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Problem formulation and identification algorithm

Motivation

Problem: Identify the locations and intensities of point sources in a chemical system
from sparse measurements of concentrations of the species

@ Detection of pollutant (hazardous substance) release

@ Environmental (atmospheric, marine) and security applications
@ Wind and current propagation requires advection modeling

@ Dozens of non-linearly reacting chemical species

@ Placement of sensors, measurement strategies

Source: http://kaunewsbriefs.blogspot.com, http://crag.org/our-work/water-quality-wetlands/ i
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Problem formulation and identification algorithm

Forward model

@ Parabolic system with n species u(x,t) = (u(x,1),..., us(x, 1))"

u=DAu—-w-Vu+Ruu—+f xeQ te]0,T]

u|rD = up, ? =1, 0Q=TpUlN, u(x,0)=0

v n
@ Diffusion and advection terms are linear
@ Non-linearity is in the reaction term
R(u)u = Lu + Q(u)u,
@ Numerical results are for R(u) quadratic in u (Q(u) linear in u), but stronger
non-linearities are possible

@ Source term is of the form

I 1
f(x,t)y= > ah(t)s(x—y), k=1,..n,
=l 1
point-like in space and either point-like h;(t) = &(t — 7;), or step-like -W'-
hi(t) = H(t — V) — H(t — 7)) in time
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Problem formulation and identification algorithm

Forward problem: existence and uniqueness

@ Constructive proofs of existence and uniqueness rely on fixed-point iteration
@ Proofs for systems of equations require many technicalities
@ Typical result for a scalar elliptic equation

Au+ R(u)+f(x)=0, xeQ, (1)
under conditions on the reaction term
%+/€>0, (x,u) € Qx [mM], x,mM>D0.

@ The iteration
(A—r)u™ = — (R(W) + f(x) + k%), g=0,1,2,...
has a unique fixed point that is the solution of (1)

@ Proof relies on regularity of solutions of elliptic equations, which may be
problematic if point sources are present

@ Here we assume that u(x, t) = qlim u?(x, t), where
— 00
ul™ = (DA —w -V +L+QuY))u +f, g=0,1,... i
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Problem formulation and identification algorithm

Adjoint problem

@ The formal adjoint is
—vi=DAv+w-Vv+Lv+Q (uv+g.

runs backwards intimefromt=Ttot=0
@ Forward and adjoint solutions satisfy the adjoint relation

<f7 V>Q,T + C(u, V) = <g7 u>Q,T7
where the correction termis

=T
c(u,v) = —(u, V)Q’fzo +(v,Dv-VU)y r — (U, Dv - VV) 0 1
(U, (V-w)V)g 7+ U, (V- W)V) o

@ Choose boundary and initial conditions for v to get c(u, v) =0
@ Solve Ny, adjoint systems, one for each measurement g, i=1,..., Ny

Instantaneous: gj(")(x7 t) =mo(t—0)3(x—2), j=1,...,n,

Time-integrated: g\ (x,1) =& mo(x—2'), j=1,...,n. 'Iw.

A.V. Mamonov (UT Austin, ICES) 6/33



Problem formulation and identification algorithm

Source identification

The adjoint relation for point sources and sparse measurements is

n o ke

T n .
> af/ h(OV (Y Dat =di, i=1,...,Ng 2)
k=1 j=h+1 70

Unknown intensities a; and spatial locations y/, also temporal locations T

d = (g",u)

In matrix-vector form (2) for s’ = (y/, 7;) becomes

Measured data is

QT

V(s)a=d (3)

Source identification: for measured d find s, a that solves (3)

Linear case (Q(u) = 0): adjoint solutions v do not depend on (unknown) u, so
(3) is a system of non-linear algebraic equations ﬂ.

Non-linear case: V in (3) implicitly depends on u
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Problem formulation and identification algorithm

Linear problem

Optimization formulation
mir;in;ize |V(s)a—d| (4)

Possible approach: discretize s on a grid, allow for sources at every grid point,
search for sparse solutions
minimize | al|o (5)
st. Va=d
Standard compressed sensing approach: replace 0-norm in (5) with Ly norm

Ly relaxation of (5) only works under some additional assumptions on v (e.g.
restricted isometry property, etc.)

