Interpolatory tensorial reduced order models for parametric dynamical systems

Alexander V. Mamonov¹ and Maxim A. Olshanskii¹

¹University of Houston

Support: ONR N00014-21-1-2370

Motivation and overview

- Projection-based model reduction for parametric dynamical systems
- Classical POD approach: dump all snapshots in one big matrix, project the dynamical system onto its n left singular vectors
- Problem: loss of information about dependency of snapshots on parameters
- Solution: use snapshot tensor instead of a matrix; use low-rank tensor decompositions instead of SVD

• Dynamical system for $u:[0,\,T)\to \mathbb{R}^M$ solving

$$\mathbf{u}_t = F(t, \mathbf{u}, \alpha), \quad t \in (0, T), \quad \mathbf{u}|_{t=0} = \mathbf{u}_0 \tag{1}$$

- Parameters $\alpha = (\alpha_1, \dots, \alpha_D)^T$ from parameter domain $\mathcal{A} \subset \mathbb{R}^D$
- Snapshots $\phi_k(\alpha) = \mathsf{u}(t_k, \alpha) \in \mathbb{R}^M$, $k = 1, \dots, N$
- For a fixed $\alpha \in \mathcal{A}$ assemble snapshot matrix

$$\Phi_{\mathsf{pod}}(lpha) = [\phi_1(lpha), \dots, \phi_N(lpha)] \in \mathbb{R}^{M imes N}$$

- Choose **ROM dimension** *n* << *M*
- POD-ROM: project (1) onto the first *n* left singular vectors of Φ_{pod}(α)

POD-ROM for parametric systems

• Sample parameter domain to get the sampling set

$$\widehat{\mathcal{A}} = \{\widehat{\alpha}_1, \dots, \widehat{\alpha}_K\}$$

• Assemble a huge matrix of all snapshots

$$\Phi_{\widehat{\mathcal{A}}} = [\phi_1(\widehat{\alpha}_1), \dots, \phi_N(\widehat{\alpha}_1), \dots, \phi_1(\widehat{\alpha}_K), \dots, \phi_N(\widehat{\alpha}_K)] \in \mathbb{R}^{M \times KN}$$

- Project dynamical system onto first *n* left singular vectors of Φ_Â
- Major drawbacks:
 - Very expensive in both storage and computation
 - 2) Often lacks robustness away from parameter samples $\widehat{\mathcal{A}}$
 - **Disregards the tensor product structure** of parameter space

Interpolatory tensorial ROM

- Our solution: interpolatory tensorial ROM (TROM)
- Combination of two ideas
 - Offline stage: use low-rank tensor decompositions to compress the snapshot tensor (for all parameters in Â) and account for tensor-product structure of parameter space
 - **2** Online stage: for a specific out-of-sample $\alpha \in A \setminus \widehat{A}$ compute the reduced basis using interpolation
- Assume first A being a D-dimensional box sampled on a Cartesian grid with nodes

$$\{\widehat{\alpha}_{i}^{j}\}_{i=1,\ldots,D, j=1,\ldots,n_{i}},$$

so $K = n_1 \times n_2 \times \ldots \times n_D$

• Define snapshot tensor $\Phi \in \mathbb{R}^{M \times n_1 \times \cdots \times n_D \times N}$ with entries

$$(\mathbf{\Phi})_{:,i_1,\ldots,i_D,k} = \phi_k(\widehat{\alpha}_1^{i_1},\ldots,\widehat{\alpha}_D^{i_D})$$

Offline stage: tensor compression

• We need a low-rank tensor approximation $\tilde{\Phi}$ to snapshot tensor

$$\left\| \widetilde{\mathbf{\Phi}} - \mathbf{\Phi} \right\|_{F} \leq \widetilde{\varepsilon} \left\| \mathbf{\Phi} \right\|_{F}$$

• Three possibilities:

Canonical polyadic (CP) decomposition

$$\mathbf{\Phi} \approx \widetilde{\mathbf{\Phi}} = \sum_{r=1}^{R} \mathbf{u}^{r} \circ \boldsymbol{\sigma}_{1}^{r} \circ \cdots \circ \boldsymbol{\sigma}_{D}^{r} \circ \mathbf{v}^{r}$$

