Data-to-Born transform for multiple removal, inversion and imaging with waves

Alexander V. Mamonov1, Liliana Borcea2, Vladimir Druskin3, and Mikhail Zaslavsky4

1University of Houston, 2University of Michigan Ann Arbor, 3Worcester Polytechnic Institute, 4Schlumberger-Doll Research Center

Support: NSF DMS-1619821, ONR N00014-17-1-2057
Introduction

- **Inversion with waves**: determine properties of a medium in the bulk from response measured at or near the surface.

- **Highly nonlinear** problem due to, in part, *multiple scattering*.

- Given the full waveform response, can we compute the response of the *same medium* if waves propagated in the *single scattering* regime, i.e. in *Born regime*?

- Turns out we can!

- A highly nonlinear transform takes full waveform data to single scattering data: **Data-to-Born (DtB) transform**.

- Can use as preprocessing step and integrate into **existing workflows**.
Forward model

- Generic wave equation: DtB works for both **acoustics** and **elasticity** (also **electromagnetics**):

\[\partial_t^2 P(t, x) + L_q L_q^T P(t, x) = 0, \quad x \in \Omega, \quad t > 0, \]

here \(L_q \) is a **first order** differential operator, \(q \) is the **reflectivity**

- Model \(m \) **shots** with corresponding wavefields in a single matrix

\[P(t, x) = \begin{bmatrix} P^{(1)}(t, x), \ldots, P^{(m)}(t, x) \end{bmatrix} \]

- Shots modeled by **initial conditions**

\[P(0, x) = b(x) = \begin{bmatrix} b^{(1)}(x), \ldots, b^{(m)}(x) \end{bmatrix}, \quad \partial_t P(0, x) = 0 \]

- Solution

\[P(t, x) = \cos \left(t \sqrt{L_q L_q^T} \right) b(x) \]
Collocated sources and receivers: receiver matrix is also $b(x)$

Data is **sampled** in time at $2n$ instants $t_k = k\tau$, close to **Nyquist** rate

Data model becomes

$$D_k = \int_{\Omega} b(x)^T \cos \left(t \sqrt{L_q^T L_q} \right) b(x) \, dx \in \mathbb{R}^{m \times m}, \quad k = 0, 1, \ldots, 2n-1,$$

or simply

$$D_k = \int_{\Omega} b(x)^T P_k(x) \, dx \in \mathbb{R}^{m \times m},$$

where

$$P_k(x) = P(t_k, x) = \cos \left(k\tau \sqrt{L_q^T L_q} \right) b(x)$$

are **wavefield snapshots**
The propagator

- Important object: **propagator** operator

\[P_q = \cos \left(\tau \sqrt{L_q L_q^T} \right), \]

think of it as **Green’s function**

- Using propagator, snapshots admit representation

\[P_k = T_k(P_q)b, \quad k = 0, 1, \ldots, 2n - 1, \]

via **Chebyshev polynomials** \(T_k \)

- **Notation**: let \(T \) denote both transpose and \(L_2(\Omega) \) inner product, then the **data model** becomes

\[D_k = b^T P_k = b^T T_k(P_q)b, \quad k = 0, 1, \ldots, 2n - 1 \]
Reduced order model (ROM)

- Obviously, impossible to find P_q from finite data $D_k \in \mathbb{R}^{m \times m}$, $k = 0, 1, \ldots, 2n - 1$
- What can we find? Reduced order model (ROM) for P_q!
- Specifically, projection ROM

$$\widetilde{P}_q = V^T P_q V \in \mathbb{R}^{nm \times nm}, \quad \widetilde{b} = V^T b \in \mathbb{R}^{nm \times m},$$

where “columns” of V form orthonormal basis for some subspace
- Of course, ROM must fit the data

$$D_k = b^T \mathcal{T}_k(P_q)b = \widetilde{b}^T \mathcal{T}_k(\widetilde{P}_q)\widetilde{b}, \quad k = 0, 1, \ldots, 2n - 1$$
- Data interpolation uniquely defines projection (Krylov) subspace

range(Π),

spanned by snapshots, “columns” of snapshot matrix

$$\Pi = [P_0, P_1, \ldots, P_{n-1}]$$
Mass and stiffness matrices from data

- If we knew **internal data**, snapshots Π, we could **orthogonalize** them to find
 \[V = \begin{bmatrix} V_0, V_1, \ldots, V_{n-1} \end{bmatrix} \]

- **Multiplicative** property of Chebyshev polynomials to the rescue!
 \[T_j(x)T_k(x) = \frac{1}{2} \left[T_{j+k}(x) + T_{|j-k|}(x) \right] \]

- Recall snapshots and data
 \[P_k = T_k(\mathcal{P}_q)b, \quad D_k = b^T T_k(\mathcal{P}_q)b \]