Heat operator does not satisfy RIP (Li, Osher, Tsai, 2011), application to
parabolic problems requires some modifications

Alternatively, eliminate the intensities
—1
a= (VT(s) V(s)) Vi(s)d
Use the 2-norm in (4), solve the optimization problem

maximize d’Vv(s) (VT(s) V(s))71 Vi(s)d ﬂ.
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Problem formulation and identification algorithm Forward-adjoint iteration

Non-linear problem: forward-adjoint iteration

@ How to resolve the implicit dependency of V on u?
@ Run the forward and the adjoint iterations concurrently

Forward-Adjoint iteration:
@ Obtain an initial guess u° from

W=(Da-w-V+LU°
Forg=1,2,...do
@ Solve for the current adjoint solution iterate
v DA+ w- VL +Q (WY)W g =1, Ny
© Solve the optimization problem for the source location iterate
s? = argmax d” V(s) (VT(s) V(s)) - Vi(s)d
and compute the source term iterate f9.
@ Update the forward solution iterate by solving
u'=(DA-w-V+L+Qu ))u +f ﬂ.
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Problem formulation and identification algorithm Forward-adjoint iteration

Forward-adjoint iteration

@ Mimics the behavior of the fixed point iteration for forward problem

@ Convergence analysis complicated by the coupling to a non-linear
optimization problem in step 3

@ What method to use to solve the optimization problem in step 3?

@ The most computationally expensive part is the solution of
multiple adjoint problems in step 2

@ Optimization in step 3 is cheap in comparison, derivative-free
search methods can be employed

@ Convergence of optimization in step 3 can provide the stopping
criterion for the forward-adjoint iteration

@ Premature termination of the forward-adjoint iteration yields an
accurate estimate for s (less accurate for a) and saves
computational effort ,v.

@ How to choose an initial guess for s?
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Problem formulation and identification algorithm Derivative-free search

Derivative-free search

Derivative-free search: Proceeds by exploring the slices of the objective along the
location parameters or one particular source at a time. No differentiation of V is
needed. Somewhat more global than derivative-based approaches.

@ Choose an initial guess for s.
Forp=1,2,...do
Forj=1,...,Nsdo

@ Freeze all the components s* of s for k # j and compute the objective

J(s)=d"v(s) (VI(s)V(s))  VT(s)d
for all possible values of s/ €  x [0, T].

© Update the location of the j source

s’ = argmax J(s',...,s ", r,s, . sM).
reQx|[0,T]

@ Ifforallj=1,..., Ns the changes in step 3 are small compared to 'w"
iteration p — 1 then stop.
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Problem formulation and identification algorithm Initial guess

Initial guess for source locations

Initial guess for s: provides a systematic way of obtaining an initial guess. Works
good in practice. Prior information may be used instead if available.

@ Given the initial guess u° from step 1 of the forward-adjoint iteration solve
VW =Da+w-V+L +Q"(WO)v) + g0, i=1,... Nn

and assemble V assuming that there is only one source present. Thus V has
only one column and depends on s' only and so does the objective J.

@ Compute the estimate of the first source location as

s' = argmax J(r)
reQx|[o,T]

Fork=2,...,Nsdo
© Assemble V assuming that there are k sources present. Freeze the locations of

previously determined sources s/, j = 1,..., k — 1 so that J only depends on s.
@ Compute the estimate of the k™ source location as
s = argmax J(s',...,s"7",r) 'w"
reQx|[o,T]

A.V. Mamonov (UT Austin, ICES) 12/33



Adaptive measurement placement

Measurement placement
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Example:  source identification
with known intensity V(y) = d/a.
Source position is an intersection
of (di/a)-level sets of v(7).
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@ Measurement placement aspects:

@ Initial, before measuring anything
@ Adding more measurements adaptively
based on existing data

Case of one source: in the presence of
diffusion three measurements anywhere are
enough, but more stable if measured nearby

Initial placement should aim for coverage -
uniform sampling of the whole domain

Adding measurements adaptively based on
current estimates of source locations should
aim for

@ Refinement: adding measurements
near discovered sources

@ Separation: adding measurements
between discovered sources -W.
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Adaptive measurement placement

Measurements and advection

When refining, advection should be taken into account:

Upwind Downwind

04 06

1

15

Mixed

08 1

2 25
x10°

Imaging functional J(y') for one time-independent source (yellow x) and three
measurements (yellow (). The “wind” blows from right to left. Estimated source W‘

location (from noiseless data) is black .
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Adaptive measurement placement Geometrical approach

Geometrical adaptive measurement placement

Spatial adaptive measurement placement in case of time-independent sources:
@ Start with an existing estimate of source locations y.