High order SVD (HOSVD) Tucker form

$$\boldsymbol{\Phi} \approx \widetilde{\boldsymbol{\Phi}} = \sum_{j=1}^{\widetilde{M}} \sum_{q_1=1}^{\widetilde{n}_1} \cdots \sum_{q_D=1}^{\widetilde{n}_D} \sum_{k=1}^{\widetilde{N}} (\mathbf{C})_{j,q_1,\dots,q_D,k} \mathbf{u}^j \circ \boldsymbol{\sigma}_1^{q_1} \circ \cdots \circ \boldsymbol{\sigma}_D^{q_D} \circ \mathbf{v}^k$$

Tensor train (TT) decomposition

$$\boldsymbol{\Phi} \approx \widetilde{\boldsymbol{\Phi}} = \sum_{j_1=1}^{\widetilde{r}_1} \cdots \sum_{j_{D+1}=1}^{\widetilde{r}_{D+1}} \boldsymbol{u}^{j_1} \circ \boldsymbol{\sigma}_1^{j_1,j_2} \circ \cdots \circ \boldsymbol{\sigma}_D^{j_D,j_{D+1}} \circ \boldsymbol{v}^{j_{D+1}}$$

Online stage: interpolation

 Define interpolation process via vectors eⁱ(α) ∈ ℝ^{n_i} such that for smooth *f* we have

$$f(\alpha_i) \approx \sum_{j=1}^{n_i} [\mathbf{e}^i(\alpha)]_j f(\widehat{\alpha}_i^j), \quad i = 1, \dots, D,$$

e.g., use Lagrange interpolation on p nearest grid nodes

• Using k-mode tensor vector product \times_k , define **extraction**

$$\Phi_{\boldsymbol{e}}(\boldsymbol{\alpha}) = \boldsymbol{\Phi} \times_2 \boldsymbol{e}^1(\boldsymbol{\alpha}) \times_3 \boldsymbol{e}^2(\boldsymbol{\alpha}) \cdots \times_{D+1} \boldsymbol{e}^D(\boldsymbol{\alpha}) \in \mathbb{R}^{M \times N},$$

which extracts from whole snapshot tensor Φ a **matrix** of **interpolated** snapshots most relevant to α

• **Remark:** if $\widehat{\alpha} \in \widehat{\mathcal{A}}$ then $\Phi_{e}(\widehat{\alpha}) = \Phi_{\mathsf{pod}}(\widehat{\alpha})$

Online stage: interpolation and reduced basis

- Online stage is performed for a specific $\alpha \in \mathcal{A}$
- Once we have $\widetilde{\Phi} \approx \Phi$ from offline stage, use extraction

$$\widetilde{\Phi}_{m{e}}(lpha) = \widetilde{m{\Phi}} imes_2 \, m{e}^1(lpha) imes_3 \, m{e}^2(lpha) \cdots imes_{D+1} \, m{e}^D(lpha) \in \mathbb{R}^{M imes N}$$

• Compute thin SVD of low-rank

$$\widetilde{\Phi}_{\boldsymbol{\theta}}(\boldsymbol{\alpha}) = \mathbf{Z}\widetilde{\boldsymbol{\Sigma}}\mathbf{Y}^{\mathcal{T}}$$

• If $Z = [\mathbf{z}_1, \mathbf{z}_2, \ldots]$, let the orthonormal reduced basis be

$$\mathcal{Z}_n(\alpha) = \{\mathbf{z}_1, \ldots, \mathbf{z}_n\}$$

 Interpolatory TROM is obtained by projecting the dynamical system onto

span
$$\mathcal{Z}_n(oldsymbollpha)$$

Computational efficiency

- In practice, there is no need to compute SVD of Φ̃_e(α) or even to assemble Φ̃_e(α)!
- Instead, all necessary calculations can be performed for a small core matrix
- Also, no need to form $\mathcal{Z}_n(\alpha) = \{\mathbf{z}_1, \dots, \mathbf{z}_n\}$ explicitly
- Can write z_j = Uβ_j(α), where U is computed and stored offline and parameter-specific coefficients β_j(α) are computed online
- Dynamical system can be pre-projected onto U at the offline stage

• Offline stage: compute tensor approximation

$$\boldsymbol{\Phi} \approx \widetilde{\boldsymbol{\Phi}} = \sum_{j=1}^{\widetilde{M}} \sum_{q_1=1}^{\widetilde{n}_1} \cdots \sum_{q_D=1}^{\widetilde{n}_D} \sum_{k=1}^{\widetilde{N}} (\mathbf{C})_{j,q_1,\ldots,q_D,k} \mathbf{u}^j \circ \boldsymbol{\sigma}_1^{q_1} \circ \cdots \circ \boldsymbol{\sigma}_D^{q_D} \circ \mathbf{v}^k,$$

assemble matrices

$$\mathbf{U} = [\mathbf{u}^1, \dots, \mathbf{u}^{\widetilde{M}}] \in \mathbb{R}^{M \times \widetilde{M}}, \ \mathbf{S}_i = [\boldsymbol{\sigma}_i^1, \dots, \boldsymbol{\sigma}_i^{\widetilde{n}_i}] \in \mathbb{R}^{n_i \times \widetilde{n}_i}, \ i = 1, \dots, D$$

