(f) for t > 0 find r(x)
@ Inverse boundary value problems for parabolic (and elliptic) equations

are typically ill-posed

@ lll-posedness in continuum leads to poor conditioning in numerics -v.
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Model order reduction and inversion

Model reduction framework: semi-discrete system

@ Discretize on a fine (uniform) grid in space with spacing h=1/(N+ 1)

ou(t) 1
ot A(nu(t), u(0) = 591 (1)

@ Discretization of the differential operator
A(r) = —D'diag(r)D, reRY
@ Time-domain response
y(t:r) = efu(t)
Semi-discrete inverse problem: given y(t;r) find r € RY
Treat (1) as a dynamical system, apply model reduction techniques
Model reduction: given r find a reduced model that approximates y

“Inverse” model reduction: obtain a reduced model from the y, -v-
then find r which has this reduced model
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Model order reduction and inversion

Optimization formulation: non-linear preconditioning

@ Noisy data
d(t) = y(t;r™*) +£(t), t>0,
where £(t) is due to noise and discretization errors.
@ Optimization formulation
N 1 o
r* = arg min - | Q(d(1)) - Qy ()l + 5P(r)
reS 2 2
@ Solution method: Gauss-Newton or non-linear CG

@ Traditional approach: output least squares, no preconditioner Q,
regularization term P Tikhonov or TV

@ Drawbacks: non-convexity, easy to get stuck in local minima, slow
convergence, difficulties with high contrast, expensive

@ Non-linear preconditioner Q : C(0, +o00) — R with small g, the
dimension of parameters of reduced models _v_

@ The mapping Q(y(-;r)) : RN — RY is an approximate identity
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Model order reduction and inversion

Projection-based model reduction

@ Transfer function of the full model A(r) € RN*N b € RN

+oo 1
G(s;r) = i y(t;r)e Stdt=b"(sl—A(r))"'b, s>0, b= N
@ Transfer function of a reduced model A, € R™™ b, € R™
Gm(s) =b/(slh— An) b

@ Projection-based model reduction

An=VTAV, bp,=V'b, VIV=I,
@ Columns of V € RN*™ gspan the projection subspace
@ Choice of subspace is dictated by matching conditions

k k
aagm S:U/: %f o j=1,...,m k=0,...,2M; —1
at interpolation nodes o; € [0, +0) -v.

A.V. Mamonov (Schlumberger) Model Reduction for Inversion 7138



Model order reduction and inversion

Rational Krylov Model Reduction

@ Reduced order transfer function admits a partial fraction expansion
m
Gn(s) =
j=1
with negative poles —6; and positive residues ¢;
@ Rational G, hence rational interpolation

G
S—|—9j7

¢ >0, 0,>0,

@ Typical choices of projection subspaces in model reduction: rational
Krylov subspaces

Km(o) =span{(ojl - A) b |j=1,....m; k=1,...,M}
@ Popular special cases for forward modeling: moment matching
Km(+o0) = span{b,Ab,...,A" b}
Km(0) span {A"'b,A"?b,...,A""b}
@ Kp(+00) is bad for inversion -v.
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Model order reduction and inversion

Inversion via model reduction: Hx-optimality

@ Proposed in [Druskin, Simoncini, Zaslavsky, 2011]
@ Based on H»-optimal reduced models
@ View reduced model as a function of interpolation nodes o

Ym(t:o) =BT V(o)€M V(o) b, for Am(a)= V(o) AN V(o)
@ Minimize time-domain error in L, sense
o” = arg min[ly(t;r) — Ym(t; &) L,[0.+o)
@ Equivalent to Hz-optimality in Laplace domain (solve with IRKA)
o” = arg min||G(s; 1) — Gm(s)l2,

@ Use poles and residues of Gn(s) as parameters in inversion
@ Define the non-linear preconditioner with a chain of mappings

Q, ((-i0): AWM o B V(™) S An S {(G0)}
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Model order reduction and inversion

Inversion via model reduction: continued fraction

@ We propose a different choice of parameters and matching conditions
@ Write the reduced model response as a continued fraction
1

