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Abstract. We introduce an inversion algorithm for electrical impedance
tomography (EIT) with partial boundary measurements, in two dimensions.
It gives stable and fast reconstructions using sparse parameterizations of the
unknown conductivity on optimal grids that are computed as part of the inversion.
We follow the approach in [8, 27] that connects inverse discrete problems for
resistor networks to continuum EIT problems, using optimal grids. The algorithm
in [8, 27] is based on circular resistor networks, and solves the EIT problem
with full boundary measurements. It is extended in [11] to EIT with partial
boundary measurements, using extremal quasiconformal mappings that transform
the problem to one with full boundary measurements. Here we introduce
a different class of optimal grids, based on resistor networks with pyramidal
topology, that is better suited for the partial measurements setup. We prove the
unique solvability of the discrete inverse problem for these networks, and develop
an algorithm for finding them from the measurements of the DtN map. Then, we
show how to use the networks to define the optimal grids and to approximate the
unknown conductivity. We assess the performance of our approach with numerical
simulations and compare the results with those in [11].

1. Introduction.

We present a novel approach for the numerical approximation of solutions of
electrical impedance tomography (EIT) with partial boundary measurements, in two
dimensions. The EIT problem [13, 6] is to find the conductivity σ(x) in a simply
connected domain Ω ⊂ R2, given simultaneous measurements of currents and voltages
at the boundary B of Ω. More explicitly, σ(x) is the coefficient in the elliptic equation

∇ · (σ(x)∇u(x)) = 0, x ∈ Ω, (1.1)

with Dirichlet boundary conditions

u(x) = φ(x), x ∈ B, (1.2)
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and it is to be determined from measurements of the Dirichlet to Neumann (DtN)
map Λσ : H1/2(B) → H−1/2(B), where

Λσφ(x) = σ(x)
∂u

∂ν
(x), x ∈ B, (1.3)

and ν is the outer unit normal at B.
EIT with full boundary measurements refers to the ideal case with complete

knowledge of the DtN map. It is uniquely solvable as proved in [40, 12] under some
regularity assumptions on σ, and in [3] for bounded σ. We consider the EIT problem
with partial boundary measurements on the accessible subset BA of B. The inaccessible
boundary BI = B \ BA is assumed grounded. That σ is determined uniquely by the

set of Cauchy data
{
u|BA

, σ ∂u
∂ν

∣∣
BA

}
, when u|BI

= 0, follows from [19, 20, 34, 35] for

real-analytic or piecewise real-analytic σ, and from [28] for σ ∈ C3+ε(Ω̄), with ε > 0.
Because we are concerned with numerical inversion, we work with finitely many

measurements‡ of the DtN map. Still, we say that we have a full boundary data EIT
problem when the measurement points are distributed on the entire boundary B. The
partial data problem considered in this paper has the measurement points confined to
the accessible boundary BA, which is a proper subset of B.

The uniqueness and stability of numerical estimates (images) of σ are highly
dependent on their parametrization. Naturally, the number of degrees of freedom in
the measurements limits the number of parameters that we can recover. However, the
real difficulty is caused by the exponential ill-posedness of the underlying continuum
EIT problem, even in the ideal case of complete knowledge of the DtN map. By
exponential instability we mean that the sup norm of perturbations of σ is bounded
in terms of the logarithm of the operator norm of perturbations of Λσ [1, 5, 33]. The
bounds are sharp [38], but the estimates are global and do not give resolution limits
of the images of σ(x) as we vary x ∈ Ω.

The trade-off between stability and resolution is studied in [2, 32, 41] for
linearized, full boundary data EIT. The results in [2] give explicit reconstructions
of small perturbations δσ of a constant conductivity, which are then used to assess the
stability and resolution. The distinguishability studies in [32, 41] do not look for small
perturbations, but are still linear in the sense that they determine the smallest support
of a single inclusion centered at a given x ∈ Ω, in a constant conductivity background,
that causes visible perturbations of the boundary data. Both approaches lead to the
intuitive conclusion that stability comes at the cost of progressive loss of resolution
as we move away from the boundary, where the measurements are made. This means
that if we use inadequate parameterizations of the unknown σ, on grids that are too
fine inside Ω, the numerical inversion will be unstable and must be regularized [24].

The question is then how to find proper parameterizations of σ, on grids
that capture correctly the resolution limits, to get stable images without additional
regularization that typically requires prior information about σ. The distinguishability
grids proposed in [32] (see also [37, 36]) capture qualitatively the loss of resolution,
but they are defined with a linearization approach whose accuracy is not understood.
Here we follow the ideas in [8, 27, 11] and parametrize σ on optimal grids that are
computed as part of the problem. The name optimal refers to the fact that finite
volume discretizations of (1.1)–(1.2) on these sparse grids give spectrally accurate
approximations of the DtN map. The computed grids turn out to be refined near the

‡ By measurements we mean a measurement operator that takes the DtN map to a discrete data set
at the measurement points on B, as explained in section 2.3.
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accessible boundary, where we make the measurements, and are coarse away from it,
thus capturing the expected loss of resolution of the images.

Optimal grids were introduced and analyzed in [4, 21, 22, 30] for forward
problems. Then, they were used in [7] for Sturm-Liouville inverse spectral problems
in one dimension. The main result there is that parameterizations on optimal grids
are necessary and sufficient for convergence of solutions of discrete inverse spectral
problems to the true solution of continuum problems. The first inversion method on
optimal grids for two dimensional EIT was proposed and analyzed in [8, 27], for the
case of full boundary measurements. It is based on the rigorous theory of discrete
inverse problems for circular resistor networks developed in [14, 15, 29, 17, 18]. These
networks arise in five point stencil finite volumes discretizations of (1.1)–(1.2), on the
optimal grids. The networks are critical, which means that they have no redundant
connections and are determined uniquely by the discrete measurements of Λσ.

As in [8, 27], our inversion method consists of two steps. In the first step, we
use the optimal grids and the solution of the discrete inverse problem for networks
to define a nonlinear reconstruction mapping Qn from the boundary measurements to
the space of conductivity functions. The mapping is called a reconstruction because
it is an approximate inverse of the forward map that takes σ to the boundary data.
In the second step of the inversion we use Qn as a preconditioner in a Gauss-Newton
iteration for estimating σ, which typically converges in one or two steps [8, 27]. This
second step is the same for full or partial boundary measurements. It is studied in
detail in [8, 27], and we do not repeat it here. The interesting part is the definition
of the optimal grids and therefore of the mapping Qn, which depends strongly on the
measurement setup.

1.1. Motivation and outline of the results in this paper.

So far, the construction of the optimal grids has remained essentially one dimensional.
This is the case for the grids introduced in [4, 21, 22, 30] for forward problems, and
for the grids introduced in [8, 27] for two dimensional full boundary data EIT, with
equidistantly distributed measurement points on B. In all these studies, the grid
construction relies on the rotational symmetry of the problem with constant σ, and
uses Fourier transforms in all but the depth (radial) variable. The problem is then
reduced to finding the optimal placement of the points along one direction, and can
be cast nicely in terms of rational approximations of the transformed DtN map.

The EIT problem with partial measurements is not rotationally invariant, so it is
not immediately clear how to use the ideas in [8, 27] to define the optimal grids. The
recovery of networks with topology given in [8, 27] works the same for any placement
of the boundary (measurement) nodes on the entire B, or on proper subsets BA ⊂ B.
The problem is that when we use the approach in [8, 27] to build the grid piece by
piece, starting from BA, we do not get a good result. More explicitly, the grid lines are
far from orthogonal at their intersection, and finite volumes discretizations on them
have poor approximation properties of the DtN map for non constant σ.

The confinement of the measurement points to the accessible boundary BA

induces a coordinate transformation, which must be understood in order to define
the grids. This is done in [11] with conformal or extremal quasiconformal mappings
that take the boundary points in BA to equidistantly distributed points on B. Then,
the grids for the transformed problem are computed with the approach in [8, 27]. The
coordinate transformations used in [11] are conformal or extremally quasiconformal
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to ensure that the transformed conductivity remains isotropic, or at least to minimize
its anisotropy. Otherwise, the EIT problem in the transformed coordinates does not
have a unique solution and the resulting grids do not give good approximations of σ.

The results in [11] show a trade-off between having undistorted images and
resolution distributed throughout Ω. To eliminate distortions, the transformed
conductivity should remain isotropic, which means that the coordinate transformation
must be conformal. However, the resulting grids have poor refinement properties,
with node accumulation in the vicinity of the center of BA, and very poor resolution
of the images in the remainder of Ω. The conformal mappings also require a rigid
placement of the measurement points on BA. The extremal quasiconformal grids
achieve a more uniform resolution in Ω, and allow the arbitrary placement of the
measurement points on BA. However, they induce artifacts in the images because the
transformed conductivity is anisotropic.

The observation that motivates the results in this paper is that the topology of
the networks used in [8, 27, 11] is not the best one for the partial measurement setup.
It is because of it and the essential one dimensional nature of the grids, that we get the
trade-off studied in [11]. Our main result in this paper is the introduction of truly two
dimensional optimal grids, with pyramidal topology, that is naturally suited for the
partial measurements setup. We prove the unique solvability of the discrete inverse
problem for the underlying pyramidal resistor networks, and give an explicit layer
peeling algorithm for determining them from the partial measurements of Λσ. The
algorithm is very fast, and can be regularized by restricting the number of resistors,
thus ensuring the sparsity of the resulting grids. We also define the reconstruction
mapping Qn on the pyramidal optimal grids, and show with numerical simulations
that it is superior to the reconstructions in [11].

The paper is organized as follows. We begin in section 2 with the formulation
of the discrete EIT problem for resistor networks and a brief review of results from
[14, 15, 29, 17, 18] and [8, 27, 11]. We include this review to explain where the results
of this paper enter the basic inversion algorithm. Our new results are in the remaining
sections 3-5. We prove the solvability of the inverse problem on pyramidal networks
in section 3, and give an algorithm for finding them. Then, we define in section 4 the
optimal grids and the reconstruction mapping. The numerical results are in section
5. We end with a summary in section 6.

