Spectral Clustering of Graph Vertex Subsets via Krylov Subspace Model Reduction

Alexander V. Mamonov¹, Vladimir Druskin² and Mikhail Zaslavsky³

¹University of Houston, ²Worcester Polytechnic Institute, ³Schlumberger-Doll Research Center

Support: NSF DMS-1619821, ONR N00014-17-1-2057

Clustering problem

- Unsupervised machine learning
- Input: unlabeled data set V = {x₁,...x_N} ⊂ ℝ^d, number of clusters K and some measure of similarity between data points
- **Output:** clusters $C_1, \ldots, C_K \subset V$ such that

•
$$V = \bigsqcup_{k=1}^{K} C_k$$
 (hard assignment)
• $x_i \ x_i \in C_k$ if x_i is "similar" to x_i

Classical approach to hard assignment: K-means

- Assume similarity measure is Eucledean distance
- Integer optimization problem:

$$\sum_{k=1}^{K} \sum_{x_i \in C_k} \|x_i - \mu_k\|^2 \to \min,$$

where **centroids** are $\mu_k = \frac{1}{|C_k|} \sum_{x_i \in C_k} x_i$

- Highly non-convex objective
- Global minimization is NP-hard
- Simplest greedy relaxation: update centroids via fixed point iteration (Lloyd's algorithm), gets stuck in local minima
- Robust relaxations are expensive: Semi-Definite Programming (SDP) handles problems up to N = 200 in reasonable time
- How to overcome prohibitive computational cost?
- We will try to reduce both d and N

Graph-based formulation

- Consider undirected weighted graph G = (V; E; W) with N vertices (data) V, edges E and positive weights W assigned to each edge
- Entries of adjacency matrix $\mathbf{W} = [w_{ij}]_{i,j=1}^{N}$ encode the similarity between data points x_i and x_j (assume $w_{ij} = 0$)
- Vertex degrees are $d_i = \sum_{j=1}^{N} w_{ij}$ and $\mathbf{D} = \text{diag}(d_1, \dots, d_N)$ is the degree matrix
- Volume of a data subset $A \subseteq V$ is $vol(A) = \sum_{x_i \in A} d_j$

Clustering via graph cuts: 2 clusters

- Brute-force approach: remove edges with low similarity to split $V = C_1 \sqcup C_2$ with no edges between C_1 and C_2
- Corresponds to "min-cut" formulation

 $\underset{C_1,C_2}{\text{minimize }} \operatorname{cut}(C_1,C_2),$

where
$$\operatorname{cut}(C_1, C_2) = \sum_{x_i \in C_1, x_j \in C_2} w_{ij}$$

• Problem: creates small clusters (including single-vertex)

Clustering via graph cuts: 2 clusters

• Possible solution: use normalized cut instead

$$\mathsf{Ncut}(C_1, C_2) = \mathsf{cut}(C_1, C_2) \left(\frac{1}{\mathsf{vol}(C_1)} + \frac{1}{\mathsf{vol}(C_2)} \right)$$

• Another issue: minimizing $Ncut(C_1, C_2)$ is **NP-hard**

Relaxation: Spectral Clustering (SC), 2 clusters

- Graph-Laplacian: L = D W, symmetric, non-negative definite
- Zero always an eigenvalue: $\mathbf{Le} = \mathbf{0}$ with $\mathbf{e} = (1, 1, \dots, 1)^{\mathcal{T}} \in \mathbb{R}^{N}$
- Normalized cut becomes $Ncut(C_1, C_2) = \mathbf{z}^T \mathbf{L} \mathbf{z}$, where $\mathbf{z} \in \mathbb{R}^N$ is the normalized **indicator vector**:

$$z_i = \sqrt{rac{vol(C_2)}{vol(V)vol(C_1)}}, ext{ if } x_i \in C_1, \quad z_i = -\sqrt{rac{vol(C_1)}{vol(V)vol(C_2)}}, ext{ if } x_i \in C_2$$

• Properties:
$$\|\mathbf{z}\|_{\mathbf{D}} = 1$$
 and $\mathbf{z} \perp \mathbf{e}$

- **Relaxed min-Ncut:** minimize $\frac{z^T L z}{z^T D z}$ (Rayleigh quotient)
- Solution: second eigenvector of Lu = λDu, form clusters according to signs of components

Spectral Clustering (SC): general case

Algorithm:

- Compute K 1 eigenvectors $\{\mathbf{z}^j\}_{j=1}^{K-1}$ of the **generalized** eigenvalue problem $\mathbf{L}u = \lambda \mathbf{D}u$ corresponding to K 1 smallest non-zero eigenvalues
- ② Perform approximate K-means (e.g., with Lloyd's algorithm) on spectral data Z = [z¹, z², ..., z^{K-1}] ∈ ℝ^{N×(K-1)}

Spectral clustering achieves:

- Data dimensionality reduction: from d, unrelated to number of clusters, to K 1
- Flattening of the data manifold: spectral data Z provides a parametrization of the manifold closer to its "intrinsic" dimension

Problems:

- Number of data points N still large
- Main idea: cluster small data subsets V_m = {x_{i1}, x_{i2},..., x_{im}}, m ≪ N, separately, merge afterwards

Divide-and-conquer approach via subset clustering

- Ultimate goal: divide-and-conquer clustering algorithm
 - Split the data (and thus graph) into disjoint target subsets V_m with $m \ll N$ data points each
 - **2** Clusterize target subsets V_m separately
 - **Original Project** (L, D) on cluster indicator vectors
 - Clusterize projected graph, if still too large, repeat recursively
- Here we focus on step 2
- Target subset clustering must respect the **overall graph structure**, cannot just discard $V \setminus V_m$
- What to replace the rest of the graph with?
- Consider random-walk normalized graph-Laplacian:

$$\mathbf{L}_{RW} = \mathbf{D}^{-1}\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1}\mathbf{W}$$

• Note that $D^{-1}W = I - L_{RW}$ is Markov matrix, a transition matrix for a random walk on the graph

Diffusion transfer function and model reduction

- Long-time random walk limit is diffusion
- Restrict diffusive response to target subset $V_m = \{x_{i_1}, x_{i_2}, \dots, x_{i_m}\}$: consider **source/receiver** matrix $\mathbf{B} = [\mathbf{e}_{i_1}, \dots, \mathbf{e}_{i_m}] \in \mathbb{R}^{N \times m}$
- Diffusive behavior on V_m is completely described by **discrete-time diffusion transfer function**

$$\mathbf{F}(p) = \mathbf{B}^T \mathbf{D} (\mathbf{I} - \mathbf{L}_{RW})^p \mathbf{B} \in \mathbb{R}^{m \times m}, \quad p = 1, 2, \dots$$

- This is a transfer function of a multi-input multi-output (MIMO) dynamical system
- All standard model order reduction (MOR) techniques apply!
- Approximate the transfer function by

$$\mathbf{F}(p) \approx \widetilde{\mathbf{F}}(p) = \mathbf{E}_1^T \widetilde{\mathbf{D}} (\mathbf{I} - \widetilde{\mathbf{L}}_{RW})^p \mathbf{E}_1,$$

where $\widetilde{L}_{RW} \in \mathbb{R}^{n \times n}$ is the reduced-order graph-Laplacian (ROGL), $n \ll N$

Projection-based model reduction

- Look for ROGL in the form $\widetilde{L}_{RW} = \widetilde{D}^{-1}\widetilde{L}$ where \widetilde{L} , \widetilde{D} are projections of L, D on a properly chosen Krylov subspace
- We are interested in F(p) ≈ F(p) at late times p ≫ 1 which corresponds to lower part of the spectrum, the one used in clustering
- Define normalized graph-Laplacian $\mathbf{A} = \mathbf{D}^{-1/2} \mathbf{L} \mathbf{D}^{-1/2} \in \mathbb{R}^{N \times N}$
- Ideally, we want to project on

$$\mathcal{K}(\mathsf{A}^{\dagger},\mathsf{B})=\mathsf{colspan}\left\{\mathsf{B},\mathsf{A}^{\dagger}\mathsf{B},\ldots,(\mathsf{A}^{\dagger})^{k-1}\mathsf{B}
ight\}$$

via Lanczos process

- Infeasible in practice, too expensive: $N \gg 1$
- Replace projection on $\mathcal{K}(\textbf{A}^{\dagger},\textbf{B})$ by two Lanczos processes
- Then use a **third Lanczos** process to recover a **semi-sparse** structure and obtain the ROGL

Mamonov, Druskin, Zaslavsky

Two-stage deflated block Lanczos process for MOR

• Construct a **deflated block-tridiagonal** proxy $T_1 \in \mathbb{R}^{n_1 \times n_1}$ of **A** by projecting on

$$\mathcal{K}_{k_1}(\mathbf{A}, \mathbf{B}) = \mathsf{colspan}\{\mathbf{B}, \mathbf{AB}, \dots, \mathbf{A}^{k_1-1}\mathbf{B}\},\$$

choosing number of steps k_1 to control approximation

$$\mathbf{F}_1(p) = \mathbf{E}_1^T (\mathbf{I} - \mathbf{T}_1)^p \mathbf{E}_1 \approx \mathbf{F}(p)$$

② Perform second deflated block Lanczos process to obtain T₂ ∈ ℝ^{n₂×n₂}, the projection of $(T_1 + s_0I)^{-1}$ on

 $\mathcal{K}_{k_2}((\mathsf{T}_1 + s_0\mathsf{I})^{-1}, \mathsf{E}_1) = \mathsf{colspan}\{\mathsf{E}_1, (\mathsf{T}_1 + s_0\mathsf{I})^{-1}\mathsf{E}_1, \dots, (\mathsf{T}_1 + s_0\mathsf{I})^{-k_2 + 1}\mathsf{E}_1\}$

choosing k_2 to control approximation

$$\mathbf{F}_2(p) = \mathbf{E}_1^T (\mathbf{I} - (\mathbf{T}_2^{-1} - s_0 \mathbf{I}))^p \mathbf{E}_1 \approx \mathbf{F}_1(p)$$

