Resistor Networks and Optimal Grids for Electrical Impedance Tomography with Partial Boundary Measurements

Alexander Mamonov1,
Liliana Borcea2, Vladimir Druskin3,
Fernando Guevara Vasquez4

1Institute for Computational Engineering and Sciences, University of Texas at Austin,
2Rice University, 3Schlumberger-Doll Research, 4University of Utah

May 25, 2011

Support: Schlumberger R62860, NSF DMS-0604008, DMS-0934594.
Electrical Impedance Tomography

1. EIT with resistor networks and optimal grids
2. Conformal and quasi-conformal mappings
3. Pyramidal networks and sensitivity grids
4. Two-sided problem and networks
5. Numerical results
6. Conclusions
Electrical Impedance Tomography: Physical problem

- Physical problem: determine the electrical conductivity inside an object from the simultaneous measurements of voltages and currents on (a part of) its boundary

- Applications:
 - Original: geophysical prospection
 - More recent: medical imaging

- Both cases in practice have measurements restricted to a part of object’s boundary
Partial data EIT: mathematical formulation

- Two-dimensional problem $\Omega \subset \mathbb{R}^2$
- Equation for electric potential u
 \[\nabla \cdot (\sigma \nabla u) = 0, \quad \text{in } \Omega \]
- Dirichlet data $u|_B = \phi \in H^{1/2}(B)$ on $B = \partial \Omega$
- Dirichlet-to-Neumann (DtN) map $\Lambda_\sigma : H^{1/2}(B) \to H^{-1/2}(B)$
 \[\Lambda_\sigma \phi = \sigma \frac{\partial u}{\partial \nu} \bigg|_B \]

Partial data case:
- Split the boundary $B = B_A \cup B_I$, accessible B_A, inaccessible B_I
- Dirichlet data: $\text{supp } \phi_A \subset B_A$
- Measured current flux: $J_A = (\Lambda_\sigma \phi_A)|_{B_A}$
- Partial data EIT: find σ given all pairs (ϕ_A, J_A)
Existence, uniqueness and stability

Existence and uniqueness:

- Full data: solved completely for any positive $\sigma \in L^\infty(\Omega)$ in 2D (Astala, Päivärinta, 2006)
- Partial data: for $\sigma \in C^{4+\alpha}(\overline{\Omega})$ and an arbitrary open B_A (Imanuvilov, Uhlmann, Yamamoto, 2010)

Stability (full data):

- For $\sigma \in L^\infty(\Omega)$ the problem is unstable (Alessandrini, 1988)
- Logarithmic stability estimates (Barcelo, Faraco, Ruiz, 2007) under certain regularity assumptions
 \[
 \|\sigma_1 - \sigma_2\|_\infty \leq C \|\log \|\Lambda_{\sigma_1} - \Lambda_{\sigma_2}\|_{H^1/2(B) \to H^{-1/2}(B)}\|^{-a}
 \]
 The estimate is sharp (Mandache, 2001), additional regularity of σ does not help
- Exponential ill-conditioning of the discretized problem
- Resolution is severely limited by the noise, regularization is required
Numerical methods for EIT

1. **Linearization**: Calderon’s method, one-step Newton, backprojection.
2. **Optimization**: typically output least squares with regularization.
3. **Layer peeling**: find σ close to B, peel the layer, update Λ_σ, repeat.
4. **D-bar method**: non-trivial implementation.

Resistor networks and optimal grids
- Uses the close connection between the continuum inverse problem and its discrete analogue for resistor networks
- Fit the measured continuum data exactly with a resistor network
- Interpret the resistances as averages over a special (optimal) grid
- Compute the grid once for a known conductivity (constant)
- Optimal grid depends weakly on the conductivity, grid for constant conductivity can be used for a wide range of conductivities
- Obtain a pointwise reconstruction on an optimal grid
- Use the network and the optimal grid as a non-linear preconditioner to improve the reconstruction using a single step of traditional (regularized) Gauss-Newton iteration
Finite volume discretization and resistor networks

Finite volume discretization, staggered grid

Kirchhoff matrix

\[K = A \text{diag}(\gamma) A^T \succeq 0 \]

Interior \(I \), boundary \(B \), \(|B| = n \)

Potential \(u \) is \(\gamma \)-harmonic

\[K_I \cdot u = 0, \ u_B = \phi \]

Discrete DtN map \(\Lambda_{\gamma} \in \mathbb{R}^{n \times n} \)

Schur complement:

\[\Lambda_{\gamma} = K_{BB} - K_{Bl} K_{ll}^{-1} K_{IB} \]

Discrete inverse problem:

Knowing \(\Lambda_{\gamma}, A \), find \(\gamma \)

What network topologies are good?
Discrete inverse problem: circular planar graphs