2. Electrical impedance tomography with resistor networks.

Our goal is to develop a robust and fast numerical algorithm for approximating the
solution of the continuum EIT problem with partial data, which seeks the scalar
valued, positive and bounded conductivity function σ(x), given the Cauchy data set

Cσ =

{(
u|BA

, σ
∂u

∂ν

∣∣∣∣
BA

) ∣∣∣∣∣ ∇ · (σ(x)∇u(x)) = 0, x ∈ Ω, u|BI
= 0

}
. (2.1)

The algorithm makes the connection between discrete inverse problems for resistor
networks and continuum EIT, using the optimal grids. We begin in section 2.1
with the formulation of the discrete EIT problem for networks, and we cite from
[14, 15, 29, 17, 18] the necessary and sufficient conditions for its unique solvability.
We motivate the networks in the context of finite volume discretizations of (1.1)–
(1.2) in section 2.2. Then, we discuss the connection between the continuum and the
discrete inverse problem in sections 2.3 and 2.5.
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2.1. The inverse problem for resistor networks.

A resistor network is a pair (Γ, γ), where Γ = (Y,E) is a graph with vertices (nodes)
Y and edges E ⊂ Y × Y , and γ : E → R+ is a positive valued conductance function.
The set Y is the union of two disjoint sets YB and YI of boundary and interior vertices.
We let

n = |YB | (2.2)

be the number of boundary nodes, and use hereafter the symbol | · | to denote the
cardinality of finite sets.

Define a potential function u : Y → R and denote by uB and uI its restriction to
the boundary and interior nodes. The potential satisfies Kirchhoff’s node law[

KII KIB

KBI KBB

] [
uI

uB

]
=

[
0
JB

]
, (2.3)

where JB ∈ Rn is the vector of currents through the boundary nodes, and K is the
symmetric matrix

Kij =





−γ[(vi, vj)], if i 6= j and (vi, vj) ∈ E,
0, if i 6= j and (vi, vj) /∈ E,∑
k:(vi,vk)∈E

γ[(vi, vk)], if i = j.
(2.4)

We write in (2.3) the block structure of K, using the notation KXZ for the block with
row indices in X ⊆ Y and column indices in Z ⊆ Y .

The DtN map of the network is the matrix Λγ ∈ Rn×n that takes uB to JB. It
equals the Schur complement of KII

Λγ = KBB −KBIK
−1
II KIB , (2.5)

which is well defined for non singular KII . As long as the network has a connected
graph§, the invertability of KII follows from the discrete analogue of the maximum
principle, as shown in [14, 15, 16].

The discrete inverse problem is: Given a network with known graph Γ and DtN
map Λγ , find its conductance function γ.

2.1.1. Well connected planar circular graphs. We study EIT in two dimensions, in a
simply connected domain Ω in R2. By the Riemann mapping theorem, all such sets
are conformally equivalent, so we can think from now of Ω as the unit disk in R2.
Thus, it is natural to consider networks with circular planar graphs Γ which can be
embedded in the plane, without self-intersections of the edges, in such a way that all
interior nodes are in the unit disk, and the boundary nodes are on the unit circle.

Following [14, 15, 16], we number the boundary nodes YB = {v1, . . . , vn} so that
they appear in a circular (clockwise or counterclockwise) order on B. Consider a pair
(P ;Q) of subsets of YB , with P = {vi1 , . . . , vik

}, Q = {vjk
, . . . , vj1} belonging to

disjoint arcs of B. The pair is called circular if the nodes {vi1 , . . . , vik
; vjk

, . . . , vj1}
appear in circular order on B.

A circular pair (P ;Q) is called connected, if there exist k disjoint paths αs

connecting vis
and vjs

, s = 1, . . . , k. The boundary nodes are allowed in αs only
as the first and the last nodes (the paths must not touch the boundary). We let π(Γ)
be the set of all connected circular pairs, and we say that the graph is well connected
if all circular pairs are in π(Γ).

§ We say that the graph Γ = (Y, E) is connected when each pair of vertices in Y is connected by at
least one set of edges in E.
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2.1.2. Solvability of the discrete inverse problem for networks. The question of
whether the discrete inverse problem is uniquely solvable is closely related to the
topology of the graph Γ. For circular planar graphs, the question was resolved in [15],
using the theory of critical networks.

Let Γ′ be the graph obtained by removing one edge in Γ = (Y,E). The edge can
be removed by deletion or by contraction. Then, the network with graph Γ is called
critical if removing any edge breaks some connection in π(Γ), i.e. π(Γ′) ⊂ π(Γ)).

It is shown in [15] that the discrete inverse problem for a network with given
circular planar graph has a unique solution if and only if it is critical and the data
matrix Λγ belongs to the set Dn of DtN maps of well connected networks. The set
Dn is defined in [15]. It consists of all symmetric matrices Λγ ∈ Rn×n satisfying the
conservation of currents condition

Λγ1 = 0, (2.6)

and whose circular minors are totally non-positive. A circular minor of Λγ is a
submatrix (Λγ)PQ with row indices in P and column indices in Q, where (P ;Q)
is a circular pair. The total non-positivity means that

det [−(Λγ)PQ] ≥ 0. (2.7)

Equality in (2.7) occurs if and only if (P ;Q) /∈ π(Γ). Thus, in a well connected network
the inequality (2.7) is strict for every circular pair (P ;Q).

2.2. Resistor networks and finite volume discretizations.

Resistor networks can be motivated in the context of finite volume discretizations of
(1.1)–(1.2) on staggered grids. Such grids consist of intersecting primary and dual grid
lines, which are allowed to be curvilinear. We refer to the intersections of primary
(dual) grid lines as the primary (dual) grid nodes. The potential u is discretized at
the primary grid nodes, while the current fluxes σ∇u are discretized at the dual grid
nodes.

We illustrate in figure 1 the vicinity of an interior primary grid node Pi,j . Let
Ci,j be the dual grid cell with boundary

∂Ci,j = Σi,j+ 1
2
∪ Σi+ 1

2 ,j ∪ Σi,j− 1
2
∪ Σi− 1

2 ,j , (2.8)

the union of the four dual grid segments

Σi,j± 1
2

=
(
Pi− 1

2 ,j± 1
2
, Pi+ 1

2 ,j± 1
2

)
, Σi± 1

2 ,j =
(
Pi± 1

2 ,j− 1
2
, Pi± 1

2 ,j+ 1
2

)
.

We integrate (1.1) over Ci,j , and use the divergence theorem to obtain the balance of
fluxes across the boundary ∂Ci,j

∫

Ci,j

∇ · (σ∇u)dV =



∫

Σ
i,j+ 1

2

+

∫

Σ
i+ 1

2
,j

+

∫

Σ
i,j− 1

2

+

∫

Σ
i− 1

2
,j


σ

∂u

∂ν
dS = 0. (2.9)

The linear algebraic system of equations for the discretized potential is obtained by
approximating the boundary integrals in (2.9) with a one-point quadrature rule, and
the normal derivatives in the integrands with a two point finite difference. We have

∫

Σ
i,j± 1

2

σ
∂u

∂ν
dS ≈ σ(Pi,j± 1

2
)
L(Σi,j± 1

2
)

L(Πi,j± 1
2
)

[u(Pi,j±1) − u(Pi,j)] , (2.10)

∫

Σ
i± 1

2
,j

σ
∂u

∂ν
dS ≈ σ(Pi± 1

2 ,j)
L(Σi± 1

2 ,j)

L(Πi± 1
2 ,j)

[u(Pi±1,j) − u(Pi,j)] , (2.11)
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P
i, j

P
i, j+1

P
i, j−1

P
i+1, j

P
i−1, j

P
i+1/2, j+1/2

P
i+1/2, j−1/2

P
i−1/2, j+1/2

P
i−1/2, j−1/2

P
i, j+1/2

Figure 1. Vicinity of a primary node Pi,j in a staggered grid. The
primary grid lines are solid, and the dual grid lines are dashed. The
primary grid nodes are × and the dual grid nodes are ◦ . We show
the resistor along the primary edge (Pi,j+1, Pi,j) as a rectangle and
denote by � its intersection with the dual edge.

where Pi,j± 1
2

and Pi± 1
2 ,j are the intersections of the primary grid segments

Πi,j± 1
2

= (Pi,j , Pi,j±1) , Πi± 1
2 ,j = (Pi,j , Pi±1,j)

with the dual grid segments Σi,j± 1
2

and Σi± 1
2 ,j , as shown in figure 1. The arc lengths

of the primary and dual grid segments are denoted by L(Π) and L(Σ), respectively.
The algebraic system of equations for the discretized potential ui,j ≈ u(Pi,j) is

γi,j+ 1
2

(ui,j+1 − ui,j) + γi+ 1
2 ,j (ui+1,j − ui,j) +

γi,j− 1
2

(ui,j−1 − ui,j) + γi− 1
2 ,j (ui−1,j − ui,j) = 0,

(2.12)

where

γα,β = σ(Pα,β)γ(1)

α,β , (2.13)

(α, β) ∈

{(
i, j +

1

2

)
,

(
i+

1

2
, j

)
,

(
i, j −

1

2

)
,

(
i−

1

2
, j

)}
, (2.14)

and

γ(1)

α,β =
L(Σα,β)

L(Πα,β)
(2.15)

corresponds to the constant conductivity σ ≡ 1. This is Kirchhoff’s node law for the
resistor network with graph Γ = (Y,E) given by the primary grid. The set Y consists
of the primary grid nodes and the edges in E are the primary grid segments. The
conductance function is defined in (2.13). For example, γi,j+ 1

2
is the conductance of

edge Πi,j+ 1
2
∈ E.
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2.3. From the continuum to the discrete DtN map.

To connect continuum EIT problems with inverse problems for networks, we relate
the matrix valued DtN map Λγ of a network to the continuum DtN map Λσ, using
linear measurement operators

Mn :
(
H1/2(B) → H−1/2(B)

)
→ Rn×n.

