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Motivation and overview

@ Develop a unified framework for quantitative imaging
(inversion) of PDE coefficient from boundary data based on
reduced order models (ROM)

@ Under appropriate parametrization of PDE, the ROM is
approximately affine in the unknown coefficient

@ ROM computation transforms the nonlinear imaging problem to
an approximately linear one!

@ Can be solved either directly or in a very few iterations

@ Data fit step is separated from imaging step, allows for a
separate flexible regularization of both

@ Admits both time and frequency domain formulations llll
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Forward model: diffusion equation

@ First, consider an inverse problem for coefficient g of diffusion
equation in the frequency domain

—Aus(X;w) + g(X)us(X; w) + wus(X; w) = bs(X), X €

driven by sources bs(x), s =1, ..., m, located near 9, from
measurements at collocated sensors of

Frs(w) = (br, us( - ;w /br X)Us(X;w)dX, w >0,
wherer,s=1,...,m

@ That is, the response of the system is F(w), a symmetric m x m
matrix function of frequency llll
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Quantitative Imaging Problem (QIP)

@ For technical reasons we measure both F(w) and its derivative at
n frequencies

Dy = {Flun). ()}

k=1

@ The Quantitative Imaging Problem (QIP) is an inverse problem
of estimating g(x), X € Q quantitatively from Dq

@ QIP is severely ill-posed due to instability of the mapping from

Dytoq
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Matrix-vector formulation

@ Assemble solutions and sources into row-vector-valued functions

uX;w) = [u(Xw), a(X;w),. .., Uun(X; w)],
b(x) = [bi(x),ba(X),...,bn(X)].

@ Forward problem becomes
(Ag + whu(x;w) = b(x),

with Ag = —A + g(x)l
@ Define “matrix product” of row-vector-valued functions

(vi,wy) ... (v, wpn)
w = GRMXN,

(Wms W) oo (Vi Wiv) llll
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Reduced order model (ROM)

@ In matrix form response becomes
F(w) =bTu(-;w) =bT[(Ag + wl)~'b] € R™™

@ We seek a reduced order model (ROM) A, € R™*™",
b € R™*M with a transfer function

F(w) =b(Ag + wlmn)~'b € R™M
that interpolates the data

= oF oF
Flwr) = Flwk),  Z-(wi) = 5-(wk), k=1,....n
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Projection-type ROM

@ To satisfy interpolation conditions the ROM must be of
projection type

Ay =VT[AV] =VT[Agvy,...,Aqv,], b=VTb
where “orthogonal matrix” (V'V = I,,) row-vector-valued function
V(X) - [V1 (X), e aVn(x)]

spans the projection subspace
@ Define solution snapshots

uc(x) =u(X;wg), k=1,....n
and assemble them into row-vector-valued function

U(X) = [uy(x),...,us(x)] lﬂl
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Projection-type ROM

@ To satisfy interpolation conditions the projection subspace
must be the block rational Krylov subspace

colspan(V) = Kn(Ag, b) = colspan(U)

@ If we knew snapshots u,(x) and operator A, in the whole domain
2, we could orthogonalize them to find V(x) to compute
A, = VT[A4V]. But we know neither!

@ Can we compute the ROM from the data Dg only? Can we have a
data-driven ROM?
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Data-driven ROM

@ Viewing projection in Galerkin framework, define mass and
stiffness matrices

M=U"UecR™ ™ and S=UT[A;U] cR™ ™

with blocks
Mjc = u/u e R™™ Sy =ul[Aqu ] e R™, jk=1,....n
@ Then, M and S can be obtained from the data as
1
M, = F(w))—F [ £ k
e = o Fl) —Fa). J#k
OF
My = —%(wk%
1 )
Sk = pp— (wjF(wj) — wkF(wk)), J# kK,
OF llll
Skk = F(wk) + wk%(wk)
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Extracting g from ROM

@ If mass matrix is known, snapshots (not known!) can be
orthogonalized V = UM~1/2

@ Then the ROM is
A, = VT[AgV] = M- 12UT[AUIM-1/2 = M~1/28M~1/2
b = Vib=M"12UTb = M~"2[F(w),...,F(wn)]"

@ How to use ROM to estimate g(x)?

@ Observation: A; = —A + q(x)l is affine in g, thus perturbation
O0A = Aq — Ay is linear in g = g — qo!

@ Conjecture: ROM perturbation is approximately linear in jg

@ For conjecture to work, ROM must be in a special form, llll
need one more transformation
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Block Lanczos transform

@ ROM perturbation is approximately linear in g if ROM corresponds
to a finite-difference discretization of A,
@ Perform block Lanczos process

A;=Q"A,Q, b=Q"b

to transform the ROM (Kg, b’) to block-tridiagonal form

(82] ,62 0 0
N B oz B : N
A= | o ,33T oz . 0 c RMMMN .y —
Lo B,
_0 0 5177— Qp |

B1

0 c Rmnxm

0

@ Then, 6A = Z\q — qu is approximately linear in 6g = g — q! lﬂ'l
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Numerical check: approximate linearity of SA w.r.t. q

AC1 q1+C2Q2 _NAQO ~ _ -
~ G (AQ1 - ACIO) + C2(A<72 - AQO)

as a function of ¢y and ¢»

@ Plateaus at around 7%

Q2
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Quantitative imaging method