- Can find **inner products** from the data:
 \[(\Pi^T \Pi)_{j,k} = P_j^T P_k = \frac{1}{2} \left[D_{j+k} + D_{|j-k|} \right] \]
 \[(\Pi^T \mathcal{P}_q \Pi)_{j,k} = P_j^T \mathcal{P}_q P_k = \frac{1}{4} \left[D_{j+k+1} + D_{|j+k-1|} + D_{|j-k+1|} + D_{|j-k-1|} \right] \]
Orthogonalized snapshots V can be related to Π via block Gram-Schmidt orthogonalization (block QR factorization)

$$\Pi = VR, \quad V = \Pi R^{-1},$$

with block upper triangular R ($m \times m$ blocks)

Then

$$\Pi^T \Pi = R^T R$$

is block Cholesky factorization of mass matrix $\Pi^T \Pi$ known from the data

Finally, projection ROM is given by

$$\tilde{\mathcal{P}}_q = V^T \mathcal{P}_q V = R^{-T} (\Pi^T \mathcal{P}_q \Pi) R^{-1},$$

with both R and stiffness matrix $\Pi^T \mathcal{P}_q \Pi$ known from data
ROM properties

- ROM computation is entirely **data-driven**, no a priori information on continuum problem needed
- Gram-Schmidt orthogonalization (Cholesky) preserves **causality**: only looks backwards in time
- Reduced order propagator \widetilde{P}_q is **block tridiagonal**, blocks correspond to **layers of equal travel time** from the source array, can be seen as a (block) **second-order difference scheme**
- Orthogonalized snapshots V depend on the medium only **kinematically**, **reflections** are effectively **suppressed** in V (will see later in numerics)
- A version **robust** to noise and modeling errors exists: based on **spectral truncation** of the mass matrix $\Pi^T\Pi$, block Cholesky replaced with **block Lanczos**
Second order difference formulation

- We computed ROM propagator \tilde{P}_q, can we find reduced model for L_q itself?
- Wavefield snapshots satisfy exactly the second order difference scheme

$$\frac{P_{k+1} - 2P_k + P_{k-1}}{\tau^2} + L_qL_q^TP_k = 0, \quad k \geq 0,$$

$$P_0 = b, \quad P_{-1} = P_1,$$

with

$$\frac{2}{\tau^2}(I - P_q) = L_qL_q^T$$

- Can show

$$L_q = L_q + O(\tau^2)$$

- This construction has a reduced order analogue
ROM propagator factorization

- Reduced order snapshots $\tilde{\mathbf{P}}_k = \mathcal{T}_k(\tilde{\mathbf{P}}_q)\tilde{\mathbf{b}}$ also satisfy a second order scheme

$$\frac{\tilde{\mathbf{P}}_{k+1} - 2\tilde{\mathbf{P}}_k + \tilde{\mathbf{P}}_{k-1}}{\tau^2} + \tilde{\mathbf{L}}_q \tilde{\mathbf{L}}_q^T \tilde{\mathbf{P}}_k = 0, \quad k \geq 0,$$

$$\tilde{\mathbf{P}}_0 = \tilde{\mathbf{b}} = \text{RE}_1, \quad \tilde{\mathbf{P}}_{-1} = \tilde{\mathbf{P}}_1,$$

- To compute $\tilde{\mathbf{L}}_q$ perform second block Cholesky factorization

$$\frac{2}{\tau^2} (\mathbf{I} - \tilde{\mathbf{P}}_q) = \tilde{\mathbf{L}}_q \tilde{\mathbf{L}}_q^T$$

- So we have $\tilde{\mathbf{L}}_q \in \mathbb{R}^{nm \times nm}$, a finite dimensional approximation of L_q

- Since $\tilde{\mathbf{P}}_q$ is block tridiagonal, $\tilde{\mathbf{L}}_q$ is block lower bi-diagonal

- Why is $\tilde{\mathbf{L}}_q$ useful?
Example: acoustic wave equation

Consider acoustic wave equation for pressure $p(t, x)$ in the form

$$\partial_t^2 p(t, x) - \sigma(x)c(x)\nabla \cdot \left[\frac{c(x)}{\sigma(x)} \nabla p(t, x) \right] = 0,$$

with velocity $c(x)$ and impedance $\sigma(x)$.

Assume kinematics is known, seek Born approximation with respect to perturbation of $\sigma(x)$.

