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Clustering problem

Unsupervised machine learning

Input: unlabeled data set V = {x1, . . . xN} ⊂ Rd , number of clusters
K and some measure of similarity between data points

Output: clusters C1, . . . ,CK ⊂ V such that

V = tKk=1Ck (hard assignment)
xi , xj ∈ Ck if xi is “similar” to xj

Mamonov, Druskin, Zaslavsky Subset clustering via Krylov ROM 2/ 22



Classical approach to hard assignment: K-means

Assume similarity measure is Eucledean distance

Integer optimization problem:

K∑
k=1

∑
xi∈Ck

‖xi − µk‖2 → min,

where centroids are µk = 1
|Ck |
∑

xi∈Ck
xi

Highly non-convex objective

Global minimization is NP-hard

Simplest greedy relaxation: update centroids via fixed point iteration
(Lloyd’s algorithm), gets stuck in local minima

Robust relaxations are expensive: Semi-Definite Programming
(SDP) handles problems up to N = 200 in reasonable time

How to overcome prohibitive computational cost?

We will try to reduce both d and N
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Graph-based formulation

Consider undirected weighted graph G = (V ;E ; W) with N vertices
(data) V , edges E and positive weights W assigned to each edge

Entries of adjacency matrix W = [wij ]
N
i ,j=1 encode the similarity

between data points xi and xj (assume wii = 0)

Vertex degrees are di =
N∑
j=1

wij and

D = diag(d1, . . . , dN) is the degree matrix

Volume of a data subset A ⊆ V is vol(A) =
∑
xj∈A

dj
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Clustering via graph cuts: 2 clusters

Brute-force approach: remove edges with low similarity to split
V = C1 t C2 with no edges between C1 and C2

Corresponds to “min-cut” formulation

minimize
C1,C2

cut(C1,C2),

where cut(C1,C2) =
∑

xi∈C1,xj∈C2

wij

Problem: creates small clusters (including single-vertex)
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Clustering via graph cuts: 2 clusters

Possible solution: use normalized cut instead

Ncut(C1,C2) = cut(C1,C2)

(
1

vol(C1)
+

1

vol(C2)

)
Another issue: minimizing Ncut(C1,C2) is NP-hard
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Relaxation: Spectral Clustering (SC), 2 clusters

Graph-Laplacian: L = D−W, symmetric, non-negative definite

Zero always an eigenvalue: Le = 0 with e = (1, 1, . . . , 1)T ∈ RN

Normalized cut becomes Ncut(C1,C2) = zTLz,
where z ∈ RN is the normalized indicator vector:

zi =
√

vol(C2)
vol(V )vol(C1)

, if xi ∈ C1, zi = −
√

vol(C1)
vol(V )vol(C2)

, if xi ∈ C2

Properties: ‖z‖D = 1 and z ⊥ e

Relaxed min-Ncut: minimize
z⊥e

zTLz

zTDz
(Rayleigh quotient)

Solution: second eigenvector of Lu = λDu,
form clusters according to signs of components
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Spectral Clustering (SC): general case

Algorithm:

1 Compute K − 1 eigenvectors
{

zj
}K−1
j=1

of the generalized eigenvalue
problem Lu = λDu corresponding to K − 1 smallest non-zero
eigenvalues

2 Perform approximate K-means (e.g., with Lloyd’s algorithm) on
spectral data Z =

[
z1, z2, . . . , zK−1

]
∈ RN×(K−1)

Spectral clustering achieves:

Data dimensionality reduction: from d , unrelated to number of
clusters, to K − 1

Flattening of the data manifold: spectral data Z provides a
parametrization of the manifold closer to its “intrinsic” dimension

Problems:

Number of data points N still large

Main idea: cluster small data subsets Vm = {xi1 , xi2 , . . . , xim},
m� N, separately, merge afterwards
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Divide-and-conquer approach via subset clustering

Ultimate goal: divide-and-conquer clustering algorithm
1 Split the data (and thus graph) into disjoint target subsets Vm with

m� N data points each
2 Clusterize target subsets Vm separately
3 Project (L,D) on cluster indicator vectors
4 Clusterize projected graph, if still too large, repeat recursively

Here we focus on step 2

Target subset clustering must respect the overall graph structure,
cannot just discard V \ Vm

What to replace the rest of the graph with?

Consider random-walk normalized graph-Laplacian:

LRW = D−1L = I−D−1W

Note that D−1W = I− LRW is Markov matrix, a transition matrix
for a random walk on the graph
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Diffusion transfer function and model reduction

Long-time random walk limit is diffusion

Restrict diffusive response to target subset Vm = {xi1 , xi2 , . . . , xim}:
consider source/receiver matrix B = [ei1 , . . . , eim ] ∈ RN×m

Diffusive behavior on Vm is completely described by discrete-time
diffusion transfer function

F(p) = BTD(I− LRW )pB ∈ Rm×m, p = 1, 2, . . .

This is a transfer function of a multi-input multi-output (MIMO)
dynamical system

All standard model order reduction (MOR) techniques apply!