In [8, 27], the operators Mn are defined with a set of n non-negative measurement
functions χj with disjoint supports on B, and normalized by

∫

B

χj(x)dSx = 1, j = 1, . . . , n. (2.16)

We can think of them as modeling the support of electrodes attached to the boundary.
The symmetric matrix Mn(Λσ) has off-diagonal entries

(Mn(Λσ))i,j = 〈χi,Λσχj〉, i 6= j, (2.17)

where 〈·, ·〉 is the duality pairing between H1/2(B) and H−1/2(B), and the diagonal
entries are given by

(Mn(Λσ))i,i = −
∑

j 6=i

〈χi,Λσχj〉, i = 1, . . . , n. (2.18)

The latter ensures that Mn(Λσ) satisfies the conservation of currents condition.
Alternatively, we can consider pointwise measurements of the DtN map. For a

sufficiently regular σ, the first order pseudodifferential operator Λσ can be written in
an integral form as

(Λσφ)(x) =

∫

B

Kσ(x, y)φ(y)dSy, x ∈ B, (2.19)

where Kσ(x, y) is a symmetric kernel continuous away from the diagonal [31]. The
pointwise measurement operator Mn is defined at the points xj ∈ B, j = 1, . . . , n, by

(Mn(Λσ))i,j =

{
Kσ(xi, xj), i 6= j,
−
∑
k 6=i

Kσ(xi, xk), i = j. (2.20)

These definitions do not distinguish between the full or partial boundary
measurement setups. The partial data case corresponds to suppχj ⊂ BA for (2.17),
or xj ∈ BA for (2.20).

Other measurement operators that use more accurate electrode models, such as
the “complete electrode” model [42] can be used in principle. The crucial question
is whether the range of the operators belongs to the set Dn of DtN maps of well
connected networks. This is the case for the operators (2.20) and (2.17), as proved in
[31] and [8, 27], respectively. Then, we can write that

Λγ = Mn(Λσ), (2.21)

and conclude based on the results reviewed in section 2.1.2, that there exists a unique
network with given critical circular planar graph and DtN map Λγ [15, 18].
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2.4. Solving the discrete inverse problem.

Given Λγ ∈ Dn and the graph Γ, we can find the network (the conductance function γ),
with either a direct invariant imbedding (layer peeling) method, or with optimization.
We prefer the first approach, because it is fast and explicit. Optimization may be
more robust, but it is computationally intensive and the algorithm may get stuck
in local minima. In any case, both approaches become unstable as we increase the
size (the number of edges) of the network. It is in general unclear how to regularize
optimization methods for network recovery, because we cannot speak of regularity
assumptions as is done, for example, in total variation regularization approaches for
continuum EIT. We have tried in [10] a Gauss-Newton iterative optimization method
regularized with an SVD truncation of the Jacobian.

All the results in this paper are with layer peeling, which we regularize by
restricting n, i.e. the size of network, as follows. We solve a sequence of discrete
inverse problems for increasing n, until our layer peeling method fails to produce
positive conductances. Then we set n to the last but one value in the sequence, and
accept as the solution of the inverse problem the non-negative conductance obtained
from the DtN matrix Λγ = Mn(Λσ).

2.5. From the discrete to the continuum inversion: the optimal grids.

Once we have determined the discrete conductance γ, the question is how to use
it to approximate the conductivity σ, the solution of the continuum EIT problem.
As shown in (2.13), we must also have information about the finite volumes grid to
approximate σ(Pα,β) from the knowledge of γα,β . This leads us to the construction
of the optimal grids, which are computed from the resistor networks with the same
graph and DtN map

Λγ(1) = Mn(Λ1). (2.22)

Here, Λ1 is the continuum DtN map for constant conductivity σ ≡ 1, and γ(1) is the
conductance (2.15).

Thus, the optimal grids are computed so that finite volumes discretizations
compute Λγ(1) exactly. Then, we can estimate the conductivity at points Pα,β , the
intersections of the primary and dual grid segments, by

σ(Pα,β) ≈
γα,β

γ(1)

α,β

. (2.23)

The reconstruction mapping Qn : Dn → S is defined on the set Dn of discrete DtN
maps, with values in S, the set of positive and bounded conductivities. It takes the
measurements Mn (Λσ) to the piecewise linear interpolation of (2.23) on the optimal
grid.

Finally, the images can be improved further using a Gauss-Newton iteration that
minimizes the objective function

O(σs) = ‖Qn [Mn (Λs
σ)] −Qn [Mn (Λσ)]‖

2
2 (2.24)

over search conductivities σs ∈ S. Note that Qn is used here as a non-linear
preconditioner of the forward map Fn : S → Dn, which takes σs ∈ S to Mn (Λs

σ).
How good a preconditioner Qn is depends on the extrapolation properties of the
optimal grids. That is to say, how accurate does the finite volumes approximation of
Mn (Λσ) remain for a wide class of conductivity functions that include the constant
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v1

v2

v3 v4

v5

v6 v1

v2

v3

v4

v5

v6

v7

Figure 2. Pyramidal (standard) graphs Γn. Left: n = 6; right:
n = 7. Boundary nodes vj , j = 1, . . . , n are ×, interior nodes are ◦.

σ ≡ 1. Illustrations of the good extrapolation properties of optimal grids, for various
measurement setups, are in [9, 8, 27, 7, 11].

There is only one part of the inversion algorithm outlined above that is sensitive
to the measurement setup. It is the definition of the optimal grid, and therefore of the
reconstruction mapping Qn. The optimization (2.24) is studied in detail in [8, 27] and
we do not repeat it here. The remainder of this paper is concerned with reconstructions
on a new class of truly two dimensional optimal grids, based on pyramidal resistor
networks that are naturally suited to the partial measurements setup.

3. The inverse problem for pyramidal networks.

The pyramidal networks are also known in the literature under the name standard,
since they can be chosen to be the representatives of certain classes of networks
equivalent under Y − ∆ transformations [15]. Keeping the same notation as in the
previous section, we denote the graphs of the pyramidal networks with n boundary
nodes by Γn, and illustrate how they look in figure 2, for even and odd n. Hereafter,
we refer to the edges of the graphs as “vertical” or “horizontal” according to their
orientation in figure 2.

To use the pyramidal networks for inversion, we need to establish that they are
uniquely recoverable from the DtN map, which is equivalent to showing that the graphs
Γn are critical. We have the following result:

Lemma 1. Pyramidal networks are critical.

It is mentioned in [15, Proposition 7.3], without proof, that the networks Γn,
n ≥ 2 are critical. We give the proof in Appendix A in the case of even n. The
extension of the proof to odd n is straightforward.

3.1. Layer peeling for pyramidal networks.

Now, let us show how to solve the inverse problem for the networks with pyramidal
graphs Γn = (Y,E), with a direct (layer peeling) algorithm that determines the
conductance γ : E → R+ in a finite number of algebraic operations.

For the circular networks considered in [8, 27, 11], such an algorithm was
developed in [14]. It is based on a concept of special solutions, which are the potentials
arising from special choices of boundary data. These potentials limit the current flow
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to a certain subset of edges of a network, so that the conductance of these edges can
be recovered. The edges are then “peeled”, and the method proceeds deeper into the
network, until the conductance of all edges is recovered.

Here we introduce a layer peeling algorithm for pyramidal networks with even
number n of boundary nodes. The extension to odd n is possible.

Algorithm 1. To determine the conductance γ of the pyramidal network (Γn, γ), with
given DtN map Λγ ∈ Dn, take the following steps:

(1) To compute the conductances of horizontal and vertical edges emanating from the
boundary node vp, for each p = 1, . . . , 2m, define the following sets:

Z = {v1, . . . , vp−1, vp+1, . . . , vm}, C = {vm+2, . . . , v2m}, H = {v1, . . . , vp} and
V = {vp, . . . , vm+1}, in the case p ≤ m.

Z = {vm+1, . . . , vp−1, vp+1, . . . , v2m}, C = {v1, . . . , vm−1}, H = {vp, . . . , v2m}
and V = {vm, . . . , vp}, for m+ 1 ≤ p ≤ 2m.

(2) Compute the conductance γ(ep,h) of the horizontal edge emanating from vp, using

γ(ep,h) =

(
Λ

(n)
p,H − Λ

(n)
p,C

(
Λ

(n)
Z,C

)−1

Λ
(n)
Z,H

)
1H , (3.1)

where 1H is a column vector of ones of size |H|.
Compute also the conductance γ(ep,v) of the vertical edge emanating from vp

γ(ep,v) =

(
Λ

(n)
p,V − Λ

(n)
p,C

(
Λ

(n)
Z,C

)−1

Λ
(n)
Z,V

)
1V . (3.2)

(3) Once γ(ep,h), γ(ep,v) have been computed, peel the outer layer from Γn to obtain
the subgraph Γn−2 with the set S = {w1, . . . , w2m−2} of boundary nodes. Assemble
the blocks KS, KSB, KBS, KBB of the Kirchhoff matrix of (Γn, γ), and compute
the updated DtN map Λ(n−2) of the network (Γn−2, γ), as follows

Λ(n−2) = −KS −KSB PT
(
P (Λ(n) −KBB) PT

)−1

P KBS . (3.3)

Here P ∈ R(n−2)×n is a projection operator: PPT = In−2, and the block KS is
defined in Appendix B from an appropriate splitting of the block KSS.

(4) If m = 1 terminate. Otherwise, decrease m by 1, update n = 2m and go back to
step 1.

The algorithm consists of two essential operations. First, in steps 1 and 2 we
restrict the current flow to the edges ep,h and ep,v emanating from the boundary node
vp by means of special solutions u(p,h) and u(p,v) respectively. To define the special
solutions we introduce the sets Z, C, H and V . The currents into the nodes in Z are
set to zero. For u(p,h) the potentials are set to one at H and to zero at YB\(C∪H). For
u(p,v) the potentials are set to one at V and to zero at YB\(C ∪ V ). These conditions
determine the special solutions uniquely. Then, the potential drop on ep,h and ep,v

can be shown to be one, and thus their conductances are just the currents through vp,
which are given by formulas (3.1)–(3.2). Second, we peel the recovered layer in step
3, and compute the DtN map for the smaller network with graph Γn−2. Recursive
application of these two operations recovers the whole network.

The theoretical justification of the algorithm is in the following theorem, proved
in Appendix B.

Theorem 1. The conductance γ of a pyramidal network (Γn, γ), with n = 2m, m ∈ N,

is uniquely recoverable from its DtN map Λ
(n)
γ by Algorithm 1.
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4. Reconstruction on optimal grids.

