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Problem formulation and identification algorithm

Motivation
Problem: Identify the locations and intensities of point sources in a chemical system
from sparse measurements of concentrations of the species

Detection of pollutant (hazardous substance) release
Environmental (atmospheric, marine) and security applications
Wind and current propagation requires advection modeling
Dozens of non-linearly reacting chemical species
Placement of sensors, measurement strategies

Source: http://kaunewsbriefs.blogspot.com, http://crag.org/our-work/water-quality-wetlands/
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Problem formulation and identification algorithm

Forward model

Parabolic system with n species u(x , t) = (u1(x , t), . . . , un(x , t))T

ut = D∆u −w ·∇u + R(u)u + f , x ∈ Ω, t ∈ [0,T ]

u|ΓD
= uD,

∂u
∂ν

∣∣∣∣
ΓN

= ψ, ∂Ω = ΓD ∪ ΓN , u(x , 0) = 0

Diffusion and advection terms are linear
Non-linearity is in the reaction term

R(u)u = Lu + Q(u)u,

Numerical results are for R(u) quadratic in u (Q(u) linear in u), but stronger
non-linearities are possible
Source term is of the form

fk (x , t) =

lk+1∑
j=lk +1

ajhj (t)δ(x − y j ), k = 1, . . . , n,

point-like in space and either point-like hj (t) = δ(t − τj ), or step-like
hj (t) = H(t − τ (1)

j )− H(t − τ (2)
j ) in time
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Problem formulation and identification algorithm

Forward problem: existence and uniqueness

Constructive proofs of existence and uniqueness rely on fixed-point iteration
Proofs for systems of equations require many technicalities
Typical result for a scalar elliptic equation

Au + R(u) + f (x) = 0, x ∈ Ω, (1)

under conditions on the reaction term
∂R
∂u

+ κ > 0, (x , u) ∈ Ω× [m,M], κ,m,M > 0.

The iteration

(A− κ)uq+1 = −
(
R(uq) + f (x) + κuq) , q = 0, 1, 2, . . .

has a unique fixed point that is the solution of (1)
Proof relies on regularity of solutions of elliptic equations, which may be
problematic if point sources are present
Here we assume that u(x , t) = lim

q→∞
uq(x , t), where

uq+1
t =

(
D∆−w ·∇ + L + Q(uq)

)
uq+1 + f , q = 0, 1, . . .
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Problem formulation and identification algorithm

Adjoint problem

The formal adjoint is

−v t = D∆v + w ·∇v + LT v + QT (u)v + g.

runs backwards in time from t = T to t = 0

Forward and adjoint solutions satisfy the adjoint relation

〈f , v〉Ω,T + c(u, v) = 〈g,u〉Ω,T ,

where the correction term is

c(u, v) = − 〈u, v〉Ω
∣∣t=T
t=0 + 〈v ,Dν · ∇u〉∂Ω,T − 〈u,Dν · ∇v〉∂Ω,T

−〈u, (∇ ·w)v〉Ω,T + 〈u, (ν ·w)v〉∂Ω,T .

Choose boundary and initial conditions for v to get c(u, v) = 0

Solve Nm adjoint systems, one for each measurement g(i), i = 1, . . . ,Nm

Instantaneous: g(i)
j (x , t) = δj,mi δ(t − θi )δ(x − z i ), j = 1, . . . , n,

Time-integrated: g(i)
j (x , t) = δj,mi δ(x − z i ), j = 1, . . . , n.
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Problem formulation and identification algorithm

Source identification

The adjoint relation for point sources and sparse measurements is

n∑
k=1

lk+1∑
j=lk +1

aj

∫ T

0
hj (t)v

(i)
k (y j , t)dt = di , i = 1, . . . ,Nm (2)

Unknown intensities aj and spatial locations y j , also temporal locations τj

Measured data is
di =

〈
g(i),u

〉
Ω,T

In matrix-vector form (2) for sj = (y j , τj ) becomes

V (s)a = d (3)

Source identification: for measured d find s, a that solves (3)

Linear case (Q(u) ≡ 0): adjoint solutions v (i) do not depend on (unknown) u, so
(3) is a system of non-linear algebraic equations

Non-linear case: V in (3) implicitly depends on u
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Problem formulation and identification algorithm

Linear problem

Optimization formulation
minimize

a, s
‖V (s)a − d‖ (4)