Approximate the transfer function by

F(p) ≈ F̃(p) = ET
1 D̃(I− L̃RW )pE1,

where L̃RW ∈ Rn×n is the reduced-order graph-Laplacian
(ROGL), n� N
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Projection-based model reduction

Look for ROGL in the form L̃RW = D̃−1L̃ where L̃, D̃ are projections
of L, D on a properly chosen Krylov subspace

We are interested in F(p) ≈ F̃(p) at late times p � 1 which
corresponds to lower part of the spectrum, the one used in
clustering

Define normalized graph-Laplacian A = D−1/2LD−1/2 ∈ RN×N

Ideally, we want to project on

K(A†,B) = colspan
{

B,A†B, . . . , (A†)k−1B
}

via Lanczos process

Infeasible in practice, too expensive: N � 1

Replace projection on K(A†,B) by two Lanczos processes

Then use a third Lanczos process to recover a semi-sparse
structure and obtain the ROGL
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Two-stage deflated block Lanczos process for MOR

1 Construct a deflated block-tridiagonal proxy T1 ∈ Rn1×n1 of A by
projecting on

Kk1(A,B) = colspan{B,AB, . . . ,Ak1−1B},

choosing number of steps k1 to control approximation

F1(p) = ET
1 (I− T1)pE1 ≈ F(p)

2 Perform second deflated block Lanczos process to obtain
T2 ∈ Rn2×n2 , the projection of (T1 + s0I)−1 on

Kk2((T1+s0I)−1,E1) = colspan{E1, (T1+s0I)−1E1, . . . , (T1+s0I)−k2+1E1}

choosing k2 to control approximation

F2(p) = ET
1 (I−

(
T−12 − s0I

)
)pE1 ≈ F1(p)
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Two-stage model reduction: approximation accuracy

Convergence curves for approximations F(p)− F1(p) (Stage 1) and
F1(p)− F2(p) (Stage 2) versus the numbers of Lanczos steps k1 and k2

Dataset for collaborations in arXiv:AstroPhysics N = 18872

Target subset Vm with m = 20 vertices

ROM transfer function accuracy 10−15 for n2 = 20× 13 = 260
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Reduced-order graph-Laplacian (ROGL)

Note that T−12 is dense. To recover sparse ROM for the
graph-Laplacian, employ the third Lanczos process

Project T−12 − s0I on

Kk2(T−12 ,E1) = colspan{E1,T
−1
2 E1, . . . ,T

−k2+1
2 E1}

to find deflated block-tridiagonal T3 ∈ Rn×n

Here n = n2 and the transfer function is preserved exactly from
the second stage

To normalize properly, choose z0 in the approximate nullspace of T3

and let
D̃ = diag(z0)

ROGL becomes
L̃RW = D̃−1/2T3D̃1/2

We denote graph corresponding to L̃RW the reduced graph G̃
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Third Lanczos process and the reduced graph G̃
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Deflated block-tridiagonal structure of G̃
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Target subset clustering with ROGL

Once the target subset Vm is chosen and the ROGL L̃RW is computed,
several possibilities for clustering of Vm exist:

Compute the spectral data for L̃RW , D̃ and clusterize G̃ using a
relaxation of K-means, either

1 Lloyd’s algorithm (ROGLC-L), or
2 Semidefinite programming (ROGLC-S)

Clusterize G̃ directly using an SDP-relaxed min-Ncut, bypassing
spectral data computation

After the clustering
Ṽ = tKk=1C̃k

of G̃ is found, the clusters of Vm are simply

Vm ∩ C̃k
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Numerical results: synthetic example

Synthetic dataset: 9 “clouds” of 40 points in R2 each, N = 360
(leftmost plot)

Clustering results for V18 of 2 randomly selected points from every
cloud: conventional normalized SC (middle) and ROGLC-L (right)

All 18 points are correctly identified as belonging to 9 separate
clusters, each corresponding to a different cloud
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Numerical results: Astrophysics collaboration network

Real dataset from SNAP: collaboration network from
arXiv:Astrophysics of N = 18872 authors, our largest example

No Rd embedding available

No ground-truth communities available, used conventional SC as a
reference clustering

Two test cases:
1 Randomly select 2 vertices from 9 ground-truth clusters m = 18 (left)
2 Randomly select 2 vertices from 3 ground-truth clusters m = 6 (right)

ROGLC-L: all vertices correctly attributed to reference clusters

V18 requires n = 146 V6 requires n = 24
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Numerical results: EMail communication network

Real dataset from SNAP: email communication between N = 1, 005
correspondents, 42 ground-truth communities (correspondents’
affiliations)

Comparison between conventional SC, ROGLC-L and ROGLC-S

Choose at random 2 vertices from 10 ground-truth communities to
form Vm, repeat multiple times to check robustness w.r.t. random
realization

Numbers of correctly identified
vertices from 10 ground-truth
communities for 20 realizations
of Vm

ROGL+SDP achieves the best
performance, only possible with
ROGL, too expensive
otherwise
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Another possible application: stock market data

Identify highly-correlated stocks to diversify investment portfolios

No Rd embedding available (cross-correlations only)

Significant noise in the data
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Conclusions and future work

We introduced the reduced-order graph-Laplacian (ROGL) for
clustering graph vertex subsets

It is a building block for a divide-and-conquer clustering algorithm
currently under development

Advantages compared to full graph SC:
1 Well-suited for parallel computations
2 Small sub-problem size enables the use of more accurate clustering

algorithms (SDP-based relaxations of K-means or min-Ncut) which
leads to qualitatively better solutions

Possible improvements: finite-precision Lanczos for the first stage
(currently uses reorthogonalization to achieve stability)

[1] Clustering of graph vertex subset via Krylov subspace model
reduction. V. Druskin, A.V. Mamonov, M. Zaslavsky, 2018, submitted
to JMLR, arXiv:1809.03048 [cs.LG]
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