Liouville transform converts wave equation to first order system

$$\partial_t \begin{pmatrix} P(t, x) \\ \hat{P}(t, x) \end{pmatrix} = \begin{pmatrix} 0 & -L_q \\ L_q^T & 0 \end{pmatrix} \begin{pmatrix} P(t, x) \\ \hat{P}(t, x) \end{pmatrix},$$

with corresponding second order form

$$\partial_t^2 P(t, x) + L_qL_q^T P(t, x) = 0$$
The reflectivity

- The operators L_q and L_q^T are given by

$$L_q = -\sqrt{c(x)} \nabla \cdot \sqrt{c(x)} + \frac{c(x)}{2} [\nabla q(x)],$$

$$L_q^T = \sqrt{c(x)} \nabla \sqrt{c(x)} + \frac{c(x)}{2} [\nabla q(x)],$$

with reflectivity $q(x) = \ln \sigma(x)$

- If $c(x)$ is known and fixed, then L_q and L_q^T are affine in $q(x)$

- Since

$$\tilde{L}_q \approx L_q,$$

then \tilde{L}_q is approximately affine in reflectivity $q(x)$!

- **Perturbing** with respect to $q(x)$ becomes easy!
First order reduced order system

- **Reduced order** analogue of the **first order system**

\[
\begin{align*}
\tilde{P}_{k+1} - \tilde{P}_k &= -\tilde{L}_q \tilde{P}_k, \quad k = 0, \ldots, 2n - 2, \\
\tilde{P}_k - \tilde{P}_{k-1} &= \tilde{L}_q^T \tilde{P}_k, \quad k = 1, \ldots, 2n - 1,
\end{align*}
\]

with initial conditions

\[
\begin{align*}
\tilde{P}_0 &= \tilde{b}, & \tilde{P}_0 + \tilde{P}_{-1} &= 0.
\end{align*}
\]

- The right hand side is **approximately affine** in \(q(x) \)

- Perturbing \(\tilde{L}_q \) with respect to \(q \) simply gives

\[
\delta \tilde{L} = \tilde{L}_q - \tilde{L}_0,
\]

where \(\tilde{L}_0 \) is computed in **reference medium** with \(q \equiv 0 \)
Data-to-Born transform

- Born approximation is a linearized perturbation
- **Perturbed** reduced order first order system

\[
\begin{align*}
\delta \tilde{P}_{k+1} - \delta \tilde{P}_k &= -\tilde{L}_0 \delta \tilde{P}_k - (\tilde{L}_q - \tilde{L}_0) \tilde{P}_{0,k}, \quad k = 0, \ldots, 2n - 2, \\
\delta \tilde{P}_k - \delta \tilde{P}_{k-1} &= \tilde{L}_0^T \delta \tilde{P}_k + (\tilde{L}_q^T - \tilde{L}_0^T) \tilde{P}_{0,k}, \quad k = 1, \ldots, 2n - 1,
\end{align*}
\]

with initial conditions

\[
\delta \tilde{P}_0 = 0, \quad \delta \tilde{P}_0 + \delta \tilde{P}_{-1} = 0
\]

- Here $\tilde{P}_{0,k}, \tilde{P}_{0,k}$ are reduced order snapshots in reference media
- Data-to-Born transform is

\[
D_{k}^{DtB} = D_{0,k} + \tilde{b}^T \delta \tilde{P}_k, \quad k = 0, 1, \ldots, 2n - 1,
\]

compare to full waveform data $D_k = \tilde{b}^T \tilde{P}_k$
Numerical results: Acoustic snapshots

- Array with $m = 50$ sensors
- Snapshots plotted for a single source
Numerical results: Acoustic true Born vs. DtB

- Single row of data matrix corresponding to source
- **Vertical:** time (in units of τ)
- **Horizontal:** receiver index (out of $m = 50$)

Full waveform data

True Born data

DtB
Numerical results: Acoustic DtB + RTM

- **Reverse time migration (RTM)**
 - Image computed from both measured full waveform data and DtB transformed data
Numerical results: Elasticity, two cracks

- Transform elasticity problem to first order form: **Liouville transform**
- If both velocities are fixed (here $c_p = 2c_s$), there is only one **independent impedance** σ_p
- **Source**: horizontal force, $m = 25$

Full waveform data

True Born data

DtB

A.V. Mamonov

Data-to-Born transform
Numerical results: Elasticity, salt dome

- Transform elasticity problem to first order form: **Liouville transform**
- If both velocities are fixed (here $c_p = 2c_s$), there is only one independent impedance σ_p
- Source: horizontal force, $m = 25$
Conclusions and future work

- **Data-to-Born**: transform full waveform data to single scattered Born data for the same medium
- Based on techniques of **model order reduction**
- **Data-driven** approach relying on classical **linear algebra** algorithms (Cholesky, Lanczos), no computations in the continuum
- Works for all linear waves: **acoustic, elastic, electromagnetic**
- Easy to integrate into **existing workflows** as a preprocessing step
- Enables the use of **linearized inversion** algorithms

Future work:
- Test linearized inversion (e.g. **LS-RTM**) on DtB data
- Extend to **frequency domain** wave equation (Helmholtz)
- Use DtB-like approach to extract **higher orders of scattering** from full waveform data

Related work:
