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Motivation and overview

Develop a unified framework for quantitative imaging
(inversion) of PDE coefficient from boundary data based on
reduced order models (ROM)

Under appropriate parametrization of PDE, the ROM is
approximately affine in the unknown coefficient

ROM computation transforms the nonlinear imaging problem to
an approximately linear one!

Can be solved either directly or in a very few iterations

Data fit step is separated from imaging step, allows for a
separate flexible regularization of both

Admits both time and frequency domain formulations
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Forward model: diffusion equation

First, consider an inverse problem for coefficient q of diffusion
equation in the frequency domain

−∆us(x;ω) + q(x)us(x;ω) + ωus(x;ω) = bs(x), x ∈ Ω

driven by sources bs(x), s = 1, . . . ,m, located near ∂Ω, from
measurements at collocated sensors of

Frs(ω) = 〈br ,us( · ;ω)〉 =

∫
Ω

br (x)us(x;ω)dx, ω ≥ 0,

where r , s = 1, . . . ,m
That is, the response of the system is F(ω), a symmetric m ×m
matrix function of frequency
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Quantitative Imaging Problem (QIP)

For technical reasons we measure both F(ω) and its derivative at
n frequencies

Dq =

{
F(ωk ),

∂F
∂ω

(ωk )

}n

k=1

The Quantitative Imaging Problem (QIP) is an inverse problem
of estimating q(x), x ∈ Ω quantitatively from Dq

QIP is severely ill-posed due to instability of the mapping from
Dq to q
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Matrix-vector formulation

Assemble solutions and sources into row-vector-valued functions

u(x;ω) = [u1(x;ω),u2(x;ω), . . . ,um(x;ω)],
b(x) = [b1(x),b2(x), . . . ,bm(x)].

Forward problem becomes

(Aq + ωI)u(x;ω) = b(x),

with Aq = −∆ + q(x)I
Define “matrix product” of row-vector-valued functions

vT w =

 〈v1,w1〉 . . . 〈v1,wN〉
...

. . .
...

〈vM ,w1〉 . . . 〈vM ,wN〉

 ∈ RM×N ,
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Reduced order model (ROM)

In matrix form response becomes

F(ω) = bT u( · ;ω) = bT [(Aq + ωI)−1b] ∈ Rm×m

We seek a reduced order model (ROM) Ãq ∈ Rmn×mn,
b̃ ∈ Rmn×m with a transfer function

F̃(ω) = b̃T (Ãq + ωImn)−1b̃ ∈ Rm×m

that interpolates the data

F̃(ωk ) = F(ωk ),
∂F̃
∂ω

(ωk ) =
∂F
∂ω

(ωk ), k = 1, . . . ,n
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Projection-type ROM

To satisfy interpolation conditions the ROM must be of
projection type

Ãq = VT [AqV] = VT [Aqv1, . . . ,Aqvn], b̃ = VT b

where “orthogonal matrix” (VT V = Imn) row-vector-valued function

V(x) = [v1(x), . . . ,vn(x)]

spans the projection subspace
Define solution snapshots

uk (x) = u(x;ωk ), k = 1, . . . ,n

and assemble them into row-vector-valued function

U(x) = [u1(x), . . . ,un(x)]
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Projection-type ROM

To satisfy interpolation conditions the projection subspace
must be the block rational Krylov subspace

colspan(V) = Kn(Aq,b) = colspan(U)

If we knew snapshots uk (x) and operator Aq in the whole domain
Ω, we could orthogonalize them to find V(x) to compute
Ãq = VT [AqV]. But we know neither!

Can we compute the ROM from the data Dq only? Can we have a
data-driven ROM?
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Data-driven ROM
Viewing projection in Galerkin framework, define mass and
stiffness matrices

M = UT U ∈ Rmn×mn and S = UT [AqU] ∈ Rmn×mn,

with blocks

Mjk = uT
j uk ∈ Rm×m, Sjk = uT

j [Aquk ] ∈ Rm×m, j , k = 1, . . . ,n

Then, M and S can be obtained from the data as

Mjk =
1

ωk − ωj
(F(ωj)− F(ωk )), j 6= k ,

Mkk = −∂F
∂ω

(ωk ),

Sjk =
1

ωk − ωj
(ωjF(ωj)− ωkF(ωk )), j 6= k ,

Skk = F(ωk ) + ωk
∂F
∂ω

(ωk )
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Extracting q from ROM

If mass matrix is known, snapshots (not known!) can be
orthogonalized V = UM−1/2

Then the ROM is

Ã′q = VT [AqV] = M−1/2UT [AqU]M−1/2 = M−1/2SM−1/2

b̃′ = VT b = M−1/2UT b = M−1/2[F(ω1), . . . ,F(ωn)]T

How to use ROM to estimate q(x)?

Observation: Aq = −∆ + q(x)I is affine in q, thus perturbation
δA = Aq − Aq0 is linear in δq = q − q0!

Conjecture: ROM perturbation is approximately linear in δq

For conjecture to work, ROM must be in a special form,
need one more transformation
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Block Lanczos transform

ROM perturbation is approximately linear in q if ROM corresponds
to a finite-difference discretization of Aq

Perform block Lanczos process

Ãq = QT Ã′qQ, b̃ = QT b̃′

to transform the ROM (Ã′q, b̃′) to block-tridiagonal form

Ãq =



α1 β2 0 . . . 0

βT
2 α2 β3

. . .
...

0 βT
3 α3

. . . 0
...

. . . . . . . . . βn
0 . . . 0 βT

n αn


∈ Rmn×mn, b̃ =


β1
0
...
0

 ∈ Rmn×m

Then, δÃ = Ãq − Ãq0 is approximately linear in δq = q − q0!
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Numerical check: approximate linearity of δÃ w.r.t. q

Left: approximation error of

Ãc1q1+c2q2 − Ãq0 ≈
≈ c1(Ãq1 − Ãq0) + c2(Ãq2 − Ãq0)

as a function of c1 and c2

Plateaus at around 7%

q1 q2
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Quantitative imaging method

1 Choose a background q0(x)
2 Choose a basis φi , i = 1, . . . ,N to expand

δq(x) = q(x)− q0(x) =
N∑

i=1

giφi(x)

3 Compute the expansion coefficient vector g = [g1, . . . ,gN ]T by
solving the linear least squares problem

[vec(Ãφ1 − Ãq0) . . . vec(ÃφN − Ãq0)]g = vec(Ãq − Ãq0) (1)

4 Form the quantitative image q?(x) = q0(x) +
N∑

i=1
giφi(x)

Only the right hand side of (1) depends on the data via Ãq

Left hand side of (1) can be precomputed for a fixed Ω and q0
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Numerical results

True q(x) Quantitative image q?(x)

Quantitative images from measurements at m = 6 extended
sensors (yellow) at n = 4 frequencies
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Imaging with (acoustic) waves

Similar approach works for imaging with waves from
time-domain data
Need to separate kinematics (wave speed c(x)) from reflective
behavior (acoustic impedance σ(x)):

∂2
t us(x; t)− σ(x)c(x)∇ ·

[
c(x)

σ(x)
∇us(x; t)

]
= f (t)δ(x− xs),

as before, s = 1, . . . ,m are source indices
Time domain data F(t) ∈ Rm×m with entries

Frs(t) =

∫
Ω
δ(x− xr )us(x; t)dx = us(xr ; t), r , s = 1, . . . ,m,

sampled discretely in time F(kτ), k = 0,1, . . . ,2n − 1
Assume kinematics c(x) is known, seek image of σ(x)
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First order form

Transform to first order form via Liouville transformation[
0 −Lq
Lq 0

] [
us(x; t)
ûs(x; t)

]
=

∂

∂t

[
us(x; t)
ûs(x; t)

]
−
[
f (t)δ(x− xs)

0

]
,

where
Lq = −

√
c(x)∇ ·

√
c(x) +

c(x)

2
∇q(x) ·,

LT
q =

√
c(x)∇

√
c(x) +

c(x)

2
∇q(x),

with reflectivity q(x) = log σ(x)

Observe Lq, LT
q are affine in q, same as Aq before!

Data-driven ROM L̃q of Lq is approximately affine in q

This approximation is worse than that for diffusion equation,
iteration may be needed
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Quantitative imaging with waves

1 Choose an initial guess q?0(x), fix the wave speed c(x)
2 Choose a basis φi , i = 1, . . . ,N for expansion

δq(x) =
N∑

i=1

giφi(x)

3 For k = 1,2, . . . iterate
Find expansion coefficient vector gk by solving the linear least
squares problem

[vec(L̃φ1 − L̃q?
k−1

) . . . vec(L̃φN − L̃q?
k−1

)]gk = vec(L̃q − L̃q?
k−1

)

Update the quantitative image q?k (x) = q?k−1(x) +
N∑

i=1
gk

i φi (x)

Above iteration converges very quickly,
typically 3− 5 iterations are sufficient
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Numerical results
True q(x) Time-reversal (LS-RTM) image

Image q?1 (x) after 1 iteration Image q?5 (x) after 5 iterations

Constant wave speed, lots of multiple reflections,
m = 50 sensors (crosses, not all shown)
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Conclusions and future work

Unified ROM-based framework for quantitative imaging of PDE
coefficients

Transforms diffusion inversion to essentially a linear problem:
converges in a single iteration

Greatly improves imaging with waves by eliminating the adverse
effects of multiple scattering

Robust version exists: spectral truncation of the mass matrix

Future work:
Vectorial imaging problems (elasticity, electromagnetics)

Partial data case when not all entries of F are measured,
including non-collocated sources/receivers, moving sensors, etc.
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