- Circular pair \((P; Q), P \subset B, Q \subset B\)
- \(\pi(\Gamma)\) all \((P; Q)\) connected through \(\Gamma\) by disjoint paths
- **Critical** \(\Gamma\): removal of any edge breaks some connection in \(\pi(\Gamma)\)
- Uniquely recoverable from \(\Lambda\) iff \(\Gamma\) is critical (Curtis, Ingerman, Morrow, 1998)
- Characterization of DtN maps of critical networks \(\Lambda_\gamma\)
 - Symmetry \(\Lambda_\gamma = \Lambda_\gamma^T\)
 - Conservation of current \(\Lambda_\gamma \mathbf{1} = \mathbf{0}\)
 - Total non-positivity \(\det[-\Lambda_\gamma(P; Q)] \geq 0\)

Planar graph \(\Gamma\)
- \(I\) embedded in the unit disk \(\mathbb{D}\)
- \(B\) in cyclic order on \(\partial \mathbb{D}\)
Discrete vs. continuum

- Measurement (electrode) functions χ_j, $\text{supp} \chi_j \subset B_A$
- Measurement matrix $\mathcal{M}_n(\Lambda_\sigma) \in \mathbb{R}^{n \times n}$: $[\mathcal{M}_n(\Lambda_\sigma)]_{i,j} = \int_B \chi_i \Lambda_\sigma \chi_j dS$, $i \neq j$
- $\mathcal{M}_n(\Lambda_\sigma)$ has the properties of a DtN map of a resistor network (Morrow, Ingerman, 1998)
- How to interpret γ obtained from $\Lambda_\gamma = \mathcal{M}_n(\Lambda_\sigma)$?
- From finite volumes define the reconstruction mapping

$$Q_n [\Lambda_\gamma] : \sigma^*(P_{\alpha,\beta}) = \frac{\gamma_{\alpha,\beta}}{\gamma_{\alpha,\beta}^{(1)}}, \text{ piecewise linear interpolation away from } P_{\alpha,\beta}$$

- Optimal grid nodes $P_{\alpha,\beta}$ are obtained from $\gamma_{\alpha,\beta}^{(1)}$, a solution of the discrete problem for constant conductivity $\Lambda_\gamma^{(1)} = \mathcal{M}_n(\Lambda_1)$.
- The reconstruction is improved using a single step of preconditioned Gauss-Newton iteration with an initial guess σ^*

$$\min_\sigma \| Q_n [\mathcal{M}_n(\Lambda_\sigma)] - \sigma^* \|$$
Optimal grids in the unit disk: full data

- Tensor product grids uniform in θ, adaptive in r
- Layered conductivity $\sigma = \sigma(r)$
- Admittance $\Lambda_\sigma e^{ik\theta} = R(k) e^{ik\theta}$
- For $\sigma \equiv 1$ $R(k) = |k|$
 $\Lambda_1 = \sqrt{-\frac{\partial^2}{\partial \theta^2}}$
- Discrete analogue $M_n(\Lambda_1) = \sqrt{\text{circ}(-1, 2, -1)}$

- Discrete admittance $R_n(\lambda) = \frac{1}{\gamma_1 + \frac{1}{\gamma_2 \lambda^2 + \ldots + \frac{1}{\gamma_{m+1} \lambda^2 + \gamma_{m+1}}}}$

- Rational interpolation
 $R(k) = \frac{k}{\omega_k^{(n)} R_n(\omega_k^{(n)})}$

- Optimal grid $R_{n}^{(1)}(\omega_k^{(n)}) = \omega_k^{(n)}$

- Closed form solution available (Biesel, Ingerman, Morrow, Shore, 2008)

- Vandermonde-like system, exponential ill-conditioning
Transformation of the EIT under diffeomorphisms

- Optimal grids were used successfully to solve the full data EIT in \mathbb{D}
- Can we reduce the partial data problem to the full data case?
- Conductivity under diffeomorphisms G of Ω: **push forward** $\tilde{\sigma} = G_*(\sigma)$, $\tilde{u}(x) = u(G^{-1}(x))$

$$\tilde{\sigma}(x) = \left. \frac{G'(y)\sigma(y)(G'(y))^T}{|\det G'(y)|} \right|_{y=G^{-1}(x)}$$

- Matrix valued $\tilde{\sigma}(x)$, anisotropy!
- Anisotropic EIT is not uniquely solvable
- Push forward for the DtN: $(g_*\Lambda_\sigma)\phi = \Lambda_\sigma(\phi \circ g)$, where $g = G|_B$
- Invariance of the DtN: $g_*\Lambda_\sigma = \Lambda_{G_*\sigma}$
- Push forward, solve the EIT for $g_*\Lambda_\sigma$, pull back
- Must preserve isotropy, $G'(y)(G'(y))^T = I \Rightarrow \text{conformal } G$
- Conformal automorphisms of the unit disk are Möbius transforms
Conformal and quasi-conformal mappings