@ Choose a trust radius pr (e.g. based on noise level) and a reference simplex T
with vertices T%, k = 1,...,d + 1. The orientation of the reference simplex is
such that one vertex lies upwind and d vertices lie downwind from its center.

Forj=1,...,Nsdo
© Place the center of the reference simplex at y.
Fork=1,...,d+1do

@ Place a new measurement in the direction of the vertex T* at a distance
p = min (pr,m dist (y/,aﬂ) Ky dlst( { | :;é/}))

away from y/, where kq, xy € (0, 1) determine proximity to 9Q and other
sources.
Fori=1,...,j—1do

© Place a new measurement between y/ and y'. w
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Adaptive measurement placement Geometrical approach

Geometrical measurement placement: example

Example with Ns = 2 sources and N, = 6 initial measurements.

Initial distribution Added measurements

1 1 o)
oot O o] oot O o o0
08 o] 08l o o]
0.7 X 0.7F X
06 06F o
05 05F

o

st O ot O
0.3 X 03t q (¢]
) Q i Q o
01 o] o] 01 o] o]

o o1 o0z 03 04 05 06 07 06 08 1 o o1 0z 03 04 05 06 07 06 08 1

True sources X, initial measurements (). Estimated sources from 6 measurements OJ.
Refinement measurements: adjusted copies of reference simplex T are blue ().
Separation measurement: in between the source estimates is red O. 'UI.
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Adaptive measurement placement Sensitivity approach

Analytical approach: sensitivity analysis

@ Geometrical adaptive measurement placement assumes additional
measurements are cheap (thus redundancy)

@ Sensitivity argument can be used to search for an optimal position of one extra
measurement

@ Compute the sensitivity using the algorithm:
@ For a trial measurement z € Q solve
—Vi=(DA+w-V+L +aQ u))v + ¢,

linearized around the last estimate u? of the forward-adjoint iteration.
@ “Measure” o” = (g7, u?) and perturb it to obtain

V= L‘/’] L d= [dzj’rez] . Jis)=d (s) (Vr(s)V(s))f1 Vv (s)d

© Solve for the perturbed source estimate § = argmax J(s)

© Compute the sensitivity o(2) = ||s? — 3|
@ Place a new measurement where o(z) has maximum -w'-
@ Computationally expensive
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Adaptive measurement placement Level set approach

Alternative analytical approach: level sets

@ Combines the geometrical reasoning of the first approach with the analytical
structure of the sensitivity approach

@ No repeated inversion required
Level set adaptive measurement placement algorithm:
@ For a trial measurement z € Q solve

—Vi=(DA+w-V+L +Q (u))v* + g,
linearized around the last estimate u? of the forward-adjoint iteration.
@ Select the confidence signal level e that can be measured stably
© Define the indicator functions of e-level sets
P 1, V33(x)>e¢

Xz(x):{o VZ§X3<€ , X€eQ
@ Compute the set

Sz={x€Q 3 xj(x)+ xz(x) = 2}
© The new measurement z* is a solution of a constrained optimization problem

zZ"¥ = argmax fse ax W.

S.t. xg(y(@)=1
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Adaptive measurement placement

Level sets: example

Level set approach

Single source x with three upwind measurements . Left: sum of level set functions

Right: level set optimization objective for adaptive measurement placement. Source
estimate y(9 is O, new measurement location z* is .

X (X) +xzx(x), x€Q fS; dx, zeQ
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Numerical results

Three component chemical system

@ We consider a simple, but somewhat realistic chemical system
@ Three species (NO, NO,, Os) based on Chapman’s cycle
Ky

NO+ O3 — NO>
NO. 2 NO+ O
@ Reaction rates are ki = 1000, k2 = 2000, diffusion coefficients of order one,
highly non-linear stiff system
@ Source emits NO,, concentrations of NO are measured
@ Advection w is modeled via advection potential ¢
w=V¢, Ap=0, inQ
@ A preferred advection direction wy is enforced via Neumann condition on the
outer boundary
9 _ e,
o0
@ Non-penetrating boundary conditions are enforced on obstacle boundaries

9¢ _
5, =0
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Numerical results

Numerical examples: setup

@ Examples in 2D, but the method works in 3D without any modifications
@ Finite difference solver in space
@ Exponential integrator in time

& = E()E+ (1)
£ _ exp (E(k)hk) ((Em)*‘ ¢ +£(k>) _ (E(k>)*‘ G

@ Action of matrix exponential computed with an efficient algorithm
(Al-Mohy, Higham, SISC’'2011)
@ Adaptive time-stepping for time-dependent source case