• Online stage: form core matrix

$$C_{\boldsymbol{\theta}}(\boldsymbol{\alpha}) = \boldsymbol{\mathsf{C}} \times_2 \Big(S_1 \boldsymbol{\mathsf{e}}^1(\boldsymbol{\alpha}) \Big) \times_3 \Big(S_2 \boldsymbol{\mathsf{e}}^2(\boldsymbol{\alpha}) \Big) \cdots \times_{D+1} \Big(S_D \boldsymbol{\mathsf{e}}^D(\boldsymbol{\alpha}) \Big) \in \mathbb{R}^{\widetilde{M} \times \widetilde{N}}$$

Reduced basis coefficients $\beta_j(\alpha)$ are the first *n* left singular vectors of $C_e(\alpha)$

Prediction analysis

- We measure prediction power of reduced basis
 Z_n(α) = {z₁,..., z_n} by how well u(t_k, α) can be represented in it
- The following bound holds

$$\frac{1}{3NM}\sum_{k=1}^{N}\left\|\mathbf{u}(t_{k},\alpha)-\sum_{j=1}^{n}\left\langle\mathbf{u}(t_{k},\alpha),\mathbf{z}_{j}\right\rangle\mathbf{z}_{j}\right\|_{\ell^{2}}^{2}$$

$$\leq \frac{1}{NM}\left((C_{e})^{2D}\widetilde{\varepsilon}^{2}\|\mathbf{\Phi}\|_{F}+\sum_{i=n+1}^{N}\widetilde{\sigma}_{i}^{2}\right)+C_{a}C_{\mathbf{u}}\max\left\{(C_{e})^{2(D-1)},1\right\}\delta^{2p},$$

where

- Ca, Ce depend on interpolation process
- $C_{u} = \|u\|_{C(0,T;C^{p}(\mathcal{A}))}$
- $\tilde{\sigma}_i$ are the singular values of $\tilde{\Phi}_{e}(\alpha)$
- δ is the maximum grid step of $\widehat{\mathcal{A}}$

Numerical experiments: heat equation, D = 4

Heat equation

$$w_t = \Delta w, \quad t \in (0, T]$$

for $w(t, \mathbf{x}, \alpha)$ in a domain Ω with three holes

• Parameters (*D* = 4) enter the **boundary conditions**

$$\left. \begin{array}{l} \left. \left(\mathbf{n} \cdot \nabla \mathbf{w} + \alpha_1 (\mathbf{w} - \mathbf{1}) \right) \right|_{\Gamma_o} = \mathbf{0}, \\ \left. \left. \left(\mathbf{n} \cdot \nabla \mathbf{w} + \frac{1}{2} \mathbf{w} \right) \right|_{\partial \Omega_i} = \frac{1}{2} \alpha_{i+1}, \quad i = 1, 2, 3, \end{array} \right.$$

the rest of the boundary is insulated

Heat equation: out-of-sample TROM performance

• Given true $w(t_k, \mathbf{x}, \alpha)$ and ROM $\widetilde{w}(t_k, \mathbf{x}, \alpha)$ solutions, define relative ROM solution error

$$R_{\mathsf{X}}(\boldsymbol{\alpha}) = \frac{\max_{k=1,\ldots,N} \left\| \widetilde{w}(t_k, \mathbf{x}, \boldsymbol{\alpha}) - w(t_k, \mathbf{x}, \boldsymbol{\alpha}) \right\|_{L^2(\Omega)}}{\max_{k=1,\ldots,N} \left\| w(t_k, \mathbf{x}, \boldsymbol{\alpha}) \right\|_{L^2(\Omega)}},$$

for $X \in \{CP, HOSVD, TT, POD\}$, and relative gain

$$G_{\mathrm{X}} = R_{\mathrm{POD}}(\alpha) / R_{\mathrm{X}}(\alpha),$$

• Report mean of G_X over 200 random realizations $\alpha^{(r)} \in \mathcal{A} \setminus \widehat{\mathcal{A}}$