Let us observe from (2.13)–(2.15) that once we know the conductances γ and γ(1)

of the networks with DtN maps (2.21) and (2.22), we can obtain the pointwise
estimates (2.23) of σ. The remaining question addressed in this section is where
to place these estimates in Ω. We do not need full knowledge of the optimal grid, just
the intersections Pα,β of the primary and dual grid segments that appear in (2.23).
Our approach is to estimate these points using the sensitivity analysis of both the
continuum and the discrete problems, as we show below in sections 4.1–4.3.

4.1. Kernel of the DtN map.

We begin the sensitivity analysis with the derivation of the expression of the kernel of
the DtN map. We need the Dirichlet Green’s function G(x, y), the solution of

∇x · (σ(x)∇xG(x, y)) = −δ(x− y), x ∈ Ω, (4.1)

with homogeneous Dirichlet boundary condition

G(x, y)|x∈B = 0, (4.2)

where y ∈ Ω is the source location.
Our numerical simulations are for domain Ω = D the unit disk, and Ω = R2

− the
lower half plane, respectively. In both cases we can write G(x, y) explicitly [26] when
σ ≡ 1, as needed in the computation of the optimal grids. For Ω = D we have [26]

GD(x, y) =
1

2π
(− log |x− y| + log |y| (|x− ỹ|)) , (4.3)

where ỹ = y/|y|2 and | · | is the Euclidean norm. When Ω = R2
−,

GR
2
−
(x, y) =

1

2π
(− log |x− y| + log |x− ŷ|) , (4.4)

for ŷ = (I − 2e2e
T
2 )y, I the 2 × 2 identity matrix, and e2 = (0, 1)T .

Consider a general σ that we assume regular enough to admit the integral
representation (2.19) of the DtN map, and let us derive the expression of the kernel
Kσ(x, y) in terms of G(x, y). Combining Green’s second identity

∫

Ω

(f∇ · (σ∇g) − g∇ · (σ∇f)) dV =

∫

B

σ

(
f
∂g

∂ν
− g

∂f

∂ν

)
dS (4.5)

for f = u(x), g = G(x, y), with (4.1), (4.2), (1.1) and (1.2) we obtain

u(y) = −

∫

B

σ(x)φ(x)ν(x) · ∇xG(x, y)dSx, y ∈ Ω. (4.6)

Then, we can write, formally,

σ(y)
∂u

∂ν

∣∣∣∣
y∈B

= −

∫

B

σ(y)σ(x) (ν(x) · ∇x) (ν(y) · ∇y)G(x, y)φ(x)dSx, (4.7)

and obtain

Kσ(x, y) = −σ(x)σ(y) (ν(x) · ∇x) (ν(y) · ∇y)G(x, y), x, y ∈ B. (4.8)

Note that although G(x, y) is not defined for y ∈ B, equation (4.8) contains the normal
derivative of G(x, y) with respect to y, which is well defined.
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Differentiating (4.3) and (4.4) we obtain the kernel K1(x, y) of the DtN map for
Laplace’s equation in the unit disk and in the half plane, respectively. The Jacobian
of ỹ is given by

Dy(ỹ) =
I

|y|2
−

2yyT

|y|4
, (4.9)

which allows us to compute

(ν(y) · ∇)GD(x, y) =
1

2π

(
1 + 2y · (x̃− y)

)
, |y| = 1. (4.10)

The second differentiation in conjunction with (4.9), (4.8) and |x| = |y| = 1 gives

K1(x, y) = −
1

π|x− y|2
. (4.11)

The expression of the kernel in the case Ω = R2
− is exactly the same. Moreover, formula

(4.11) is valid for any region conformally equivalent to the unit disk. This follows from
the invariance of the DtN map under conformal coordinate transformations [43].

The behavior of the kernel Kσ(x, y) for general σ is similar to (4.11) in the sense
that away from the diagonal x = y, it admits the representation [31]

Kσ(x, y) = −
k(x, y)

π|x− y|2
. (4.12)

Here k(x, y) is a symmetric, positive continuous function on B × B, that does not
vanish on the diagonal.

4.2. Sensitivity functions.

Given the kernel of the DtN map, we can now perform the sensitivity analysis with
respect to the changes in σ. Since (4.8) gives Kσ(x, y) in terms of the Green’s function,
we compute first the sensitivity of G(x, y).

Let G(x, y) + δG(x, y) be the Green’s function corresponding to the perturbed
conductivity σ+ δσ. To compute the sensitivity of G, it suffices to assume very small
perturbations δσ and approximate δG(x, y) by the solution of the linearized equation

∇x · (σ(x)∇xδG(x, y)) = −∇x · (δσ(x)∇xG(x, y)) , x ∈ Ω, (4.13)

δG(x, y) = 0, x ∈ B.

We have

δG(x, y) =

∫

Ω

G(x, s)∇s · (δσ(s)∇sG(s, y)) ds,

= −

∫

Ω

δσ(s)∇sG(x, s) · ∇sG(s, y)ds, (4.14)

where we integrated by parts.
Next, let us use linearization in equation (4.8) to write the perturbation δKσ(x, y)

of the kernel

δKσ(x, y) =

(
δσ(x)

σ(x)
+
δσ(y)

σ(y)

)
Kσ(x, y) − σ(x)σ(y)

∂

∂νx

∂

∂νy
δG(x, y). (4.15)

Assuming that δσ|B = 0, we obtain from (4.15) and (4.14) that

δKσ(x, y) =

∫

Ω

δσ(s)DKσ(s;x, y)ds, (4.16)
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with Jacobian

DKσ(s;x, y) = σ(x)σ(y)

(
∇s

∂

∂νx
G(x, s)

)
·

(
∇s

∂

∂νy
G(s, y)

)
, s ∈ Ω. (4.17)

Moreover, in the case σ ≡ 1 used to compute the grids, we have

∇s
∂

∂νx
G(x, s) =

1

π|x− s|2

(
I − 2

(x− s)(x− s)T

|x− s|2

)
ν(x), (4.18)

∇s
∂

∂νy
G(s, y) =

1

π|y − s|2

(
I − 2

(y − s)(y − s)T

|y − s|2

)
ν(y). (4.19)

Now, let us derive similar sensitivity formulas for the discrete setting. Given the
decomposition (2.3) of the Kirchhoff matrix, we note that the discrete equivalent of
the Green’s function is

G = −K−1
II KIB . (4.20)

Denote by γk the conductances in our critical network, for k = 1, . . . , g, and
g = n(n − 1)/2. Note that the discrete DtN map Λγ ∈ Rn×n has precisely g degrees
of freedom, since it is symmetric, and its diagonal is determined by the conservation
of currents. Thus, the critical network, which is uniquely recoverable from Λγ , has
as many conductances as the number of degrees of freedom of Λγ . We obtain by
differentiating (2.5) with respect to γk that

∂Λγ

∂γk
=
[
GT I

] ∂K
∂γk

[
G
I

]
. (4.21)

But K is linear in γ, so the partial derivative ∂K
∂γk

is just the Kirchhoff matrix of a
network with all the conductances being zero, except for γk = 1.

We denote by vec(M) the operation of stacking the entries in the strict upper
triangular part of a matrix M ∈ Rn×n in a vector of size g. Then, we can form the
Jacobian matrix DγΛγ ∈ Rg×g, with entries given by

(DγΛγ)jk =

(
vec

(
∂Λγ

∂γk

))

j

. (4.22)

As the last step before defining the sensitivity functions, let us observe that the
measurement operator Mn can be viewed as acting on the kernel of the DtN map.
This is obvious for the pointwise measurements (2.20), and for measurements (2.17)
we have

(Mn(DKσ))ij (s) =





∫
B×B

χi(x)DKσ(s;x, y)χj(y)dxdy, i 6= j,

−
∑
k 6=i

∫
B×B

χi(x)DKσ(s;x, y)χk(y)dxdy, i = j.
(4.23)

Definition 1. The sensitivity function of the conductance γk with respect to the
changes in the conductivity σ is the kth component of the vector function

(Dσγ) (s) =
(
DγΛγ |Λγ=Mn(Λσ)

)−1

vec (Mn(DKσ)(s)) , s ∈ Ω, (4.24)

that we denote by (Dσγk)(s), k = 1, . . . , g.

We are particularly interested in the sensitivity functions D1γk corresponding to
σ ≡ 1. They are used to define the optimal grid, as explained next.
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4.3. Definition of sensitivity grids.

Given the sensitivity functions (4.24), we define the points

Sα,β = arg maxs∈Ω(Dσγk(α,β))(s), (4.25)

where the solution γk(α,β) of the discrete inverse problem is most sensitive to changes
in the continuum conductivity σ. Here k is an indexing operator that stacks all the
conductances in a vector in Rg. If the maximum in (4.25) is attained at multiple
points in Ω, we define Sα,β as the arithmetic average of those points. We use the
points Sα,β in (2.23), instead of the intersections Pα,β of the unknown grid lines, and
we call the grids with nodes Sα,β the sensitivity grids.

Let us now illustrate the relationship between the points Sα,β and Pα,β in the
case of full boundary measurements, where the optimal grid nodes Pα,β are computed
explicitly in [8, 27]. As mentioned in section 2.5, the optimal grid in this case is
a tensor product of a uniform grid in the angular variable θ, and an adaptive non-
uniform optimal grid in the radial variable r. We show in figure 3 the optimal grids
and the sensitivity functions for the circular networks used in [8, 27]. Note that the
sensitivity functions of the conductances of various edges are mostly contained in
the corresponding cells of the optimal grid. Moreover, the maxima Sα,β (the yellow
squares in figure 3) are almost indistinguishable from Pα,β (the black circles in the
figure).

4.4. The sensitivity grids for pyramidal networks

One can use the definition above to obtain sensitivity grids from any critical resistor
network. However, not all network topologies give grids with good approximation
properties. In particular, the numerical results in section 5 show that the pyramidal
networks work better than the circular ones, for the partial data problem.