Possible approach: discretize s on a grid, allow for sources at every grid point,
search for sparse solutions

minimize
s.t. Ṽ ã = d

‖ã‖0 (5)

Standard compressed sensing approach: replace 0-norm in (5) with L1 norm
L1 relaxation of (5) only works under some additional assumptions on Ṽ (e.g.
restricted isometry property, etc.)
Heat operator does not satisfy RIP (Li, Osher, Tsai, 2011), application to
parabolic problems requires some modifications
Alternatively, eliminate the intensities

a =
(

V T (s)V (s)
)−1

V T (s)d

Use the 2-norm in (4), solve the optimization problem

maximize
s

dT V (s)
(

V T (s)V (s)
)−1

V T (s)d
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Problem formulation and identification algorithm Forward-adjoint iteration

Non-linear problem: forward-adjoint iteration

How to resolve the implicit dependency of V on u?
Run the forward and the adjoint iterations concurrently

Forward-Adjoint iteration:
1 Obtain an initial guess u0 from

u0
t = (D∆−w ·∇ + L)u0

For q = 1, 2, . . . do
2 Solve for the current adjoint solution iterate

−v (i),q
t = (D∆ + w ·∇ + LT + QT (uq−1))v (i),q + g(i), i = 1, . . . ,Nm

3 Solve the optimization problem for the source location iterate

sq = argmax dT V (s)
(

V T (s)V (s)
)−1

V T (s)d

and compute the source term iterate f q .
4 Update the forward solution iterate by solving

uq
t = (D∆−w ·∇ + L + Q(uq−1))uq + f q
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Problem formulation and identification algorithm Forward-adjoint iteration

Forward-adjoint iteration

Mimics the behavior of the fixed point iteration for forward problem
Convergence analysis complicated by the coupling to a non-linear
optimization problem in step 3
What method to use to solve the optimization problem in step 3?
The most computationally expensive part is the solution of
multiple adjoint problems in step 2
Optimization in step 3 is cheap in comparison, derivative-free
search methods can be employed
Convergence of optimization in step 3 can provide the stopping
criterion for the forward-adjoint iteration
Premature termination of the forward-adjoint iteration yields an
accurate estimate for s (less accurate for a) and saves
computational effort
How to choose an initial guess for s?
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Problem formulation and identification algorithm Derivative-free search

Derivative-free search
Derivative-free search: Proceeds by exploring the slices of the objective along the
location parameters or one particular source at a time. No differentiation of V is
needed. Somewhat more global than derivative-based approaches.

1 Choose an initial guess for s.

For p = 1, 2, . . . do

For j = 1, . . . ,Ns do
2 Freeze all the components sk of s for k 6= j and compute the objective

J(s) = dT V (s)
(

V T (s)V (s)
)−1

V T (s)d

for all possible values of sj ∈ Ω× [0,T ].
3 Update the location of the j th source

sj = argmax
r∈Ω×[0,T ]

J(s1, . . . , sj−1, r , sj+1, . . . , sNs ).

4 If for all j = 1, . . . ,Ns the changes in step 3 are small compared to
iteration p − 1 then stop.

A.V. Mamonov (UT Austin, ICES) 11 / 33



Problem formulation and identification algorithm Initial guess

Initial guess for source locations
Initial guess for s: provides a systematic way of obtaining an initial guess. Works
good in practice. Prior information may be used instead if available.

1 Given the initial guess u0 from step 1 of the forward-adjoint iteration solve

−v (i)
t = (D∆ + w ·∇ + LT + QT (u0))v (i) + g(i), i = 1, . . . ,Nm

and assemble V assuming that there is only one source present. Thus V has
only one column and depends on s1 only and so does the objective J.

2 Compute the estimate of the first source location as

s1 = argmax
r∈Ω×[0,T ]

J(r)

For k = 2, . . . ,Ns do
3 Assemble V assuming that there are k sources present. Freeze the locations of

previously determined sources sj , j = 1, . . . , k − 1 so that J only depends on sk .
4 Compute the estimate of the k th source location as

sk = argmax
r∈Ω×[0,T ]

J(s1, . . . , sk−1, r)
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Adaptive measurement placement

Measurement placement

Example: source identification
with known intensity V (y) = d/a.
Source position is an intersection
of (di/a)-level sets of v (i).