K1S+
K1+

. 1
-

N 1
KmS + —
Km
@ This is a response w;(s) of a second-order finite difference scheme

1 (Wi —wW, W — Wi
— j+ (Y I —sw;=0
Rj Rj Rj—1

@ Continued fraction coefficient are discrete resistivities
@ Use {(rj, %))}/", as parameters in inversion, define Q as a chain -v.

oy(-in): rBAN BV AL S (6,001 G {(k) 7))}
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Matching conditions

Matching conditions for inversion

@ The choice of matching conditions is important: what is good for forward
modeling is not necessarily good for inversion

@ Use the Jacobian of Q to quantify the quality of matching conditions

8/<Lj .
T forj=1,....m
(DQ)j k= 871!(,- ' , k=1,...,N.
o forj=m+1,...,2m
@ Proper matching conditions should give good conditioning and

resolution

@ Good conditioning of DQ is desirable for fast and robust performance of
Gauss-Newton iteration, possible to achieve cond(DQ) ~ O(1)

@ Conditioning of Q(d(-)) always grows exponentially (unavoidable
ill-posedness), slower growth is preferential 'W'

@ Resolution is connected to optimal grids
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Matching conditions

Connection to optimal grids

@ Optimal (spectrally matched) grids were introduced in [Druskin,
Knizhnerman, 2000] for exponential superconvergence of DN maps

@ Typically defined for r(x) = 1

(57 RNy = QU (-, 1)), @ =11, )T

@ Continued fraction coefficients are the grid steps of FD scheme for
Aw—sw=0

@ Staggered grid with primary and dual nodes

J

Zn“’) 5O =3 R0 j=1,..m

k=1
@ Optimal grids were used for inversion (Sturm-Liouville, EIT)

@ Here we do not explicitly use optimal grids for inversion, -v-
but to quantify the resolution
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Matching conditions

Optimal grids for different matching conditions

o X © X o X [¢) x o
O%x O % o * o * o *
Wk v * v *
Il Il Il Il Il Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
m=10
T T T T T T T T
OXOX O X O X O X O X o X o X o
OxO%x O %« O % O * o * o * o *
vV % V * v * v *
| | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Compare three choices of matching conditions:
(o, x) Moment matching at zero, K,(0) = span {A~'b,A~?b,...,A""b}
(0,%) Interpolation Km(a) = span {(5;/— A)~'b|j=1,...,m} at
geometrically spaced nodes o; = o4 (1 + C/m)"_1
(*,%v7) Interpolation at fast growing nodes o* {l}
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Matching conditions

Conditioning of the Jacobian

@ Rows of DO have the
meaning of sensitivity
functions

@ Each row corresponds
al to one grid cell

Q e s .

S @ Sensitivity functions
T o} 1 are localized

<

¥ @ Peak locations are at
the optimal grid nodes

Clustered nodes lead
to (almost) linearly
dependent rows of DQ

L L L L L L L L L L
2 3 4 5 6 7 8 9 10 11 12 13
m

Condition number growth for moment matching at zero (o),
interpolation at o (OJ), interpolation at o* (/) 'WI'
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Matching conditions

Conditioning of rational approximation

@ Optimization objective requires computing

(kj, R)20 = Q(d(+))
@ The most unstable step in inversion procedure
@ Rational approximation (interpolation) problem
@ Simple Padé for moment matching Cr(0)

3 G JG -/+°° , .
. = — = (-1) tntdt, j=0,1,...,2m—1
99 |._,~ 99|, (1) | y(t;r) J

@ Multipoint Padé for osculatory interpolation ICm(~)
_ p(s) p(5)) — Gm(07)q(5)) =
6rls) = Gat 1 D) - Grrae - Gl —
forj=1,....m

@ Once the coefficients of p(s) and q(s) are known, can compute the -v-
poles, residues and the continued fraction coefficients easily
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Matching conditions

Conditioning of rational approximation: comparison

m 2 3 4 5 6
cond(Ty) | 5.28-10T [ 1.26-10% [ 1.84-10° | 9.14-10™ | 2.86-10'°
cond(Ry,) | 4.43-10% | 6.73-10* | 1.85-10" | 6.95-10° | 3.83-10"

@ Both simple and multipoint Padé problems may be solved via SVD

@ Simple Padé: SVD of Toeplitz matrix T,, € R™(m+1) of Taylor
coefficients 7, j = 1,...,2m — 1 of

G(S):To+T1S+T2$2—|—...—|—T2m,132m_1 —+ ...

@ Multipoint Padé: SVD of R, € R2m*(2m+1)

R — z1:m,1:m —-FX
me Z%:m,tm -F'¥ - F¥'|”
with Vandermonde X and F = diag(G(o))
@ Multipoint Padé is clearly superior W
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Non-linear preconditioner and its Jacobian

Computing © and DQ: chain of mappings

@ Chain of mappings for computing @ and the Jacobian DQ
Qi) : r B AN BV AL S {( )1 S (), B ML

(a) A(r) = —D'diag(r)D, trivial to differentiate.

(b) Requires differentiation of orthonormal basis V.
Here we differentiate QR decomposition.

(c) An = VTAV, trivial to differentiate once DV is known.
(d) Differentiation of eigendecomposition
¢ =(blz)? Amzi+0z =0, |z|=1, j=1,....,m
(e) Lanczos iteration. Explicit differentiation formulas derived in [Borcea,
Druskin, Knizhnerman, 2005]

@ Steps (d)—(e) can be combined into one using a variant of Lanczos. -w.
No explicit formulas, requires differentiation of the iteration.
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Non-linear preconditioner and its Jacobian

Differentiation of QR decomposition
@ Krylov matrix K = [(61/— A)~'b,...,(Gml — A)~'b] € RN*™
@ Compute V from QR decomposition: K = VR, KTK =R"R=LL"
@ Need to differentiate Cholesky to get

ov (oK oL P
m(ark_vark>L k=1,....N

Proposition (Differentiation of Cholesky factorization)

Let M € R™" be a matrix with Cholesky factorization M = LL". Given the
perturbation 6M of M, the corresponding perturbation 5L of the Cholesky
factor is computed by the following algorithm.

Fork=1,...,n
1 (M k=
(Ska = L_kk ( 2 Z 5ijij
Fori=k+1,...,n

1 K k—1
OLix= - <6M,-k — Y blyli— Y 5L,-,-Lk,->
Kk j= j=1
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Inversion method and numerical results

Regularization

@ Traditional approaches require regularization for stability

@ We use regularization only to improve the reconstruction quality

@ Separate the fitting || Q(d(-)) — Q(y(-;r)||2 step from regularization step
@ Jacobian DQ € R2™*N has a large null space 2m < N

@ Minimze the regularization functional P(r) in null(DQ)

@ Weighted discrete H' seminorm

1
Pr) = S W'2Ar2,

here A is the truncation of D (first derivative, not second)

@ Works for both smooth (W = /) and piecewise constant resistivities
(non-linear re-weighting at every iteration)

@ Constrained optimization subproblem at each Gauss-Newton iteration
minimize  p' ATWAp 'W'
s.t. [DQJ(r-p)=0
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Inversion method and numerical results

Regularization

@ Regularization subproblem: quadratic with linear constraints
@ First order optimality conditions, explicit solution from
ATWAp+ DO = 0
[DQ]p = [DQ]r
@ May be ill-conditioned, SVD truncation, drop the smallest singular value
@ Non-trivial weight (W # /) is needed for piecewise constant resistivities

@ Use weight introduced in [Abubakar, Habashy, Druskin, Knizhnerman,
Alumbaugh, 2008]

W= (A2 +6(M?) ", j=1,....N=1,

where
o(r) = Cy[1Q(d(-)) — Q¥ (-:N)ll2 _-[p-_

@ Sharp resolution of interfaces

A.V. Mamonov (Schlumberger) Model Reduction for Inversion 20/38



Inversion method and numerical results

Inversion algorithm

@ Solve the data fitting rational interpolation problem (x w1 Ry = Q(d(+))
@ Work with logarithms I* = (log %, . .., log k}, log &%, . . ., log &%) "

© Choose on initial guess r(V) € RY

©Q Forp=1,...,n, do

o Compute the non-linear precondltloner (k; ) 7p) R, = Qy(t 1))

and its Jacobian DQW) = DO(y(t; r ))
@ Work with logs IP) = (log s\, ..., log x®, 1og 7). . .. | log #¥)T
© Gauss-Newton step
f i = *
o9 = (Do) dag (KD FP, 7)1 1)

@ Gauss-Newton update r@V = r(P) 1 ¢(P) p(P)
@ Compute the regularization weight for réV
@ Solve for next iterate r(P+1) from

ATWA (DQP)T] [rlp+!) 0 -v-
[DQ(P) 0 } [A(P) ] = [(DQ(p))rGN}
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Inversion method and numerical results

Numerical experiments: setup
@ Time stepping over [0, Tmax] with N7 steps to compute y € RN

@ Systematic discretization errors even in the absence of noise
=yt +€9(), j=1,...,Nr

@ Generate the data by adding noise d =y + ¢
@ Noise model
¢ = ediag(x1, .-, xwy )Y,

with independent x, € A/(0,1)
@ Reduced model size m chosen based on noise level e
m 3 4 5 6
e |5-1072[5-107% | 10~* | 0 (noiseless)
@ Relative ¢, error to measure the quality
Hr* _ rtrue||2

Hrtrue||2 v

@ Initial guess r' = 1, five Gauss-Newton iterations ngy = 5

5:
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Inversion method and numerical results

Numerical results: smooth resistivity
m=3,e=5-10"2 m=4¢e=5-10"3

22

2.71e-02

1.88e-02
. . 08 . . h f .
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

— True resistivity r'® (quadratic)
x Reconstruction r® after one Gauss-Newton iteration -w-
o Reconstruction r®) after five Gauss-Newton iterations
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Inversion method and numerical results

Numerical results: smooth resistivity
m = 6,e¢ = 0 (noiseless)

22
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— True resistivity r'® (quadratic)
x Reconstruction r® after one Gauss-Newton iteration -w-
o Reconstruction r®) after five Gauss-Newton iterations
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Inversion method and numerical results

Numerical results: smooth resistivity
m=3,e=5-10"2 m=4¢e=5-10"3

22

4.31e-02
. f .
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

2.00e-02 ‘ ‘

08 L L L L L 0.8 L L

— True resistivity r™e (linear + Gaussian)
x Reconstruction r® after one Gauss-Newton iteration -w-
o Reconstruction r®) after five Gauss-Newton iterations
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Inversion method and numerical results

Numerical results: smooth resistivity
m = 6,e¢ = 0 (noiseless)

22

1.36e-02
h f .
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

1.05e-02
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— True resistivity r™e (linear + Gaussian)
x Reconstruction r® after one Gauss-Newton iteration -w-
o Reconstruction r®) after five Gauss-Newton iterations
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Inversion method and numerical results

Numerical results: piecewise constant resistivity

m=4¢e=5-10"3

m=3,e=5-10"2

8.95e-02 ‘ ‘ ‘ ‘ ‘ ‘ ‘5.10e‘—02 ‘ ‘ ‘
o 0‘.1 0‘.2 0.3 0‘.4 0.‘5 0.6 0.7 0.8 0.9 1 0'80 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
— True resistivity r'® (jump of contrast 2)
x Reconstruction r® after one Gauss-Newton iteration -w-
o Reconstruction r®) after five Gauss-Newton iterations
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Inversion method and numerical results

Numerical results: piecewise constant resistivity
m = 6,e¢ = 0 (noiseless)

22

6.00e-02

3.56e-02
. . . . . . h f . . . .
01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

0.8
[

— True resistivity r'® (jump of contrast 2)
x Reconstruction r® after one Gauss-Newton iteration -w-
o Reconstruction r®) after five Gauss-Newton iterations
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Extension to two dimensions

Approaches to higher dimensions

Higher dimensions:

@ One-dimensional problem is formally determined: 1D unknown r(x) and
1D data y(t)