Note from figure 2 that in the pyramidal networks, the nodes v1 and vn which
delimit the accessible boundary BA, are separated by n−2 interior nodes connected by
the bottommost n−1 horizontal edges that we associate with the inaccessible boundary
BI . Thus, the number of nodes associated with BA and BI grow at the same rate as
n increases. In comparisson, all the boundary nodes of the circular networks [8, 27]
are mapped in [11] to the accessible boundary conformally or quasiconformally. The
conformal mappings preserve the isotropy of the conductivity, but give grids with poor
resolution away from the center of BA. The quasiconformal grids have better resolution
at the price of distortions in the reconstruction, due to the induced anisotropy of the
conductivity. We believe that because the pyramidal networks allow the simultaneous
growth of the sets of nodes in associated with BA and BI , they are better suited for
partial data EIT. This is supported by the numerical results in section 5.

We illustrate in figure 4 the sensitivity functions D1γk in the unit disk D, for
the pyramidal network with m = 4 layers and n = 8 boundary nodes. We use the
notation (t, l, j) to index the edges of Γn. Here t ∈ {h, v} describes the type of the
edge (horizontal/vertical), and l = 1, . . . ,m determines the layer to which the edge
belongs (l = m is the outermost layer). The edges in layer l are indexed by j, with
j = 1, . . . , 2l − 1 for t = h, and j = 1, . . . , 2l − 2 for t = v.

The supports of the measurement functions χj , used in (2.17) to define Mn(Λ1),
are centered at uniformly spaced points θj ∈ ∂D, j = 1, . . . , n, on the accessible
boundary BA = {θ | θ ∈ (−β, β)}. Note that θj are symmetric with respect to the
middle θ = 0 of the accessible boundary. This implies that Mn(Λ1) is symmetric with
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R2
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R1
C1

Figure 3. Sensitivity functions in D corresponding to the circular
network and a tensor product optimal grid. Top left: circular network
with 8 layers, n = 17, boundary nodes are ×, sensitivities are
computed for the edges R1–R4 and C1–C4 (bold). Left to right, top
to bottom: sensitivity functions for the radial (R1–R4) and angular
(C1–C4) conductances. Optimal grid lines: primary are solid, dual
are dotted. Nodes Pα,β are yellow �, Sα,β are black •.

respect to relabeling vj → v2m−j+1, j = 1, . . . , 2m, and so are the conductances. Thus,
we only show in figure 4 the sensitivity functions for one half of the conductances in
each layer l. The other half can be obtained from the symmetry θ → −θ.

The sensitivity functions D1γk(s) shown in figure 4 have singularities near the
supports of χj . Once we “regularize” them, by setting them to zero in the vicinity of
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Figure 4. Sensitivity functions in D for the pyramidal network
with m = 4, n = 8. The edges corresponding to each sensitivity
function are indexed by (t, l, j), where t ∈ {h, v} is the type of the
edge (horizontal/vertical), l is the layer number and j is the index of
the edge in the layer. θj are ×, β = 0.52π.

the singularities, we observe the well defined peaks that allow us to determine Sα,β .
In figure 5 we show the grids obtained from the maxima of the regularized

sensitivity function for two different sizes of the accessible boundary. While there
is some grid refinement towards BA, the grids remain remarkably uniform deeper
inside the domain. Note also that the neighboring points Sα,β form very regular
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Figure 5. Sensitivity grids in D for Γ16. Left: β = 0.52; right:
β = 0.65. Blue � correspond to vertical edges, red F correspond to
horizontal edges, θj are black ×.

quadrilaterals, that are close to being rectangular. This is what is typically expected
from grids with good approximation properties.

5. Reconstruction method and numerical results.

In this section we present the numerical results with pyramidal networks and
sensitivity grids. The reconstruction algorithm is discussed in section 5.1. It is
followed by a detailed description of the numerical experiments in section 5.2. The
reconstructions are presented for the unit disk and for the half plane in sections 5.3
and 5.4, respectively. In the case of the unit disk, we compare the reconstructions
with those obtained with the method in [11].

5.1. Reconstruction algorithm.

Recall from section 2.5 that the reconstruction mapping Qn maps the data
measurements Mn(Λσ) ∈ Dn to the set S of positive and bounded conductivities.
The algorithm that computes Qn (Mn(Λσ)) is as follows:

Algorithm 2. To compute the reconstruction σ? = Qn (Mn(Λσ)) perform the
following steps:

(1) Let β be the size of the accessible boundary, and n the number of measurement
functions χj, j = 1, . . . , n. Let Mn(Λσ) be the measurements for the unknown
conductivity. Compute Mn(Λ1) for the constant reference conductivity σ ≡ 1.

(2) Solve the discrete inverse problem (2.22) using algorithm 1, to obtain the
conductances γ(1)

α,β.

(3) Use the solution of the discrete inverse problem from the previous step to compute
the sensitivity functions D1γ

(1)

α,β as in (4.24). Compute the maxima Sα,β of the
regularized sensitivity functions.
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(4) Solve the discrete inverse problem (2.21) using algorithm 1, to obtain the
conductances γα,β.

(5) Compute the reconstruction σ? as the piecewise linear interpolation of the
following quantities

σ?(Sα,β) =
γα,β

γ(1)

α,β

. (5.1)

We implement the piecewise linear interpolation of (5.1) by computing the
Delaunay triangulation of Sα,β . Then, the reconstruction is defined on the union
T of triangles in the triangulation. In the case of the unit disk, we remove from T the
triangles that have all three vertices at points Sα,β corresponding to the bottommost
chain of horizontal resistors in Γn. For each triangle in T , the vertex values of σ? are
interpolated by a linear function.

5.2. Numerical implementation.

In the first step of algorithm 2 we choose the number n of measurement functions,
which is the same as the number of boundary nodes of the pyramidal network used
for the reconstruction. The choice of n has been studied in detail in [8, 27] for the
circular networks, and the results are applicable to the pyramidal networks as well.
The main idea is that the instability of the continuum inverse problem manifests itself
as the exponential ill-conditioning of the discrete problem. Layer peeling algorithms
typically lose about one digit of accuracy per recovered layer. We regularize them by
restricting n as explained in section 2.4. Note that in comparison with the circular
networks, for which the number of layers is roughly one quarter of n, the pyramidal
networks have a number of layers which is roughly n/2, which makes the layer peeling
procedure less stable. Most of the numerical experiments presented below use noiseless
data and pyramidal networks with n = 16, only for the less stable high contrast case
we set n = 14. A numerical study of the noisy data case is presented in section 5.3.3.

For the reconstructions in the unit disk we use the same test conductivity
functions as in [8, 27, 11]. The first one is a smooth function sigX, the other is a
piecewise constant chest phantom phantom1 [39]. Both conductivities are shown in
figure 6. The high contrast conductivity used in section 5.3.4 is simply

σ(r, θ) =

{
1, θ ∈

[
π
2 ,

3π
2

]
,

C0, θ ∈
(
0, π

2

)
∪
(

3π
2 , 2π

)
,

(5.2)

where C0 is the contrast factor. In all cases the continuum data Λσ was approximated
with a finite volume scheme on a very fine tensor product discretization grid (300
nodes in angular direction and 100 nodes in radial direction).

Since the sensitivity grids in figure 5 only resolve the conductivity in the region T
that is slightly smaller than the convex hull of BA, we rotate the accessible boundary
and the grid to focus the resolution on the different features of the test conductivities.
The rotation parameter ω0 is chosen in such way that the axis of symmetry of the grid
is neither collinear nor orthogonal to the axes of symmetry of test conductivities.

We compare the reconstructions with those obtained by the method of extremal
quasiconformal mappings [11]. The method is based on circular resistor networks,
which are only recoverable for odd n. We let n = 17 for the circular networks,
which is close to n = 16 used for the pyramidal networks. The method of extremal
quasiconformal mappings is not very flexible with respect to the choice of the
“measurement points” θj . The locations of θj are determined by n, β and an additional
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Figure 6. The conductivities used in the numerical experiments. Left:
smooth conductivity sigX ; right: piecewise constant chest phantom
phantom1.

parameter specific to the method of [11], the artificial anisotropy factor K ∈ (0, 1]. It
measures how much artificial anisotropy the method introduces to the solution, with
smaller values of K corresponding to more anisotropy, and K = 1 corresponding to
the conformal mapping (no anisotropy). As a rule of thumb, the choice K ≈ β/π gives
a mapping with a close to uniform distribution of θj . For the pyramidal networks,
there are no limitations on the choice of θj , which we distribute here uniformly on BA.

To quantify the quality of the reconstructions we introduce the pointwise relative
error

E(z) =

∣∣∣∣
σ?(z)

σ(z)
− 1

∣∣∣∣ , z ∈ T, (5.3)

and the mean relative error

[E] =

∫
T
E(z)dz∫
T
dz

· 100%, (5.4)

where T is defined in section 5.1. We show the value of [E] in the top right corner of
the plots of the reconstructions.

5.3. Reconstructions in the unit disk.

We present below the reconstructions in D for the smooth and piecewise constant
conductivities of low and high contrasts. The reconstructions are computed for two
sizes of the accessible boundary, β = 0.52π (slightly more than half of ∂D) and
β = 0.65π (almost two thirds of ∂D).

5.3.1. Reconstructions of smooth conductivity. We begin in figure 7 with the
reconstructions of the smooth conductivity, for ω0 = 6π/10 and ω0 = 3π/10. Both
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Figure 7. Reconstructions of smooth conductivity sigX with m = 8,
n = 16. Top row: ω0 = 6π/10; bottom row: ω0 = 3π/10. Left
column: β = 0.52π; right column: β = 0.65π. Sensitivity grid nodes
are •, θj are ×, BA is solid red. Percentages: mean relative errors
[E].

reconstructions capture the features of the conductivity without visible distortions of
the geometry. There is a slight loss of contrast in the case ω0 = 3π/10, however the
overall error [E] is still less than 5%.

In figure 8 we compare the reconstructions on the sensitivity grids with those
obtained using a method of extremal quasiconformal mappings. As it was established
in [11], the quality of the quasiconformal mapping reconstruction depends greatly on
the size of the accessible boundary. If no artificial anisotropy is introduced (K = 1, the
mapping is conformal), the measurement points are clustered towards the middle of
BA, and the method fails to resolve away from the accessible boundary. If the artificial
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Figure 8. Comparison of reconstructions of smooth conductivity
sigX, ω0 = −π/10. Top row: β = 0.52π; bottom row: β = 0.65π.
Left column: reconstructions with pyramidal networks and sensitivity
grids with m = 8, n = 16; middle column: conformal mapping
reconstructions with n = 17; right column: quasiconformal mapping
reconstructions with n = 17, K = 0.52(top), 0.65(bottom).

anisotropy is allowed to spread θj more uniformly throughout BA, the resolution is
more uniform at the price of some distortions in the geometry of the reconstruction.