Measurement placement aspects:
1 Initial, before measuring anything
2 Adding more measurements adaptively

based on existing data

Case of one source: in the presence of
diffusion three measurements anywhere are
enough, but more stable if measured nearby

Initial placement should aim for coverage -
uniform sampling of the whole domain

Adding measurements adaptively based on
current estimates of source locations should
aim for

1 Refinement: adding measurements
near discovered sources

2 Separation: adding measurements
between discovered sources
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Adaptive measurement placement

Measurements and advection
When refining, advection should be taken into account:

Upwind Downwind Mixed

Imaging functional J(y1) for one time-independent source (yellow ×) and three
measurements (yellow©). The “wind” blows from right to left. Estimated source
location (from noiseless data) is black �.
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Adaptive measurement placement Geometrical approach

Geometrical adaptive measurement placement

Spatial adaptive measurement placement in case of time-independent sources:
1 Start with an existing estimate of source locations y .
2 Choose a trust radius ρT (e.g. based on noise level) and a reference simplex T

with vertices T k , k = 1, . . . , d + 1. The orientation of the reference simplex is
such that one vertex lies upwind and d vertices lie downwind from its center.

For j = 1, . . . ,Ns do
3 Place the center of the reference simplex at y j .

For k = 1, . . . , d + 1 do
4 Place a new measurement in the direction of the vertex T k at a distance

ρ = min
(
ρT , κΩ dist

(
y j , ∂Ω

)
, κy dist

(
y j ,
{

y i | i 6= j
}))

away from y j , where κΩ, κy ∈ (0, 1) determine proximity to ∂Ω and other
sources.

For i = 1, . . . , j − 1 do
5 Place a new measurement between y j and y i .
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Adaptive measurement placement Geometrical approach

Geometrical measurement placement: example

Example with Ns = 2 sources and Nm = 6 initial measurements.

Initial distribution Added measurements
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True sources ×, initial measurements©. Estimated sources from 6 measurements �.
Refinement measurements: adjusted copies of reference simplex T are blue©.
Separation measurement: in between the source estimates is red©.
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Adaptive measurement placement Sensitivity approach

Analytical approach: sensitivity analysis

Geometrical adaptive measurement placement assumes additional
measurements are cheap (thus redundancy)

Sensitivity argument can be used to search for an optimal position of one extra
measurement

Compute the sensitivity using the algorithm:
1 For a trial measurement z ∈ Ω solve

−v z
t = (D∆ + w ·∇ + LT + QT (uq))v z + gz ,

linearized around the last estimate uq of the forward-adjoint iteration.
2 “Measure” dz = 〈gz ,uq〉 and perturb it to obtain

Ṽ =

[
V
v z

]
, d̃ =

[
d

dz + εz

]
, J̃(s) = d̃

T
Ṽ (s)

(
Ṽ

T
(s)Ṽ (s)

)−1
Ṽ

T
(s)d̃

3 Solve for the perturbed source estimate s̃ = argmax J̃(s)
4 Compute the sensitivity σ(z) = ‖sq − s̃‖

Place a new measurement where σ(z) has maximum

Computationally expensive
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Adaptive measurement placement Level set approach

Alternative analytical approach: level sets

Combines the geometrical reasoning of the first approach with the analytical
structure of the sensitivity approach
No repeated inversion required

Level set adaptive measurement placement algorithm:
1 For a trial measurement z ∈ Ω solve

−vz
t = (D∆ + w ·∇ + LT + QT (uq))v z + gz ,

linearized around the last estimate uq of the forward-adjoint iteration.
2 Select the confidence signal level ε that can be measured stably
3 Define the indicator functions of ε-level sets

χεz (x) =

{
1, v z (x) ≥ ε
0, v z (x) < ε

, x ∈ Ω

4 Compute the set
Sεz = {x ∈ Ω |

∑
j χ
ε
j (x) + χεz (x) ≥ 2}

5 The new measurement z? is a solution of a constrained optimization problem

z? = argmax
s.t. χεz (y(q))=1

∫
Sεz

dx
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Adaptive measurement placement Level set approach

Level sets: example
Single source × with three upwind measurements©. Left: sum of level set functions.
Right: level set optimization objective for adaptive measurement placement. Source
estimate y (q) is �, new measurement location z? is 5.∑

j χ
ε
j (x) + χεz?(x), x ∈ Ω

∫
Sεz

dx , z ∈ Ω
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Numerical results

Three component chemical system

We consider a simple, but somewhat realistic chemical system
Three species (NO, NO2, O3) based on Chapman’s cycle