$\widetilde{\varepsilon} = 10^{-5}$	mean G _X			
K	CP	HOSVD	TT	
$135 = 5 \times 3^3$	24.76	25.08	25.08	
$1000 = 8 \times 5^3$	35.21	35.52	35.51	
$3430 = 10 \times 7^3$	37.80	38.80	38.80	

$\widetilde{\varepsilon} = 10^{-7}$	mean <i>G</i> _X			
n	CP	HOSVD	TT	
10	38.66	38.80	38.80	
20	49.80	155.65	154.03	

Heat equation: out-of-sample predictive power

We use

$$E_{L^{\infty}(\mathcal{A})} = \sup_{\boldsymbol{\alpha} \in \mathcal{A}} \left(\frac{1}{MN} \left\| (\mathbf{I} - \mathbf{Z}_{n} \mathbf{Z}_{n}^{T}) \Phi_{\boldsymbol{e}}(\boldsymbol{\alpha}) \right\|_{F}^{2} \right)^{1/2}$$

and its $L^2(\mathcal{A})$ analogue to check **predictive power** of **HOSVD-TROM** for out-of-sample α , where $Z_n = [\mathbf{z}_1, \dots, \mathbf{z}_n]$

• The study is for D = 2 parameters: $\alpha_1 = \alpha_2 = \alpha_3$ and α_4

A.V. Mamonov, M.A. Olshanskii

Tensorial ROMs

Numerical experiments: advection-diffusion, D = 9

• Advection-diffusion equation for $w(t, \mathbf{x}, \alpha)$:

$$w_t = \nu \Delta w - \eta(\mathbf{x}, \alpha) \cdot \nabla w + f(\mathbf{x}), \quad t \in (0, T]$$

with Gaussian source f(x) in a unit square with insulated boundary
 Divergence-free advection field parametrized with D = 9 parameters

$$\eta(\mathbf{x}, \alpha) = \begin{pmatrix} \eta_1(\mathbf{x}, \alpha) \\ \eta_2(\mathbf{x}, \alpha) \end{pmatrix} = \begin{pmatrix} \cos \alpha_9 \\ \sin \alpha_9 \end{pmatrix} + \frac{1}{\pi} \begin{pmatrix} \partial_{x_2} h(\mathbf{x}, \alpha) \\ -\partial_{x_1} h(\mathbf{x}, \alpha) \end{pmatrix}, \text{ with}$$
$$h(\mathbf{x}, \alpha) = \alpha_1 \cos(\pi x_1) + \alpha_2 \cos(\pi x_2) + \alpha_3 \cos(\pi x_1) \cos(\pi x_2)$$
$$+ \alpha_4 \cos(2\pi x_1) + \alpha_5 \cos(2\pi x_2) + \alpha_6 \cos(2\pi x_1) \cos(\pi x_2)$$
$$+ \alpha_7 \cos(\pi x_1) \cos(2\pi x_2) + \alpha_8 \cos(2\pi x_1) \cos(2\pi x_2).$$

Advection-diffusion equation: TROM performance

- Numerical results: diffusion coefficient $\nu = 0.01$, M = 4797, $K = 20 \times 2^8 = 5120$
- Report mean of G_X for HOSVD- and TT-TROM, CP decomposition is too memory intensive
- Good results for ε̃ = 10⁻³, n = 10, no need to use more expensive options

$\widetilde{\varepsilon} = 10^{-3}$	n	5	8	10
mean	HOSVD	6.95	22.56	32.66
G _X	TT	6.95	22.54	31.83
$\widetilde{\varepsilon} = 10^{-5}$	n	5	10	15
mean	HOSVD	6.95	33.34	19.45
G _X	TT	6.95	33.34	19.45
$\widetilde{\varepsilon} = 10^{-7}$	n	5	10	15
mean	HOSVD	6.95	33.34	19.45
G _X	TT	6.95	33.34	19.45

Conclusions and future work

- Framework for model reduction for parametric dynamical systems based on low-rank tensor approximation of snapshots (offline); tensor decompositions provide a universal basis that retains information about solution variation with respect to parameters
- Information from compressed tensor representation is used to compute the (coefficients of) ROM basis for any incoming parameter, including out-of-sample (online)
- Prediction power analysis

Future work

 Model reduction for non-linear dynamical systems, DEIM in tensor framework, etc.

Reference

Interpolatory tensorial reduced order models for parametric dynamical systems. A.V. Mamonov, M.A. Olshanskii, Preprint: arXiv:2211.00649 [math.NA]