Conformal automorphisms of the unit disk

\[\beta = \tau \frac{n+1}{2} \]

\[-\beta = \tau \frac{n+3}{2} \]

\[\alpha = \theta \frac{n+1}{2} \]

\[-\alpha = \theta \frac{n+3}{2} \]

\[F : \theta \rightarrow \tau, \ G : \tau \rightarrow \theta. \] Primary \times, dual \circ, \ n = 13, \ \beta = 3\pi/4. \]

Positions of point-like electrodes prescribed by the mapping.
Conformal and quasi-conformal mappings

Conformal mapping grids: limiting behavior

- No conformal limiting mapping
- Single pole moves towards $\partial \mathbb{D}$ as $n \to \infty$
- Accumulation around $\tau = 0$
- No asymptotic refinement in angle as $n \to \infty$
- Hopeless?
- Resolution bounded by the instability, $n \to \infty$ practically unachievable

Primary \times, dual \circ, limits ∇,

$n = 37, \beta = 3\pi/4.$
Quasi-conformal mappings

- Conformal w, Cauchy-Riemann: $\frac{\partial w}{\partial z} = 0$, how to relax?
- Quasi-conformal w, Beltrami: $\frac{\partial w}{\partial z} = \mu(z) \frac{\partial w}{\partial z}$
- Push forward $w_*(\sigma)$ is no longer isotropic
- Anisotropy of $\tilde{\sigma} \in \mathbb{R}^{2 \times 2}$ is $\kappa(\tilde{\sigma}, z) = \frac{\sqrt{L(z)} - 1}{\sqrt{L(z)} + 1}$, $L(z) = \frac{\lambda_1(z)}{\lambda_2(z)}$

Lemma

Anisotropy of the push forward is given by $\kappa(w_*(\sigma), z) = |\mu(z)|$.

- Mappings with fixed values at B and $\min \|\mu\|_{\infty}$ are extremal
- Extremal mappings are Teichmüller (Strebel, 1972)

$$\mu(z) = \|\mu\|_{\infty} \frac{\phi(z)}{|\phi(z)|}, \phi \text{ holomorphic in } \Omega$$
Computing the extremal quasi-conformal mappings

- Polygonal Teichmüller mappings
- Polygon is a unit disk with N marked points on the boundary circle
- Can be decomposed as
 \[W = \Psi^{-1} \circ A_K \circ \Phi, \]
 where $\Psi = \int \sqrt{\psi(z)} \, dz$, $\Phi = \int \sqrt{\phi(z)} \, dz$, A_K - constant affine stretching
- ϕ, ψ are rational with poles and zeros of order one on $\partial \mathbb{D}$
- Recall Schwarz-Christoffel
 \[s(z) = a + b \int \prod_{k=1}^{N} \left(1 - \frac{\zeta}{z_k} \right)^{\alpha_k-1} \, d\zeta \]
- Ψ, Φ are Schwarz-Christoffel mappings to rectangular polygons
Conformal and quasi-conformal mappings

Polygonal Teichmüller mapping: the grids

The optimal grid with $n = 15$ under the Teichmüller mappings. Left: $K = 0.8$; right: $K = 0.66$.
EIT with pyramidal networks: motivation

- Pyramidal (standard) graphs Σ_n
- Topology of a network accounts for the inaccessible boundary
- Criticality and reconstruction algorithm proved for pyramidal networks
- How to obtain the grids?
- Grids have to be purely 2D (no tensor product)
- Use the sensitivity analysis (discrete an continuum) to obtain the grids
- General approach works for any simply connected domain
Pyramidal network \((\Sigma_n, \gamma)\), \(n = 2m\) is uniquely recoverable from its DtN map \(\Lambda^{(n)}\) using the layer peeling algorithm. Conductances are computed with

\[
\gamma(e_{p,h}) = \left(\Lambda_{p,E(p,h)} + \Lambda_{p,C} \Lambda_{Z,C}^{-1} \Lambda_{Z,E(p,h)}\right) 1_{E(p,h)},
\]

\[
\gamma(e_{p,v}) = \left(\Lambda_{p,E(p,v)} + \Lambda_{p,C} \Lambda_{Z,C}^{-1} \Lambda_{Z,E(p,v)}\right) 1_{E(p,v)}.
\]

The DtN map is updated using

\[
\Lambda^{(n-2)} = -K_S - K_{SB} P^T \left(P \left(\Lambda^{(n)} - K_{BB}\right) P^T\right)^{-1} P K_{BS}.
\]

The formulas are applied recursively to \(\Sigma_n, \Sigma_{n-2}, \ldots, \Sigma_2\).
Sensitivity grids: motivation
Sensitivity grids