NO + O3
k1−→ NO2

NO2
k2−→ NO + O3

Reaction rates are k1 = 1000, k2 = 2000, diffusion coefficients of order one,
highly non-linear stiff system
Source emits NO2, concentrations of NO are measured
Advection w is modeled via advection potential φ

w = ∇φ, ∆φ = 0, in Ω

A preferred advection direction w0 is enforced via Neumann condition on the
outer boundary

∂φ

∂ν
= w0 · ν

Non-penetrating boundary conditions are enforced on obstacle boundaries
∂φ

∂ν
= 0
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Numerical results

Numerical examples: setup

Examples in 2D, but the method works in 3D without any modifications

Finite difference solver in space

Exponential integrator in time

ξt = E(t)ξ + ζ(t)

ξ(k+1) = exp
(

E (k)hk

)((
E (k)

)−1
ζ(k) + ξ(k)

)
−
(

E (k)
)−1

ζ(k)

Action of matrix exponential computed with an efficient algorithm
(Al-Mohy, Higham, SISC’2011)

Adaptive time-stepping for time-dependent source case

Noise model
d∗ = (I + σN)d , N = diag (X1, . . . ,XNm ) ,

with zero-mean Gaussian Xj , noise level σ

Different grids for data simulation and inversion to avoid inverse crime

Systematic errors even in the absence of noise (σ = 0)

A.V. Mamonov (UT Austin, ICES) 21 / 33



Numerical results Source detection with adaptive measurement placement

Two sources: initial recovery
Identifying Ns = 2 sources with Nm = 6 measurements, 5% noise. Slices of the optimization
functional J around the solution (y1, y2). True sources ×, measurements©, estimated sources
�, initial guessF. Left: J(r , y2); right: J(y1, r), r ∈ Ω.

Source parameters a1 a2 y1 y2

True 10.00 7.00 (0.70, 0.30) (0.30, 0.70)
Recovered 13.37 2.27 (0.70, 0.32) (0.29, 0.87)
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Numerical results Source detection with adaptive measurement placement

Two sources: adaptively added measurements
Identifying Ns = 2 sources with Nm = 13 measurements, 5% noise. Slices of the optimization
functional J around the solution (y1, y2). True sources ×, measurements©, estimated sources
�, initial guessF. Left: J(r , y2); right: J(y1, r), r ∈ Ω.

Source parameters a1 a2 y1 y2

True 10.00 7.00 (0.70, 0.30) (0.30, 0.70)
Recovered 9.62 6.44 (0.67, 0.30) (0.29, 0.70)
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Numerical results Source detection with adaptive measurement placement

Three sources: initial recovery
Identifying Ns = 3 sources with Nm = 9 measurements, 5% noise. Slices of the
optimization functional J around the solution (y1, y2, y3). True sources ×,
measurements©, estimated sources �, initial guessF.

J(r , y2, y3) J(y1, r , y3) J(y1, y2, r)

Parameters a1 a2 a3 y1 y2 y3

True 10.00 7.00 5.00 (0.70, 0.30) (0.20, 0.80) (0.50, 0.40)
Recovered 13.06 21.42 4.22 (0.70, 0.32) (0.22, 0.98) (0.43, 0.40)
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Numerical results Source detection with adaptive measurement placement

Three sources: adaptively added measurements
Identifying Ns = 3 sources with Nm = 21 measurements, 5% noise. Slices of the
optimization functional J around the solution (y1, y2, y3). True sources ×,
measurements©, estimated sources �, initial guessF.

J(r , y2, y3) J(y1, r , y3) J(y1, y2, r)

Parameters a1 a2 a3 y1 y2 y3

True 10.00 7.00 5.00 (0.70, 0.30) (0.20, 0.80) (0.50, 0.40)
Recovered 9.35 7.26 5.31 (0.70, 0.30) (0.19, 0.80) (0.48, 0.40)
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Numerical results Source detection with adaptive measurement placement

Adaptive vs. prior placement of measurements
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Comparing identification of
Ns = 2 sources (5% noise).
Top row: Nm = 6 and adaptively
added measurements for a total
of Nm = 13.
Bottom row: uniform distribution
of Nm = 13 measurements for
maximum prior coverage.
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Numerical results Source detection with adaptive measurement placement

Adaptive vs. prior placement of measurements
Identification of Ns = 2 sources with Nm = 6 + 7 adaptively placed measurements, 5% noise.
Slices of the optimization functional J around the solution (y1, y2). True sources ×,
measurements©, estimated sources �, initial guessF.