Two-stage model reduction: approximation accuracy

Convergence curves for approximations $\mathbf{F}(p) - \mathbf{F}_1(p)$ (Stage 1) and $\mathbf{F}_1(p) - \mathbf{F}_2(p)$ (Stage 2) versus the numbers of Lanczos steps k_1 and k_2

- Dataset for collaborations in arXiv:AstroPhysics N = 18872
- Target subset V_m with m = 20 vertices
- ROM transfer function accuracy 10^{-15} for $n_2 = 20 \times 13 = 260$

Reduced-order graph-Laplacian (ROGL)

- Note that T_2^{-1} is dense. To recover sparse ROM for the graph-Laplacian, employ the third Lanczos process
- Project $\mathbf{T}_2^{-1} s_0 \mathbf{I}$ on

$$\mathcal{K}_{k_2}(\mathsf{T}_2^{-1},\mathsf{E}_1) = \mathsf{colspan}\{\mathsf{E}_1,\mathsf{T}_2^{-1}\mathsf{E}_1,\ldots,\mathsf{T}_2^{-k_2+1}\mathsf{E}_1\}$$

to find **deflated block-tridiagonal** $\mathbf{T}_3 \in \mathbb{R}^{n \times n}$

- Here $n = n_2$ and the **transfer function** is **preserved exactly** from the second stage
- \bullet To normalize properly, choose \textbf{z}_0 in the approximate nullspace of \textbf{T}_3 and let

$$\widetilde{\mathbf{D}} = \operatorname{diag}(\mathbf{z}_0)$$

ROGL becomes

$$\widetilde{\textbf{L}}_{\textit{RW}} = \widetilde{\textbf{D}}^{-1/2}\textbf{T}_{3}\widetilde{\textbf{D}}^{1/2}$$

• We denote graph corresponding to $\widetilde{L}_{\it RW}$ the reduced graph \widetilde{G}

Deflated block-tridiagonal structure of \widetilde{G}

Mamonov, Druskin, Zaslavsky

Target subset clustering with ROGL

Once the target subset V_m is chosen and the ROGL \widetilde{L}_{RW} is computed, several possibilities for clustering of V_m exist:

- Compute the **spectral data** for \widetilde{L}_{RW} , \widetilde{D} and clusterize \widetilde{G} using a relaxation of K-means, either
 - Lloyd's algorithm (ROGLC-L), or
 - Semidefinite programming (ROGLC-S)
- Clusterize G directly using an SDP-relaxed min-Ncut, bypassing spectral data computation

After the clustering

$$\widetilde{V} = \sqcup_{k=1}^{K} \widetilde{C}_k$$

of \widetilde{G} is found, the clusters of V_m are simply

$$V_m \cap \widetilde{C}_k$$

Numerical results: synthetic example

- Synthetic dataset: 9 "clouds" of 40 points in ℝ² each, N = 360 (leftmost plot)
- Clustering results for V_{18} of 2 randomly selected points from every cloud: conventional normalized SC (middle) and **ROGLC-L** (right)
- All 18 points are correctly identified as belonging to 9 separate clusters, each corresponding to a different cloud

Numerical results: Astrophysics collaboration network

- Real dataset from **SNAP**: collaboration network from arXiv:Astrophysics of N = 18872 authors, our largest example
- No \mathbb{R}^d embedding available
- No ground-truth communities available, used conventional SC as a reference clustering
- Two test cases:
 - Randomly select 2 vertices from 9 ground-truth clusters m = 18 (left)
 Randomly select 2 vertices from 3 ground-truth clusters m = 6 (right)
- ROGLC-L: all vertices correctly attributed to reference clusters

Numerical results: EMail communication network

- Real dataset from SNAP: email communication between N = 1,005 correspondents, 42 ground-truth communities (correspondents' affiliations)
- Comparison between conventional SC, ROGLC-L and ROGLC-S
- Choose at random 2 vertices from 10 ground-truth communities to form V_m , repeat multiple times to check robustness w.r.t. random realization

- Numbers of correctly identified vertices from 10 ground-truth communities for 20 realizations of V_m
- ROGL+SDP achieves the best performance, only possible with ROGL, too expensive otherwise

Another possible application: stock market data

- Identify highly-correlated stocks to diversify investment portfolios
- No \mathbb{R}^d embedding available (cross-correlations only)
- Significant noise in the data

- We introduced the **reduced-order graph-Laplacian (ROGL)** for clustering graph vertex subsets
- It is a **building block** for a **divide-and-conquer** clustering algorithm currently under development
- Advantages compared to full graph SC:
 - Well-suited for parallel computations
 - Small sub-problem size enables the use of more accurate clustering algorithms (SDP-based relaxations of K-means or min-Ncut) which leads to qualitatively better solutions
- **Possible improvements**: finite-precision Lanczos for the first stage (currently uses reorthogonalization to achieve stability)

[1] Clustering of graph vertex subset via Krylov subspace model reduction. V. Druskin, A.V. Mamonov, M. Zaslavsky, 2018, submitted to JMLR, arXiv:1809.03048 [cs.LG]