We observe in figure 8 that in the case β = 0.52π, both the conformal and
quasiconformal reconstructions have a mean relative error that is three times larger
than that of the reconstruction on the sensitivity grid. As we expand BA to β = 0.65π,
the quasiconformal solution shows some improvement, but it still has a larger error
[E]. Thus, the approach with pyramidal networks and sensitivity grids is superior,
because it gives a uniform resolution, and it does not introduce any distortions.

5.3.2. Reconstructions of piecewise constant conductivity. Let us now consider
reconstructions of the piecewise constant chest phantom. We refer to the low and
high conductivity regions of the phantom as the lungs and the heart, respectively. In
figure 9, we show the reconstructions for ω0 = 4π/10 and ω0 = π/10.

We observe that the reconstructions have a much larger error [E] compared
to those for the smooth conductivity sigX. This is due to an analogue of the
Gibbs phenomenon, as the method overestimates or underestimates the discontinuous
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Figure 9. Reconstructions of piecewise constant conductivity
phantom1 with m = 8, n = 16. Top row: ω0 = 4π/10; bottom
row: ω0 = π/10. Left column: β = 0.52π; right column: β = 0.65π.
Sensitivity grid nodes are •, θj are ×, BA is solid red. Percentages:
mean relative errors [E].

conductivity near the interfaces of discontinuity‖. In figure 9, this phenomenon is
more pronounced in the case ω0 = π/10, especially for β = 0.52π, where we observe
three overshoots near the right lung.

In figure 10, we compare the performance of our method with the method of
extremal quasiconformal mappings. Similar to the case of smooth conductivity, the
reconstructions on the sensitivity grids are superior, with a mean relative error that
is half of the error of the conformal and quasiconformal reconstructions.

‖ These oscillations may be removed later, by adding a total variation penalty term when
implementing the Gauss-Newton iteration to solve (2.24), as was done in [8, 27].
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Figure 10. Comparison of reconstructions of piecewise constant
conductivity phantom1, ω0 = −3π/10. Top row: β = 0.52π; bottom
row: β = 0.65π. Left column: reconstructions with pyramidal
networks and sensitivity grids with m = 8, n = 16; middle column:
conformal mapping reconstructions with n = 17; right column:
quasiconformal mapping reconstructions with n = 17, K = 0.52(top),
0.65(bottom).

5.3.3. Noisy data reconstructions. Following [8] we study the reconstructions from
noisy data by adding multiplicative mean zero Gaussian noise to the approximated
kernel of Λσ. Then we choose the largest network size n for which algorithm 1
yields positive conductances. In table 1 we present mean relative errors [E] for the
reconstructions from the noisy data in the same setting as in the top row of figure 10
for a typical realization of Gaussian noise.

Noise level 0% 0.1% 0.5% 1% 5%
n 16 12 10 10 8

Error [E] 14.7% 15.9% 17.2% 18.6% 19.0%

Table 1. Noisy data reconstruction errors. Piecewise constant conductivity
phantom1, ω0 = −3π/10, β = 0.52π.

As expected from the exponential ill-conditioning of the problem, the network size
quickly decreases. However, the reconstruction error [E] does not grow exponentially



Pyramidal resistor networks for EIT with partial measurements. 25

Figure 11. Reconstructions of high contrast piecewise constant
conductivity with m = 7, n = 14, ω0 = −11π/20. Top row:
reconstructions; bottom row: pointwise relative error E(z). Left
column: β = 0.52; right column: β = 0.65. Sensitivity grid nodes
are •, θj are ×, BA is solid red.

with the noise level.

5.3.4. High contrast reconstructions. An advantage of the reconstruction mapping
based on resistor networks is that it is obtained from the full non-linear inverse
problem, without artificial regularization, aside from limiting the size of the networks.
Thus, it avoids the problems of many other approaches, that often struggle to recover
high contrast features of σ(x). The numerical results in this section show that our
reconstructions capture contrasts that are orders of magnitude larger than those
recoverable by traditional approaches.
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Figure 12. Optimal grids in the half plane. Left: sensitivity
grid computed directly (n = 14); right: sensitivity grid mapped
conformally from the unit disk (n = 16). Blue � correspond to
vertical edges, red F correspond to horizontal edges, measurement
points xj are black ×.

In the top row of figure 11 we present reconstructions of the piecewise constant
conductivity 5.2, with exceptionally large contrast C0 = 104. The mean relative error
does not give a clear estimate of the quality of the reconstruction for such a large
contrast, so we use the pointwise relative error E(z) instead, which we show in the
bottom row of figure 11.

Our method is able to capture both the location of the interface of discontinuity
and the values of the conductivity on both sides of the interface. While the relative
error is large near the interface due to the spurious oscillations, away from the interface
the error is less than 5%. Note that these reconstructions are achieved without any
special assumptions on the conductivity, which shows the versatility of the method.

5.4. Reconstructions in the half plane.

We already mentioned in section 4.4 that the pyramidal networks are better suited
for the partial data EIT problem, because of the fixed ratio of the number of nodes
associated with the accessible and inaccessible parts of the boundary. The sensitivity
grids obtained from these networks have good approximation properties for order one
ratios of the accessible and inaccessible boundary, as illustrated with the numerical
results above. When this ratio approaches infinity, we are basically in the full boundary
measurement case, where the circular networks are more appropriate [8, 27, 11]. Here
we discuss the other limit, where the ratio tends to zero. This limit arises when
considering the EIT problem in the lower half plane R2

−, with measurements limited
to a finite segment of the horizontal axis.

Let BA = [−1, 1] be the accessible boundary, and let the “measurement points”
xj ∈ BA be the centers of the supports of the measurement functions χj(x). It
was observed in [11] that the distribution of the measurement points had a profound
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Figure 13. Reconstruction in the half plane with m = 8, n = 16.
Top row: smooth conductivity σg; bottom row: piecewise constant
conductivity σl. Left column: true conductivities; right column:
reconstructions. Grid nodes are •, xj are black ×, percentages are
[E].

influence on the optimal grids obtained with circular networks. Here we show that
the same is true for the pyramidal ones.

If we attempt to compute the sensitivity grid for an arbitrarily chosen distribution
of xj , it will likely have poor properties for inversion. See for example the grid shown
in the left plot in figure 12. To get a good grid, in this limit case of zero ratio of
accessible to inaccessible boundary, we use conformal mappings. Explicitly, we map
conformally a grid that has good properties in one domain (e.g. the unit disk with
measurements at points θj , uniformly distributed on half of the boundary) to the half
plane, with measurements in BA. We use conformal mappings to preserve the isotropy
of the conductivity and the angles of the grid lines, as explained in [11].
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The grid in the right plot in figure 12 is obtained with the conformal fractional
linear transform w : D → R2

− given by

w(z) = ih
z̄ − 1

z̄ + 1
, h = tan

(
π − β

2

)
, (5.5)

for which the distribution of xj is

xj = h cot

(
π − θj

2

)
, j = 1, . . . , n. (5.6)

We observe that the distribution of the nodes of the resulting grid is very regular,
and there is greater penetration depth compared to that of the grid computed directly
from the regularized sensitivity functions. The numerical reconstructions in figure 13
are obtained with the conformally mapped grid.

Similar to the study in D, we reconstruct both a smooth and a piecewise constant
conductivity in R2

−. The smooth conductivity σg consists of a single inclusion in the
homogeneous background medium modeled by a Gaussian. The piecewise constant
conductivity σl has three horizontal layers. Both test conductivities are shown in the
left column in figure 13. The reconstructions are shown in the right column.

As in the case of the unit disk, we observe a much smaller error [E] for the
reconstruction of a smooth conductivity compared to that of the reconstruction of the
piecewise constant σl. While both the position and the magnitude of the Gaussian
inclusion are determined with high precision, the magnitude of the middle layer of σl

is somewhat overestimated, and there are also two symmetric overshoots in the top
layer. However, the overall quality of the reconstruction is comparable to what we
observe in the unit disk, which shows that our method is versatile with respect to the
choice of the domain.

6. Summary

We have introduced a novel reconstruction method for two dimensional electrical
impedance tomography (EIT) with partial boundary measurements. The
reconstruction is to be used in the inversion algorithm presented in [8, 27]. It is based
on a model reduction approach that encodes the information about the unknown
conductivity function σ in few parameters. As in [8, 27, 11], the reduced models are
well connected, critical resistor networks that arise in finite volumes discretizations of
the elliptic partial differential equation for the potential. The networks are consistent
with the discrete measurements of the Dirichlet to Neumann (DtN) map Λσ, and since
they are critical (they have no redundant connections), they are uniquely recoverable
from them. The pyramidal network topology considered here is different than the
circular one in [8, 27, 11], and it is better suited for the partial measurement setup.

We have shown the unique solvability of the inverse problem for pyramidal resistor
networks, and have introduced a layer peeling algorithm that recovers them from the
measurements Mn (Λσ) of the DtN map at n boundary points, in a finite number of
algebraic steps. We regularize the algorithm by limiting the size of the network, thus
obtaining a sparse parametrization of the unknown conductivity function.

The reconstruction of σ amounts to defining a mapping Qn, from the
measurements Mn (Λσ) to the set of positive and bounded scalar conductivity
functions. This mapping is obtained from the conductances of the pyramidal network
(the reduced model), interpreted as averages of σ on an optimal grid.
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Unlike the optimal grids introduced in [4, 21, 22, 30] for forward problems, or the
ones considered in [7, 8, 27, 11] for inverse problems, the grids defined here are truly
two dimensional. We call them sensitivity optimal grids because they are computed
using the sensitivity functions of conductances of pyramidal networks obtained by
solving the inverse problem for measurements Mn (Λ1). These grids are defined so
that finite volumes approximations on them compute the measurements of the DtN
map exactly for the case of constant conductivity σ ≡ 1. What is crucial for inversion
is that they have very good extrapolation properties for a wide class of conductivity
functions, not just σ ≡ 1. This is why the reconstruction mapping defined on them
is an approximate inverse of the forward map, and can be used as a preconditioner in
the inversion algorithm [8, 27].

We have demonstrated the versality of our reconstruction approach with
numerical simulations that include cases of discontinuous conductivity with
exceptionally high contrast. We have also compared our results with those given
by an alternative approach presented in a recent paper [11]. The method in [11]
shows how to extend the reconstruction method introduced in [8, 27] to the partial
measurements case. It uses circular resistor networks and extremal quasiconformal
mappings to transform the problem with measurements on the accessible boundary
BA ⊂ B to one with measurement points distributed uniformly on the entire boundary
B. It is shown in [11] that the restriction of the measurements to BA induces a
coordinate transformation of the optimal grids resulting from the circular networks,
which must be undone by the quasiconformal mappings. This in turn induces an
artificial anisotropy of the transformed conductivity, which is why the reconstructions
have distortions. The smaller BA is, the worse the reconstructions in [11].

Our motivation for this paper came from the realization that the problems of
the reconstructions in [11] are due to the essentially one dimensional structure of the
optimal grids, and the inadequate topology of the reduced models, the circular resistor
networks, for the partial measurements setup. The pyramidal networks presented here
are much better suited for this problem. The resulting two dimensional grids are far
superior to those in [11], in terms of distribution and refinement properties in the
domain, and they give more accurate reconstructions.
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Appendix A. Proof of Lemma 1.

Our proof is based on the observation that the pyramidal graphs have a self similarity
property. If we remove (peel) the layer of edges of Γn that emanate from the boundary
nodes, the resulting graph is Γn−2. The number of layers that we can peel until no
edges are left is m, and it is related to the number of boundary nodes as n = 2m or
n = 2m − 1. Here we give the proof in the case of even n. Its extension to odd n is
straightforward.
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Figure A1. Unique connections for maximal circular pairs (P ;Q) for
induction base case n = 4. Nodes in P are ◦, nodes in Q are ×.

Proof. To prove that the network is critical we must construct for every edge e ∈ E a
circular pair (Pe;Qe) ∈ π(Γn), such that the connection between Pe and Qe is broken
when e is removed (deleted) from Γn. We do so in two steps. First, we show that
circular pairs (P ;Q) of maximal size |P | = |Q| = m are uniquely connected. Then, we
demonstrate how to construct such a pair, whose unique connection passes through a
given edge e. Therefore, the deletion of e must break the connection.

Unique connectivity of maximal circular pairs: We show by induction over
n = 2m that any circular pair (P ;Q) of maximal size |P | = |Q| = m is uniquely
connected through Γn. Since

|P | + |Q| = 2m = n = |YB |,

we have YB = P ∪Q and we can write, without loss of generality,

P = {vs+1, . . . , vs+m}, Q = {vs+m+1, . . . , v2m, v1, . . . , vs}, (A.1)

for some integer s satisfying 1 < s ≤ m. The induction step is 4, so we consider two
base cases: n = 2 and n = 4. The case n = 2 is trivial, because Γ2 is a single resistor
connecting the two boundary nodes v1 and v2. In the case n = 4 there exist two
maximal circular pairs (up to swapping P and Q) P = {v2, v3}, Q = {v1, v4}, and
P = {v3, v4}, Q = {v1, v2}. The unique connections are illustrated in figure A1.

Now, the subgraphs Γj of Γn, for j = 2, 4, . . . , n − 2, are obtained by repeated
peeling of the layers of edges adjacent to the boundary, and subsequent relabeling of
the nodes adjacent to the peeled edges as boundary nodes. In particular, we obtain
Γn−4 by peeling two layers from Γn.

The inductive hypothesis says that every maximal circular pair (P ′;Q′) of Γn−4

is connected by a unique set of disjoint paths in Γn−4. To show that the maximal pair
(A.1) of Γn is uniquely connected through the graph Γn, we must show that (P ;Q)
must be connected to a maximal pair (P ′;Q′) of Γn−4, which we denote by

P ′ = {ws, ws+1, . . . , ws+m−3}, Q′ = {ws+m−2, . . . , w2m−4, w1, . . . , ws−1}. (A.2)

Furthermore, the connection is unique. The construction is illustrated in figure A2,
and we distinguish two cases.

The case 1 < s < m: The connection is constructed starting with v1, v2m ∈ Q. Since
these nodes are connected to Γn by horizontal edges only, these edges must be added
to the connecting paths. Moreover, the paths must continue along horizontal edges
to w1 and w2m−4, because if we take vertical edges, we reach the boundary nodes
v2, v2m−1, that we are not allowed to touch.

Next, we observe that there is a unique way of connecting v2 and v2m−1 to w2 and
w2m−5, which is also by horizontal edges. Indeed, if we added the vertical edges to
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Figure A2. Induction step from Γn−4 to Γn: connection between
(P ;Q) and (P ′;Q′). Nodes in P and P ′ are ◦, nodes in Q and Q′ are
×. Edges not in the connection are thin solid, edges in the connection
are thick solid. Dash-dotted lines bound Γn−4 (not actual edges).

the paths, the paths would intersect with the horizontal edges added at the previous
step. Similarly, we build the paths connecting the nodes from Q to Q′, until we reach
vs and vs+m+1. Arguing as before, all the edges must be horizontal.

It remains to connect the nodes in P . We start from vm, vm+1 ∈ P , and since
they are not allowed to be connected by a common horizontal edge, we add two
vertical edges to the paths. The next two edges must also be vertical, otherwise the
paths would either intersect, or touch the boundary at vm−1 or vm+2. We repeat this
argument for other nodes in P until we reach vs+1 and vs+m. For each of the nodes
vs+1 ∈ P and vs+m ∈ P we add one vertical edge, at which point they meet with the
horizontal edges added for vs ∈ Q and vs+m+1 ∈ Q, which completes the paths for
these two pairs of nodes.

Thus, we have constructed the paths between vs+1 ∈ P and vs ∈ Q, and between
vs+m ∈ P and vs+m+1 ∈ Q, while the remaining nodes in P and Q are connected by
a unique set of paths (horizontal for Q, vertical for P ) to the nodes in P ′ and Q′.
Invoking the induction hypothesis for the maximal pair (P ′;Q′) in Γn−4, we conclude
that (P ;Q) is connected by a unique set of paths through Γn, for 1 < s < m.

The case s = m: Arguing as above, the nodes of P = {vm+1, . . . , v2m} and
Q = {v1, . . . , vm} are connected to P ′ and Q′ by horizontal edges, since v1 ∈ Q
and v2m ∈ P . A circular pair (P ′;Q′) has the form P ′ = {wm−1, . . . , w2m−4},
Q′ = {w1, . . . , wm−2}, and vm ∈ Q is connected to vm+1 ∈ P by a common horizontal
edge. Then, the result follows by the induction hypothesis for the maximal pair
(P ′;Q′) in Γn−4.

Connection through a given edge: To complete the proof we need to show how to
construct a maximal circular pair (Pe;Qe) for any given edge e, such that the unique
connection passes through e. First, consider a horizontal edge e. As we showed
above for P = {vm+1, . . . , v2m} and Q = {v1, . . . , vm}, the unique connection passes
through all horizontal edges of Γn. Thus, the deletion of any horizontal edge breaks
the connection.

Let e = (t, b) be a vertical edge with end nodes t (top) and b (bottom). We follow
the vertical edges from t up to the boundary node p, that we add to Pe. We also
consider a horizontal line of edges passing through node b. We denote the boundary
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Figure A3. Left: two circular subsets of boundary nodes to choose
from. Nodes in an even subset are 5, nodes in the odd subset are �.
Right: construction of (Pe, Qe), nodes in Pe are ◦, nodes in Qe are ×.

end nodes of this line by ql ∈ B (left one) and qr ∈ B (right one), as shown in the left
plot in figure A3.

Consider a subgraph of Γn consisting of its upper part lying on and above the
horizontal line of edges connecting ql and qr. This subgraph is itself pyramidal with
an even number of boundary nodes. Thus, one of the two subsets of boundary nodes
lying either between p and qr, or between ql and p, must have an even number of
nodes (zero is considered even). We choose the subset with even number of nodes and
let q be either qr or ql depending on which subset we chose. Then, we add q to Qe.

The rest of Pe and Qe is populated as follows. Consider the two circular subsets
of boundary nodes between p and q, and between q and p. Both subsets have an even
number of nodes. Half of the nodes in each subset we add to Pe, and another half we
add to Qe, depending on whether the node is closest to p or q, respectively. This is
illustrated in figure A3.

Now, we have constructed the maximal pair (Pe;Qe), which must be connected
by a unique set of m disjoint paths, as proved at step 1. Moreover, the path from p
to q must consist of the following two segments: the line of vertical edges from b to p
(this includes e), and the line of horizontal edges from b to q. Indeed, since p ∈ Pe,
the construction of the unique path (step 1) shows that it should be connected to P ′

e

by vertical edges, which in turn is also connected to P ′′
e by vertical edges, and so on.

Here we use the notation at step 1, with P ′
e the set of m− 2 points on the boundary

of Γn−4, and P ′′
e the set of m− 4 points on the boundary of Γn−8.

A similar argument for q ∈ Qe shows that its segment of the path consists of the
horizontal edges. By the construction of p and q, these two path segments intersect
at b. Finally, since the connection for (Pe;Qe) is unique, and the path between p ∈ Pe

and q ∈ Qe contains e ∈ E, deleting e from Γn breaks the connection, which completes
the proof.

Appendix B. Proof of Theorem 1.

The outline of the proof is as follows. First, we show that special solutions
corresponding to the excitations defined at steps 1 and 2 of the algorithm, if they
exist, give a unit potential drop on the edges emanating from the boundary node vp.
Then, we show the existence of such solutions. Finally, we establish formula (3.3) for
the updated DtN map.

Proof.
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Figure B1. Special solutions. Left: special solution for γ (ep,h); right:
special solution for γ (ep,v). Nodes with zero potential are ◦, nodes
with unit potential are ×. Edges to be peeled are thick solid. Narrow
solid lines bound Γn−2 (not actual edges).

Special solutions with unit potential drop: Recall that YB = {v1, . . . , v2m} is
the set of boundary nodes of Γn, and S = {w1, . . . , w2m−2} is the set of boundary
nodes of Γn−2. This is the subgraph of Γn obtained by peeling the edges emanating
from the nodes in YB . Let ep,h = (vp, wp), ep,v = (vp, wp−1) be the horizontal and
vertical edges emanating from vp ∈ YB .

We construct the special solutions u(p,h) and u(p,v) so that the potential drop
on ep,h and ep,v is one, and we can recover γ (ep,h) and γ (ep,v) from the measured

current J
(h)
p and J

(v)
p , respectively. The behavior of the special solutions is illustrated

in figure B1.
Consider first the case 1 ≤ p ≤ m, and begin the construction of the

special solution u(p,h) by setting the boundary conditions. The boundary conditions
are stated in terms of the following subsets of YB : H = {v1, . . . , vp}, Z =
{v1, . . . , vp−1, vp+1, . . . , vm}, F = {vp+1, . . . , vm+1} and C = {vm+2, . . . , v2m}. If
we denote by φ the boundary potential, then its restriction to C, denoted by φC , is
determined from the combination of Dirichlet and Neumann data




φH = 1,
φF = 0,
JZ = 0.

(B.1)

This is shown later in the proof, where we establish the existence of special solutions.
Now, let us denote by ψ the restriction of the potential to S. The current at the

boundary node vj is given by

Jj = γ (ej,h) (φj − ψj) + γ (ej,v) (φj − ψj−1), (B.2)

for all nodes in YB , except v1 and v2m, where only the first term is present. This is
because there is only one horizontal edge emanating from each of these two nodes.
We show by induction that u(p,h), the potential drop on ep,h is one, and the drop on
ep,v is zero. Thus, according to (B.2),

γ (ep,h) = J (h)
p . (B.3)

Let us first show that ψp−1 = 1. Since v1 ∈ Z ∩H, equation (B.2) for j = 1 gives

0 = J
(h)
1 = γ (e1,h) (1 − ψ1), therefore ψ1 = 1.
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Next, we proceed by induction in j = 2, . . . , p−1, vj ∈ Z∩H. Suppose that ψj−1 = 1,
then (B.2) becomes

0 = γ (ej,h) (1 − ψj),

which becomes ψp−1 = 1 for j = p− 1.
Now we use another induction argument to show that ψp = 0. Since vm ∈ Z ∩ F

and vm+1 ∈ F , equation (B.2) for j = m gives

0 = J (h)
m = γ (em,h) (φm − φm+1) + γ (em,v) (φm − ψm−1) = −γ (em,v)ψm−1,

thus ψm−1 = 0. We proceed by induction in j = m− 1, . . . , p+ 1, where vj ∈ Z ∩ F .
Suppose that ψj = 0, then (B.2) gives

0 = γ (ej,v) (0 − ψj−1),

and if we set j = p + 1, we get ψp = 0. We have just established that ψp−1 = 1,
ψp = 0, and since φp = 1, (B.3) holds.

To determine γ (ep,v) we construct a special solution u(p,v) in a similar manner.
The sets Z and C are the same as for u(p,h), while V = {vp, . . . , vm+1} and
F = {v1, . . . , vp−1}. The boundary conditions are determined by (B.1), with H
replaced by V . An induction argument similar to the one above, shows that the
potential drop on ep,h is zero, and the drop on ep,v is one. Thus,

γ (ep,v) = J (v)
p . (B.4)

Existence of special solutions: We now establish the existence of solutions with
boundary conditions (B.1), by converting them to Dirichlet conditions, for which
existence and uniqueness is known [15]. Since conditions on φH and φF are Dirichlet,
we need to convert JZ = 0 to a Dirichlet condition on φC , C = YB \ (H ∪ F ). We
rewrite JZ = 0 using the DtN map as

0 = Λ
(n)
Z,FφF + Λ

(n)
Z,HφH + Λ

(n)
Z,CφC , (B.5)

which is combined with (B.1) to get

φC = −
(
Λ

(n)
Z,C

)−1

ΛZ,H1H , (B.6)

where 1H is a column vector of ones of size |H|. Thus, the question of existence of

the special solution is equivalent to det Λ
(n)
Z,C 6= 0.

To show the invertability of Λ
(n)
Z,C , we use the result from [15, Theorem 4.2],

which says that for a circular pair (P ;Q) with |P | = |Q| = k, the condition
(−1)k det ΛP,Q > 0 is satisfied if and only if (P ;Q) is connected through the network,
otherwise det ΛP,Q = 0. We demonstrate that (Z;C) ∈ π(Γn) by constructing the
connection explicitly, as shown in figure B2.

For j = 1, . . . , p− 1 we connect vj ∈ Z and v2m−j+1 ∈ C with paths of horizontal
edges. For j = p+1, . . . ,m we connect vj ∈ Z and v2m−j+2 ∈ C with paths consisting
of one vertical edge ej,v = (vj , wj−1) and a path of horizontal edges connecting wj−1

and v2m−j+2.
Recall that so far we considered the case 1 ≤ p ≤ m. The case m+1 ≤ p ≤ 2m is

similar. In fact, since Γn is symmetric with respect to the vertical axis, the argument
becomes identical to the previous one if we relabel the boundary nodes vj → v2m−j+1,
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v1

vp−1

vp

vp+1

vm

wp

wm−1

vm+2

v2m−p+1

v2m−p+2

v2m

Figure B2. Connection for (Z;C). Nodes in Z are ◦, nodes in C are
×. The paths are thick solid lines, edges not in the paths are narrow
solid lines. Nodes at the intersections of vertical and horizontal path
segments are ∇.

j = 1, . . . , 2m. This exhausts all possible vp ∈ B, and we can finally obtain the
formulas (3.1)–(3.2) by substituting (B.6) into

Jp = Λ
(n)
p,HφH + Λ

(n)
p,CφC , and Jp = Λ

(n)
p,V φV + Λ

(n)
p,CφC .

DtN map update formula: Once we know the conductances of the edges emanating
from YB , we peel the outer layer and reduce the inverse problem to the one for the
smaller network (Γn−2, γ). It remains to derive the DtN map Λ(n−2) ∈ R(n−2)×(n−2)

of this network.
We rewrite equation (2.5) using the specific structure of the DtN map of (Γn, γ).

The graph Γn consists of m layers of nodes. Each layer is a set of boundary nodes of
Γ2j , j = 1, . . . ,m. The layer j is connected by paths of length one only to the two
adjacent layers j − 1 and j + 1 (except for j = 1,m). Thus, the Kirchhoff matrix K
of (Γn, γ) has a block tridiagonal structure

K =




K11 K12 0 · · · 0
K21 K22 K23 · · · 0

0 K32
. . .

. . .
...

...
...

. . . KSS KSB

0 0 · · · KBS KBB




=

[
KII KIB

KBI KBB

]
. (B.7)

Here Kjj ∈ R2j×2j , j = 1, . . . ,m, are the diagonal blocks with Km−1,m−1 = KSS ,
Km,m = KBB . Furthermore, Kj,j+1 ∈ R2j×(2j+2), Kj,j+1 = KT

j+1,j , j = 1, . . . ,m− 1,
are the off-diagonal blocks corresponding to connections between the layers j and j+1.

Using (B.7) we rewrite (2.5) as

Λ(n) = KBB −KBS

(
K−1

II

)
SS
KSB . (B.8)

We can also relate the potential φ at the boundary YB of Γn to the potential ψ at the
boundary S of Γn−2 via

KBSψ = (Λ(n) −KBB)φ. (B.9)

Recall that the matrix of the DtN map is defined as the current response for boundary
potential excitations that are the columns of an identity matrix. Thus, we rewrite (B.9)
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in matrix form with an identity matrix Ψ = In−2 and an unknown Φ ∈ Rn×(n−2), to
obtain an overdetermined matrix equation

KBS = (Λ(n) −KBB)Φ, (B.10)

that we now show to be solvable.
Note that once we recover the conductance for the edges emanating from YB , we

know the blocks KBS and KBB of the Kirchhoff matrix K. Let M = (Λ(n) −KBB),
and obtain from (B.8) that

M = −KBS

(
K−1

II

)
SS
KSB . (B.11)

To show that (B.10) is solvable, we need to show that M is full rank. We do so by
considering a block LDU decomposition of KII . Since KII is block tridiagonal, it
admits a decomposition

KII =




I 0

L1 I
. . .

. . .
. . . 0

Lm−2 I







D1 0

0 D2
. . .

. . .
. . . 0
0 Dm−1







I U1

0 I
. . .

. . .
. . . Um−2

0 I



, (B.12)

where all blocks Dj , j = 1, . . . ,m − 1, are non-singular, because KII is invertible.
If we denote the diagonal blocks of K−1

II by Zj , j = 1, . . . ,m − 1, it can be shown
[23, 25, 44] that they satisfy

Zm−1 = D−1
m−1, (B.13)

Zj = D−1
j + UjZj+1Lj , j = m− 2, . . . , 1. (B.14)

Of particular interest to us is (B.13), which gives Zm−1 = D−1
m−1 =

(
K−1

II

)
SS

, hence(
K−1

II

)
SS

is invertible. Since Γn is connected, the blocks KBS and KSB are full rank.
This establishes that M is of full rank.

We can now solve equation (B.10). Let P ∈ R(n−2)×n be a full rank projector,

so that PPT = In−2. Then, if we search for Φ in the form Φ = PT Φ̂, we obtain from
(B.10) that

PKBS = PMPT Φ̂, (B.15)

Φ = PT (PMPT )−1PKBS . (B.16)

The final step in deriving Λ(n−2) is to write the Kirchhoff law for the nodes in S.
If G = YI\S, then

KSGuG + (KS +KG)ψ +KSBφ = 0, (B.17)

where we split KSS in two parts KSS = KS + KG, corresponding to the edges
connecting S to YB and S to G, respectively. The DtN map of (Γn−2, γ) is then
the current from S to B, given by

JSB = −KSψ −KSBφ,

which we rewrite in matrix form using Ψ = In−2 and (B.16), to obtain (3.3).
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