@ Noise model
d*=(I+oN)d, N=diag(Xi,...,Xn,),

with zero-mean Gaussian X;, noise level o
@ Different grids for data simulation and inversion to avoid inverse crime ,'w'.
@ Systematic errors even in the absence of noise (¢ = 0)
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Numerical results Source detection with adaptive measurement placement

Two sources: initial recovery

Identifying Ns = 2 sources with Ny, = 6 measurements, 5% noise. Slices of the optimization

functional J around the solution (y', y?). True sources x, measurements O, estimated sources

0, initial guess . Left: J(r, y?); right: J(y', r), r € Q.
1 1

0.9 0.9
0.8 08
0.7 0.7
0.6 06
05 051
04 04
03 03
0.2 0.2
0.1 0.1

o 04 06 0 0.2 04 06 08 1
15 2 25 3 35 4 32 34 36 38 4 42
x10 x107
Source parameters ED ao yT y?
True 10.00 | 7.00 | (0.70,0.30) | (0.30, 0.70)
Recovered 13.37 2.27 (0.70, 0.32) (0.29, 0.87)
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Numerical results Source detection with adaptive measurement placement

Two sources: adaptively added measurements

Identifying Ns = 2 sources with N, = 13 measurements, 5% noise. Slices of the optimization

functional J around the solution (y', y?). True sources x, measurements O, estimated sources

0, initial guess . Left: J(r, y?); right: J(y', r), r € Q.
1 1

55 6 65 7 3 4 5 6 7
x10° x10°
Source parameters a4 ap yT y?
True 10.00 7.00 (0.70, 0.30) (0.30, 0.70)
Recovered 9.62 6.44 (0.67, 0.30) (0.29, 0.70)
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Numerical results Source detection with adaptive measurement placement

Three sources: initial recovery

Identifying Ns = 3 sources with N, = 9 measurements, 5% noise. Slices of the
optimization functional J around the solution (y', y?, y®). True sources x,
measurements (), estimated sources [J, initial guess .

J(r.y%,y°) Jy'ry) Jy',yEn

09

08

07

06

05

04

03

02

01

4

448 45 452 454 456 458 46 462 464
x10°

A.V. Mamonov (UT Austin, ICES)

Parameters a a az y! y2 y3
True 70.00 | 7.00 | 5.00 | (0.70,0.30) | (0.20, 0.80) | (0.50, 0.40) 'W'
Recovered | 13.06 | 21.42 | 4.22 | (0.70,0.32) | (0.22,0.98) | (0.43, 0.40)
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Numerical results Source detection with adaptive measurement placement

Three sources: adaptively added measurements

Identifying Ns = 3 sources with N, = 21 measurements, 5% noise. Slices of the
optimization functional J around the solution (y', y?, y®). True sources x,
measurements (), estimated sources [J, initial guess .

J(r. ¥, y°) Jiy'.r.y®)

2 21 22 23 24 25 26

x10° x10° x10°

Parameters a a» az y! y? y3
True 70.00 | 7.00 | 5.00 | (0.70,0.30) | (0.20, 0.80) | (0.50, 0.40) 'W'
Recovered | 9.35 | 7.26 | 5.31 | (0.70,0.30) | (0.19, 0.80) | (0.48, 0.40)
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Adaptive vs.

Source detection with adaptive measurement placement

prior placement of m

easurements

4715 472 4725 473 4735 474 4745 475 4755

(o] (o]
:
e
ol O
(o]

Comparing identification of
Ns = 2 sources (5% noise).

Top row: Np = 6 and adaptively
added measurements for a total

of Nm =13.
Bottom row: uniform distribution
of Nm = 13 measurements for

maximum prior coverage. -W.
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Numerical results Source detection with adaptive measurement placement

Adaptive vs. prior placement of measurements

Identification of Ns = 2 sources with Ny = 6 + 7 adaptively placed measurements, 5% noise.
Slices of the optimization functional J around the solution (y', y?). True sources x,
measurements (), estimated sources [, initial guess .

1 1

097

08

0.7

06

05

04

03

0.2

0.1

0 0.2 04 06 08 1
82 8.4 86 8.8 9 82 84 86 838 9
x10° x10°
Source parameters aq a yT y°
True 10.00 7.00 (0.20, 0.80) (0.30, 0.70)
Recovered 9.46 7.76 (0.19, 0.80) (0.29, 0.70)
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Numerical results Recovering unknown number of sources

Unknown number of sources

Determining an unknown number of sources:
For N =1,2,...
@ Recover Ny sources
@ Ifany a5 < Othenlet Ns = N — 1 and quit
" , . , ) : !