@ In dimension two the problem is already overdetermined: 2D unknown
r(x,y), but 3D data y; ;(t), where (/,/) are source-detector pairs

@ Straightforward generalization: block Lanczos, block Krylov subspaces,
matrix-valued continued fractions

@ Block tridiagonal matrix with dense blocks, consequence of an
overdetermined problem

@ Dense blocks do not correspond directly to a finite-difference scheme

@ Work with a subset of the data, make the problem formally determined

¥
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Extension to two dimensions

Coinciding sources and receivers (transducers)

Using one scalar continued fraction per transducer:
@ Simplest reduction of the data y; ;(t): take the diagonal i = j
@ Sources and receivers coincide

@ Excite at a point on the boundary at t = 0, measure y;(t) at the same
location for t > 0 for each transducerj=1,...,n

@ Not the best setting in practice, measurements at source locations may
be noisy

@ Easier to work with theoretically, coinciding sources/receivers preserve
the symmetry

@ Construct separate scalar continued fractions interpolating each y;(t),
j=1,....n

@ Continued fractions are again Stieltjes due to the symmetry .w.
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Extension to two dimensions

Sensitivities

Sensitivity func-
tions of &; (left)
and x; (right) for
j=1,...,m (top to
bottom), m = 5 for
a single transducer
(black o) outof n =8
(red x).

Simple Pade approx-
imant at ¢ = 60.
Sensitivities resem-
ble propagating
spherical waves.
Higher o means
lower  speed  of
propagation. Should
avoid reflections from

boundaries.
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Extension to two dimensions

Reconstructions: single low contrast inclusion

| =07 7 ==y e
NN ¢ : Nﬂ\s

. \\\\\&%»/72\# N | NN £ A7

Top: true r(x, y). Bottom: reconstruction after a single Gauss-Newton -W.
iteration. Constant initial guess ry(x, y) = 1. Transducers: red x.
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Extension to two dimensions

Reconstructions: single high contrast inclusion

Top: true r(x, y). Bottom: reconstruction after a single Gauss-Newton W
iteration. Constant initial guess ry(x, y) = 1. Transducers: red x.

A.V. Mamonov (Schlumberger) Model Reduction for Inversion 33/38




Extension to two dimensions

Reconstructions: two adjacent inclusions

0.6 15

0.4

0.2}

O\
0 0.5 15 2 2.5 3

Top: true r(x, y). Bottom: reconstruction after a single Gauss-Newton
iteration. Constant initial guess ry(x, y) = 1. Transducers: red x.
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Extension to two dimensions

Reconstructions: layered medium

Top: true r(x, y). Bottom: reconstruction after a single Gauss-Newton -v.
iteration. Constant initial guess ry(x, y) = 1. Transducers: red x.
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Extension to two dimensions

Reconstructions: skewed inclusion, low aperture

e
\\;\\ ARy

© QRS2 #

Top: true r(x, y). Bottom: reconstruction after a single Gauss-Newton -W.
iteration. Constant initial guess ry(x, y) = 1. Transducers: red x.
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Extension to two dimensions

Reconstructions: skewed inclusion, high aperture

| R : i N\ ===
] s ‘ T s ==
. . D o
(GRS g i s 4\”\?}\\\\

- \\\\\</<»///2\$ S ] N\ VKA

Top: true r(x, y). Bottom: reconstruction after a single Gauss-Newton -v.
iteration. Constant initial guess ry(x, y) = 1. Transducers: red x.
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Conclusions and future work

Conclusions and future work

Conclusions:
@ Non-linear preconditioning based on model reduction
@ Data fitting: rational interpolation (unavoidably ill-conditioned)
@ Reconstruction: well-conditioned
@ Fast convergence, inexpensive
@ Possible to extend to higher dimensions
Future work:
@ More work on 2D and 3D
@ Non-coinciding source-receiver pairs
@ Deal with the loss of symmetry

Preprint: A model reduction approach to numerical inversion for a
parabolic partial differential equation. L. Borcea, V. Druskin,
A.V. Mamonov and M. Zaslavsky, 2012, arXiv:1210.1257 [math.NA]
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