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Clustering problem

e

Simpson's Family School Employees Females

@ Unsupervised machine learning

@ Input: unlabeled data set V = {xy,...xy} C RY, number of clusters
K and some measure of similarity between data points

@ Output: clusters Cq,..., Cx C V such that

o V =K Gk (hard assignment)
o xj,xj € Cy if x; is “similar” to x;
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Classical approach to hard assignment: K-means

@ Assume similarity measure is Eucledean distance
o Integer optimization problem:

K
S X — = min,

k=1 x;€Cy

where centroids are ;i = ﬁ Y oxec, Xi
@ Highly non-convex objective
@ Global minimization is NP-hard

@ Simplest greedy relaxation: update centroids via fixed point iteration
(Lloyd’s algorithm), gets stuck in local minima

@ Robust relaxations are expensive: Semi-Definite Programming
(SDP) handles problems up to N = 200 in reasonable time

@ How to overcome prohibitive computational cost?
o We will try to reduce both d and N lﬂl
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Graph-based formulation

e Consider undirected weighted graph G = (V; E; W) with N vertices
(data) V/, edges E and positive weights W assigned to each edge

@ Entries of adjacency matrix W = [w,-J-],’-VJ:1 encode the similarity
between data points x; and x; (assume wj; = 0)
N
e Vertex degrees are d; = ) wj; and
j=1
D = diag(d, ..., dy) is the degree matrix
@ Volume of a data subset A C V is vol(A) = ) d|
X €A
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Clustering via graph cuts: 2 clusters

@ Brute-force approach: remove edges with low similarity to split
V = (3 U G, with no edges between C; and G

@ Corresponds to “min-cut” formulation

minimize cut(Cy, (),
G,G

where cut(C, &)= Y. wy
x;i€Cy,x€Co

@ Problem: creates small clusters (including single-vertex)
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Clustering via graph cuts: 2 clusters

@ Possible solution: use normalized cut instead

R G = (6.9 (G s

@ Another issue: minimizing Ncut(Cy, () is NP-hard
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Relaxation: Spectral Clustering (SC), 2 clusters

e Graph-Laplacian: L = D — W, symmetric, non-negative definite
@ Zero always an eigenvalue: Le =0 with e = (1,1,..., 1)T e RN
o Normalized cut becomes Ncut(Cy, G;) = 2" Lz,

where z € RV is the normalized indicator vector:

vol(C . vol(C .
Zi = %, |‘F)(,€C’]_7 Zi = — m7 nc.><I€C.2

@ Properties: ||z|[p=1andz Le
-

@ Relaxed min-Ncut: minimize =
zle z z

@ Solution: second eigenvector of Lu = ADu,
form clusters according to signs of components

(Rayleigh quotient)

Ideal solution Relaxed solution

=

| | T

‘
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Spectral Clustering (SC): general case

Algorithm:
@ Compute K — 1 eigenvectors {zj}jK:El of the generalized eigenvalue
problem Lu = ADu corresponding to K — 1 smallest non-zero

eigenvalues

@ Perform approximate K-means (e.g., with Lloyd’s algorithm) on
spectral data Z = [2},22,...,2K"1] € RNVX(K-1)
Spectral clustering achieves:

o Data dimensionality reduction: from d, unrelated to number of
clusters, to K — 1

o Flattening of the data manifold: spectral data Z provides a
parametrization of the manifold closer to its “intrinsic” dimension

Problems:
@ Number of data points N still large

e Main idea: cluster small data subsets V,, = {x;,, x;,, ..., i, }, lﬂl
m < N, separately, merge afterwards
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Divide-and-conquer approach via subset clustering

o Ultimate goal: divide-and-conquer clustering algorithm

@ Split the data (and thus graph) into disjoint target subsets V/,, with
m < N data points each

@ Clusterize target subsets V,, separately

© Project (L, D) on cluster indicator vectors

© Clusterize projected graph, if still too large, repeat recursively

@ Here we focus on step 2

@ Target subset clustering must respect the overall graph structure,
cannot just discard V' \ V,,

@ What to replace the rest of the graph with?
o Consider random-walk normalized graph-Laplacian:

Lew =D IL=1-D"'W

o Note that DIW = | — Lgy is Markov matrix, a transition matri
for a random walk on the graph Iﬂ-l
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Diffusion transfer function and model reduction

Long-time random walk limit is diffusion

Restrict diffusive response to target subset Vi, = {xi, Xjy, - - -, Xi,, }:
consider source/receiver matrix B = [e;,...,e; ] € RV*m
Diffusive behavior on V,,, is completely described by discrete-time

diffusion transfer function
F(p) =B'D(I — Lrw)’B € R™™  p=12,...

This is a transfer function of a multi-input multi-output (MIMO)
dynamical system
All standard model order reduction (MOR) techniques apply!