05 1 15 2 25 1 15 2 25 3
x10° x10

Identifying Ng = 1 (left) and Ng = 2 (middle and right) sources from Ny = 20 fixed
measurements, 5% noise. Slices of the optimization functional J around the solution 'W'
W',... ,yNs* ). True sources x, measurements (), estimated sources [, initial guess .
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Numerical results Recovering unknown number of sources

Unknown number of sources

Identifying N = Ns = 3 sources from N, = 20 fixed measurements, 5% noise. Slices of the
optimization functional J around the solution (y', y2, y3). True sources x, measurements O,
estimated sources [J, initial guess .

J(r.y2y°) o Joytry?) Jy',y2,r)

2 22 24 26 28 3 32 34 28 20 3 31 32 33 34 32
x10° x10°

Possible appearances of spurious sources when N > Ns:
o Small negative intensity (best case possible, easy to detect)
e Large negative intensity next to a true source (cancellation of intensities) 'W'
e Small positive intensity (may be hard depending on the intensities of true sources)
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Numerical results Recovering unknown number of sources

Unknown number of sources

Identifying N5 = 4 sources from N, = 20 fixed measurements, 5% noise. Slices of the
optimization functional J around the solution (y', y?, 3, y*). True sources x,
measurements (), estimated sources [, initial guess .

Jryr vyt o JryR YY) Jiy' y2ryt)

;

3 305 31 815 32 325 43 335 34 328 33 33 334 33 338 34 342 344

34481 sdE2 34483
x10° x10° x10° x10°

Case a4 a ag a y' y2 y° T
True Ns = 3 10.00 | 7.00 | 5.00 - (0.70, 0.30) (0.20, 0.80) (0.50, 0.40) -
NI =1 12.29 = = = (0,67, 0.35) = = =
N: =2 12.12 | 8.13 - = (0.67,0.33) | (0.19,0.79) = —
NS =3 10.44 | 6.83 | 4.44 — (0.69, 0.30) (0.19, 0.80) (0.48, 0.43) — L L}
N =4 1130 | 6.42 | 412 | -0.17 | (0.69,0.30) | (0.20,0.79) | (0.48,0.41) | (0.62,0.14) ‘P-
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Numerical results

Time-dependent source identification

Time-dependent source: 1D

Identifying a source f(x,t) = ad(t — 7)d(x — y) in 1D scalar non-linear equation from
N = 6 measurements, three measurements at two time instants 6 = 0.1, 0.15,

T = 0.2, 1% noise. Reduced stability compared to time-independent sources and
time-integrated measurements. True source x, measurements (), estimated source

0.
Forward solution u(x, t)

Imaging functional J(x, t)

20

Source Parameters a y T
True 3.000 0.400 0.050
Recovered 3.178 0.392 0.045
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Numerical results Time-dependent source identification

Time-dependent source: 2D

Both source and measurements are point in space and time. Identification of a single
source from N, = 6 measurements, two groups of three at times § = 0.015, 0.020,
T = 0.03. Adaptive time stepping to resolve the source/measurement singularity,
reduced non-linearity for stability. Spatial locations: true source x, measurements ),
estimated source [J. Slices of J(y, t), y € Q at three time instants.

t=0.008000 =0.009000 t=0.010000
1

09

08

07

06

05

04

03

02

01

0 - - - ) - - 0
0.02 0.025 0.03 0.035 0.04 0.045 0.05 0015 002 0025 003 0035 004 0045 0.05 001 0015 002 0025 003 0035 004 0.045 0.05
Source Parameters a y T
True 10.00 (0.70, 0.30) 0.010
Recovered 11.18 (0.73,0.31) 0.009
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Conclusions and future work

Conclusions and future work

Conclusions:

@ Method for identification of point sources in non-linear parabolic
systems from sparse measurements

@ Strategy for adaptive measurement placement

@ I|dentifying unknown numbers of sources

@ Numerical evidence of good performance
Future work:

@ Convergence analysis

@ Partial knowledge of the domain and obstacles

@ Sensitivity with respect to system parameters (diffusion
coefficients, reaction rates, advection term)

Preprint: Point source identification in non-linear advection-diffusion;
reaction systems. A.V. Mamonov and Y.-H. R. Tsai, arXiv:1202.2373‘IU'
[math-ph]
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