@ Choose a background go(x)
© Choose a basis ¢;, i =1,..., N to expand

N
3q(x) = q(x) — qo(X) = > _ gipi(x)
i=1

© Compute the expansion coefficient vector g = [g1, ..., gn]" by
solving the linear least squares problem

[vec(Ay, — Ag,). .. vec(Asy — Ag)lg = vec(Aq — Ag,) (1)
N
© Form the quantitative image g*(x) = qo(X) + >_ gi¢i(X)
i=1

@ Only the right hand side of (1) depends on the data via Kq
@ Left hand side of (1) can be precomputed for a fixed Q2 and qq llll
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Numerical results

Quantitative image g*(x)
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@ Quantitative images from measurements at m = 6 extended
sensors (yellow) at n = 4 frequencies
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Imaging with (acoustic) waves

@ Similar approach works for imaging with waves from
time-domain data

@ Need to separate kinematics (wave speed c(x)) from reflective
behavior (acoustic impedance o(x)):

D2us(x; t) — o(X)e(X)V - [:E’;;Vus(x; t)] = f(t)o(x — Xs),

as before, s =1,..., mare source indices
@ Time domain data F(t) € R™™ with entries

Frs( t)_/éx X, us(X; H)dx = us(xs; t), r,s=1,...,m,

sampled discretely in time F(k7), k =0,1,...,2n— 1
@ Assume kinematics c(x) is known, seek image of o(x) w'l

A.V. Mamonov ROMs for quantitative imaging



First order form

@ Transform to first order form via Liouville transformation

oot Bonl sl - [

- ot
where

Ly = eV e + "X vaw) -
L] =c(X)V/c(x)+ C(zx)Vq(x),

with reflectivity q(x) = log o(x)
@ Observe Lq, L} are affine in g, same as A, before!
@ Data-driven ROM Eq of L, is approximately affine in g

@ This approximation is worse than that for diffusion equation, llll
iteration may be needed
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Quantitative imaging with waves

@ Choose an initial guess gj(x), fix the wave speed ¢(x)
@ Choose a basis ¢;, i = 1,..., N for expansion

N
5q(x) = > _ givi(x)
i=1

@ Fork=1,2,...iterate
e Find expansion coefficient vector g¥ by solving the linear least
squares problem

[vec(Ly, — Lg; ,)...vec(Ly, — Lg: )lg* = vec(Lg — Lg: )
N
o Update the quantitative image g;(x) = g;_,(X) + > gFei(x)
i=1

@ Above iteration converges very quickly, llll
typically 3 — 5 iterations are sufficient
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Numerical results

20

40

60

0

20

40

60

True g(x)
.--":-'-- —
_'____?I___; _____ paant® |

50 100 150
Image g;(x) after 1 iteration
#* -

-
50 100 150

-1.5

20

40

60

0

20

40

60

Time-reversal (LS-RTM) image

A1

Image qZ(x) after 5 iterations

—

50 100 150

@ Constant wave speed, lots of multiple reflections,
m = 50 sensors (crosses, not all shown)
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Conclusions and future work

@ Unified ROM-based framework for quantitative imaging of PDE
coefficients

@ Transforms diffusion inversion to essentially a linear problem:
converges in a single iteration

@ Greatly improves imaging with waves by eliminating the adverse
effects of multiple scattering

@ Robust version exists: spectral truncation of the mass matrix
Future work:
@ Vectorial imaging problems (elasticity, electromagnetics)

@ Partial data case when not all entries of F are measured,
including non-collocated sources/receivers, moving sensors, etc!

A.V. Mamonov ROMs for quantitative imaging 19/20



References

@ Reduced order models for spectral domain inversion: Embedding into the continuous
problem and generation of internal data, L. Borcea, V. Druskin, A.V. Mamonov, S. Moskow,
M. Zaslavsky, Preprint: arXiv:1909.06460 [math.NA].

e Reduced Order Model Approach to Inverse Scattering,
L. Borcea, V. Druskin, A.V. Mamonov, M. Zaslavsky, J. Zimmerling,
Preprint: arXiv:1910.13014 [math.NA].

e Direct, quantitative imaging of absorption coefficient from frequency domain data,
L. Borcea, V. Druskin, A.V. Mamonov, S. Moskow, M. Zaslavsky, In preparation.

Related prior work:

o Direct, nonlinear inversion algorithm for hyperbolic problems via projection-based model
reduction, V. Druskin, A. Mamonov, A.E. Thaler and M. Zaslavsky,
SIAM Journal on Imaging Sciences 9(2):684-747, 2016

9 A nonlinear method for imaging with acoustic waves via reduced order model
backprojection, V. Druskin, A.V. Mamonov, M. Zaslavsky,
SIAM Journal on Imaging Sciences, 11(1):164-196, 2018
Q Untangling the nonlinearity in inverse scattering with data-driven reduced order models,
L. Borcea, V. Druskin, A.V. Mamonov,
M. Zaslavsky, Inverse Problems 34(6):065008, 2018
0 Robust nonlinear processing of active array data in inverse scattering via truncated
reduced order models, L. Borcea, V. Druskin, A.V. Mamonov, M. Zaslavsky,
Journal of Computational Physics 381:1-26, 2019
A.V. Mamonov ROMs for quantitative imaging 20/20