Approximate the transfer function by
F(p) ~ F(p) = E[ D(I - Lrw)PEy,

where ERW € R"™" is the reduced-order graph-Laplacian
(ROGL), n<« N
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Projection-based model reduction

@ Look for ROGL in the form ERW =D !L where L, D are projections
of L, D on a properly chosen Krylov subspace

o We are interested in F(p) ~ F(p) at late times p > 1 which
corresponds to lower part of the spectrum, the one used in
clustering

o Define normalized graph-Laplacian A = D~1/2LD~1/2 ¢ RVXN

o ldeally, we want to project on
K(AT,B) = colspan {B,ATB, o (AT)"_lB}

via Lanczos process
o Infeasible in practice, too expensive: N > 1
@ Replace projection on K(A', B) by two Lanczos processes

@ Then use a third Lanczos process to recover a semi-sparse lﬂl
structure and obtain the ROGL
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Two-stage deflated block Lanczos process for MOR

@ Construct a deflated block-tridiagonal proxy T1 € R™*™ of A by
projecting on

K« (A,B) = colspan{B, AB, ... ,Ak-1B),
choosing number of steps k; to control approximation

@ Perform second deflated block Lanczos process to obtain
T, € R™*™  the projection of (T1 + spl)~! on

’Ckz((Tl—i—Sol)_l, El) = coIspan{El, (T1—|—50|)_1E1, ey (T1+50|)_k2+1E1}

choosing k» to control approximation
Fa(p) = E{ (1 - (T3 — 01))PE1 ~ Fi(p) lﬂl
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Two-stage model reduction: approximation accuracy

Convergence curves for approximations F(p) — F1(p) (Stage 1) and
Fi(p) — F2(p) (Stage 2) versus the numbers of Lanczos steps ki and ko
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@ Dataset for collaborations in arXiv:AstroPhysics N = 18872
o Target subset V,, with m = 20 vertices
e ROM transfer function accuracy 1071% for n, = 20 x 13 = 260 lﬂl
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Reduced-order graph-Laplacian (ROGL)

@ Note that T;l is dense. To recover sparse ROM for the
graph-Laplacian, employ the third Lanczos process

@ Project T;l — sol on
-1 _ -1 —ko+1
Ki,(T5 ", E1) = colspan{E1, T, "Ey,..., T, E:}

to find deflated block-tridiagonal T3 € R"*"

@ Here n = np and the transfer function is preserved exactly from
the second stage

@ To normalize properly, choose zj in the approximate nullspace of T3
and let B
D = diag(zo)

@ ROGL becomes B B B
Lrw = D™/2T3D'/2

@ We denote graph corresponding to ERW the reduced graph G lﬂl
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Third Lanczos process and the reduced graph G
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Third Lanczos process and the reduced graph G
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Third Lanczos process and the reduced graph
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Third Lanczos process and the reduced graph G
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Third Lanczos process and the reduced graph G
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Third Lanczos process and the reduced graph G
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Deflated block-tridiagonal structure of G
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Target subset clustering with ROGL

Once the target subset V,, is chosen and the ROGL ERW is computed,
several possibilities for clustering of V,, exist:

o Compute the spectral data for ERW, D and clusterize G using a
relaxation of K-means, either

@ Lloyd’s algorithm (ROGLC-L), or
@ Semidefinite programming (ROGLC-S)

o Clusterize G directly using an SDP-relaxed min-Ncut, bypassing
spectral data computation

After the clustering ~ _

of G is found, the clusters of V,, are simply

Vmﬂgk
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Numerical results: synthetic example

o Synthetic dataset: 9 “clouds’ of 40 points in R? each, N = 360
(leftmost plot)

@ Clustering results for Vig of 2 randomly selected points from every
cloud: conventional normalized SC (middle) and ROGLC-L (right)

@ All 18 points are correctly identified as belonging to 9 separate
clusters, each corresponding to a different cloud
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Numerical results: Astrophysics collaboration network

@ Real dataset from SNAP: collaboration network from
arXiv:Astrophysics of N = 18872 authors, our largest example

No RY embedding available

No ground-truth communities available, used conventional SC as a
reference clustering

@ Two test cases:

© Randomly select 2 vertices from 9 ground-truth clusters m = 18 (left)
@ Randomly select 2 vertices from 3 ground-truth clusters m = 6 (right)

@ ROGLC-L: all vertices correctly attributed to reference clusters

Vig requires n = 146 Vi requires n = 24

£ gk
. .
S G S B R O
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Numerical results: EMail communication network

@ Real dataset from SNAP: email communication between N = 1,005
correspondents, 42 ground-truth communities (correspondents’
affiliations)

o Comparison between conventional SC, ROGLC-L and ROGLC-S

@ Choose at random 2 vertices from 10 ground-truth communities to
form V,, repeat multiple times to check robustness w.r.t. random

realization
! T i Tr—— @ Numbers of correctly identified
6 538&&; vertices from 10 ground-truth
5 communities for 20 realizations
4 of Vi,
3 @ ROGL+SDP achieves the best
2 performance, only possible with
. ROGL, too expensive
. otherwise lﬂl
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Another possible application: stock market data

@ ldentify highly-correlated stocks to diversify investment portfolios
o No R9 embedding available (cross-correlations only)

@ Significant noise in the data
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Conclusions and future work

e We introduced the reduced-order graph-Laplacian (ROGL) for
clustering graph vertex subsets

@ It is a building block for a divide-and-conquer clustering algorithm
currently under development
o Advantages compared to full graph SC:
@ Well-suited for parallel computations
© Small sub-problem size enables the use of more accurate clustering
algorithms (SDP-based relaxations of K-means or min-Ncut) which
leads to qualitatively better solutions
@ Possible improvements: finite-precision Lanczos for the first stage
(currently uses reorthogonalization to achieve stability)

[1] Clustering of graph vertex subset via Krylov subspace model
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