- Proposed by F. Guevara Vasquez
- Sensitivity functions

\[
\frac{\delta \gamma_{\alpha,\beta}}{\delta \sigma} = \left[\left(\frac{\partial \Lambda_{\gamma}}{\partial \gamma} \right)^{-1} \mathcal{M}_n \left(\frac{\delta \Lambda_{\sigma}}{\delta \sigma} \right) \right]_{\alpha,\beta}
\]

where \(\Lambda_{\gamma} = \mathcal{M}_n(\Lambda_{\sigma}) \)

- The optimal grid nodes \(P_{\alpha,\beta} \) are roughly

\[
P_{\alpha,\beta} \approx \arg \max_{x \in \Omega} \frac{\delta \gamma_{\alpha,\beta}}{\delta \sigma}(x)
\]

- Works for any domain and any network topology!

Sensitivity grid, \(n = 16 \).
Two-sided problem: B_A consists of two disjoint segments of the boundary. Example: cross-well measurements.

- Two-sided optimal grid problem is known to be irreducible to 1D (Druskin, Moskow)
- Special choice of topology is needed
- Network with a \textit{two-sided} graph T_n is proposed (left: $n = 10$)
- Network with graph T_n is critical and well-connected
- Can be recovered with layer peeling
- Grids are computed using the sensitivity analysis exactly like in the pyramidal case
Sensitivity grids for the two-sided problem

Two-sided graph T_n lacks the top-down symmetry. Resolution can be doubled by also fitting the data with a network turned upside-down.

Left: single optimal grid; right: double resolution grid; $n = 16$.
Numerical results: test conductivities

Left: smooth; right: piecewise constant chest phantom.
Numerical results: smooth $\sigma +$ conformal

Left: piecewise linear; right: one step Gauss-Newton, $\beta = 0.65\pi$, $n = 17$, $\omega_0 = -\pi/10$.
Numerical results: smooth $\sigma +$ quasiconformal

Left: piecewise linear; right: one step Gauss-Newton,

$\beta = 0.65\pi$, $K = 0.65$, $n = 17$, $\omega_0 = -\pi/10$.
Numerical results: smooth $\sigma +$ pyramidal

Left: piecewise linear; right: one step Gauss-Newton,

$\beta = 0.65\pi$, $n = 16$, $\omega_0 = -\pi/10$.
Numerical results: smooth $\sigma +$ two-sided

Left: piecewise linear; right: one step Gauss-Newton, $n = 16$, B_A is solid red.
Numerical results: piecewise constant $\sigma +$ conformal

Left: piecewise linear; right: one step Gauss-Newton,

$\beta = 0.65\pi$, $n = 17$, $\omega_0 = -3\pi/10$.
Numerical results: piecewise constant $\sigma +$ quasiconf.

Left: piecewise linear; right: one step Gauss-Newton,

$\beta = 0.65\pi, K = 0.65, n = 17, \omega_0 = -3\pi/10.$
Numerical results: piecewise constant $\sigma +$ pyramidal

Left: piecewise linear; right: one step Gauss-Newton,

$\beta = 0.65\pi$, $n = 16$, $\omega_0 = -3\pi/10$.
Numerical results: piecewise constant σ + two-sided

Left: piecewise linear; right: one step Gauss-Newton, $n = 16$, B_A is solid red.
Numerical results: high contrast conductivity

- We solve the full non-linear problem
- No artificial regularization
- No linearization
- Big advantage: can capture really high contrast behavior
- Test case: piecewise constant conductivity, contrast 10^4
- Most existing methods fail
- Our method: relative error less than 5% away from the interface

Test conductivity, contrast 10^4.
High contrast reconstruction, \(n = 14, \ \omega_0 = -11\pi/20, \) contrast \(10^4 \).
Left: reconstruction; right: pointwise relative error.
Numerical results: EIT in the half plane

Can be used in different domains. Example: half plane, smooth σ.

Left: true; right: reconstruction, $n = 16$.

4.0%
Numerical results: EIT in the half plane

Can be used in different domains. Example: half plane, layered σ.

Left: true; right: reconstruction, $n = 16$.

21.1%
Conclusions

Two distinct computational approaches to the partial data EIT:

1. Circular networks and (quasi)conformal mappings
 - Uses existing theory of optimal grids in the unit disk
 - Tradeoff between the uniform resolution and anisotropy
 - Conformal: isotropic solution, rigid electrode positioning, grid clustering leads to poor resolution
 - Quasiconformal: artificial anisotropy, flexible electrode positioning, uniform resolution, some distortions
 - Geometrical distortions can be corrected by preconditioned Gauss-Newton

2. Sensitivity grids and special network topologies (pyramidal, two-sided)
 - No anisotropy or distortions due to (quasi)conformal mappings
 - Theory of discrete inverse problems developed
 - Sensitivity grids work well
 - Independent of the domain geometry
References