Source parameters a1 a2 y1 y2

True 10.00 7.00 (0.20, 0.80) (0.30, 0.70)
Recovered 9.46 7.76 (0.19, 0.80) (0.29, 0.70)
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Numerical results Recovering unknown number of sources

Unknown number of sources
Determining an unknown number of sources:

For N∗s = 1, 2, . . .
1 Recover N∗s sources
2 If any aj < 0 then let Ns = N∗s − 1 and quit

Identifying N∗s = 1 (left) and N∗s = 2 (middle and right) sources from Nm = 20 fixed

measurements, 5% noise. Slices of the optimization functional J around the solution

(y1, . . . , yN∗
s ). True sources ×, measurements©, estimated sources �, initial guessF.
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Numerical results Recovering unknown number of sources

Unknown number of sources
Identifying N∗s = Ns = 3 sources from Nm = 20 fixed measurements, 5% noise. Slices of the
optimization functional J around the solution (y1, y2, y3). True sources ×, measurements©,
estimated sources �, initial guessF.

J(r , y2, y3) J(y1, r , y3) J(y1, y2, r)

Possible appearances of spurious sources when N∗s > Ns :
1 Small negative intensity (best case possible, easy to detect)
2 Large negative intensity next to a true source (cancellation of intensities)
3 Small positive intensity (may be hard depending on the intensities of true sources)
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Numerical results Recovering unknown number of sources

Unknown number of sources

Identifying N∗s = 4 sources from Nm = 20 fixed measurements, 5% noise. Slices of the
optimization functional J around the solution (y1, y2, y3, y4). True sources ×,
measurements©, estimated sources �, initial guessF.

J(r , y2, y3, y4) J(y1, r , y3, y4) J(y1, y2, r , y4) J(y1, y2, y3, r)

Case a1 a2 a3 a4 y1 y2 y3 y4

True Ns = 3 10.00 7.00 5.00 – (0.70, 0.30) (0.20, 0.80) (0.50, 0.40) –
N∗

s = 1 12.29 – – – (0.67, 0.35) – – –
N∗

s = 2 12.12 8.13 – – (0.67, 0.33) (0.19, 0.79) – –
N∗

s = 3 10.44 6.83 4.44 – (0.69, 0.30) (0.19, 0.80) (0.48, 0.43) –
N∗

s = 4 11.30 6.42 4.12 -0.17 (0.69, 0.30) (0.20, 0.79) (0.48, 0.41) (0.62, 0.14)
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Numerical results Time-dependent source identification

Time-dependent source: 1D
Identifying a source f (x , t) = aδ(t − τ)δ(x − y) in 1D scalar non-linear equation from
Nm = 6 measurements, three measurements at two time instants θ = 0.1, 0.15,
T = 0.2, 1% noise. Reduced stability compared to time-independent sources and
time-integrated measurements. True source ×, measurements©, estimated source
�.

Forward solution u(x , t) Imaging functional J(x , t)

Source Parameters a y τ
True 3.000 0.400 0.050

Recovered 3.178 0.392 0.045
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Numerical results Time-dependent source identification

Time-dependent source: 2D
Both source and measurements are point in space and time. Identification of a single
source from Nm = 6 measurements, two groups of three at times θ = 0.015, 0.020,
T = 0.03. Adaptive time stepping to resolve the source/measurement singularity,
reduced non-linearity for stability. Spatial locations: true source ×, measurements©,
estimated source �. Slices of J(y , t), y ∈ Ω at three time instants.

Source Parameters a y τ
True 10.00 (0.70, 0.30) 0.010

Recovered 11.18 (0.73, 0.31) 0.009
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Conclusions and future work

Conclusions and future work

Conclusions:
Method for identification of point sources in non-linear parabolic
systems from sparse measurements
Strategy for adaptive measurement placement
Identifying unknown numbers of sources
Numerical evidence of good performance

Future work:
Convergence analysis
Partial knowledge of the domain and obstacles
Sensitivity with respect to system parameters (diffusion
coefficients, reaction rates, advection term)

Preprint: Point source identification in non-linear advection-diffusion-
reaction systems. A.V. Mamonov and Y.-H. R. Tsai, arXiv:1202.2373
[math-ph]
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