Reduced Order Models for Quantitative Imaging with Diffusive Fields and Waves

Alexander V. Mamonov1, Liliana Borcea2, Vladimir Druskin3, Shari Moskow4, Mikhail Zaslavsky5 and Jörn Zimmerling2

1University of Houston,
2University of Michigan Ann Arbor,
3Worcester Polytechnic Institute,
4Drexel University,
5Schlumberger-Doll Research Center

Support: NSF DMS-1619821, ONR N00014-17-1-2057
Motivation and overview

- Develop a **unified framework** for **quantitative imaging (inversion)** of PDE coefficient from boundary data based on reduced order models (ROM)

- Under **appropriate parametrization** of PDE, the ROM is **approximately affine** in the unknown coefficient

- ROM computation transforms the **nonlinear** imaging problem to an **approximately linear** one!

- Can be solved either **directly** or in a **very few iterations**

- **Data fit** step is **separated** from imaging step, allows for a separate **flexible regularization** of both

- Admits both **time and frequency domain** formulations
First, consider an **inverse problem** for coefficient q of diffusion equation in the **frequency domain**

$$-\Delta u_s(x; \omega) + q(x)u_s(x; \omega) + \omega u_s(x; \omega) = b_s(x), \quad x \in \Omega$$

driven by sources $b_s(x)$, $s = 1, \ldots, m$, located near $\partial \Omega$, from measurements at **collocated sensors** of

$$F_{rs}(\omega) = \langle b_r, u_s(\cdot; \omega) \rangle = \int_{\Omega} b_r(x)u_s(x; \omega)dx, \quad \omega \geq 0,$$

where $r, s = 1, \ldots, m$

That is, the **response** of the system is $F(\omega)$, a **symmetric** $m \times m$ matrix function of frequency
For technical reasons we measure both $F(\omega)$ and its derivative at n frequencies

$$\mathcal{D}_q = \left\{ F(\omega_k), \frac{\partial F}{\partial \omega}(\omega_k) \right\}_{k=1}^n$$

The **Quantitative Imaging Problem (QIP)** is an inverse problem of estimating $q(x), x \in \Omega$ quantitatively from \mathcal{D}_q

QIP is **severely ill-posed** due to instability of the mapping from \mathcal{D}_q to q
Matrix-vector formulation

- Assemble solutions and sources into **row-vector-valued** functions

\[
\mathbf{u}(\mathbf{x}; \omega) = [u_1(\mathbf{x}; \omega), u_2(\mathbf{x}; \omega), \ldots, u_m(\mathbf{x}; \omega)], \\
\mathbf{b}(\mathbf{x}) = [b_1(\mathbf{x}), b_2(\mathbf{x}), \ldots, b_m(\mathbf{x})].
\]

- Forward problem becomes

\[
(A_q + \omega \mathbf{I})\mathbf{u}(\mathbf{x}; \omega) = \mathbf{b}(\mathbf{x}),
\]

with \(A_q = -\Delta + q(\mathbf{x})\mathbf{I} \)

- Define “matrix product” of row-vector-valued functions

\[
\begin{bmatrix}
\langle v_1, w_1 \rangle & \cdots & \langle v_1, w_N \rangle \\
\vdots & \ddots & \vdots \\
\langle v_M, w_1 \rangle & \cdots & \langle v_M, w_N \rangle
\end{bmatrix} \in \mathbb{R}^{M \times N},
\]
Reduced order model (ROM)

- In matrix form \textbf{response} becomes

\[
F(\omega) = b^T u(\cdot; \omega) = b^T[(A_q + \omega I)^{-1} b] \in \mathbb{R}^{m \times m}
\]

- We seek a \textbf{reduced order model (ROM)} \(\tilde{A}_q \in \mathbb{R}^{mn \times mn}, \tilde{b} \in \mathbb{R}^{mn \times m} \) with a \textbf{transfer function}

\[
\tilde{F}(\omega) = \tilde{b}^T(\tilde{A}_q + \omega I_{mn})^{-1} \tilde{b} \in \mathbb{R}^{m \times m}
\]

that \textbf{interpolates the data}

\[
\tilde{F}(\omega_k) = F(\omega_k), \quad \frac{\partial \tilde{F}}{\partial \omega}(\omega_k) = \frac{\partial F}{\partial \omega}(\omega_k), \quad k = 1, \ldots, n
\]
Projection-type ROM

- To satisfy **interpolation conditions** the ROM must be of projection type

\[
\tilde{A}_q = V^T[A_qV] = V^T[A_qv_1, \ldots, A_qv_n], \quad \tilde{b} = V^Tb
\]

where “orthogonal matrix” \((V^TV = I_{mn})\) row-vector-valued function

\[
V(x) = [v_1(x), \ldots, v_n(x)]
\]

spans the **projection subspace**

- Define **solution snapshots**

\[
u_k(x) = u(x; \omega_k), \quad k = 1, \ldots, n
\]

and assemble them into row-vector-valued function

\[
U(x) = [u_1(x), \ldots, u_n(x)]
\]
To satisfy **interpolation conditions** the **projection subspace** must be the block rational Krylov subspace

$$\text{colspan}(V) = \mathcal{K}_n(A_q, b) = \text{colspan}(U)$$

If we knew snapshots $u_k(x)$ and operator A_q in the **whole domain** Ω, we could **orthogonalize** them to find $V(x)$ to compute

$$\tilde{A}_q = V^T[A_q V]$$. But we know **neither**!

Can we compute the ROM from the data \mathcal{D}_q only? Can we have a **data-driven ROM**?
Data-driven ROM

- Viewing projection in Galerkin framework, define mass and stiffness matrices

\[M = U^T U \in \mathbb{R}^{mn \times mn} \quad \text{and} \quad S = U^T [A_q U] \in \mathbb{R}^{mn \times mn}, \]

with blocks

\[M_{jk} = u_j^T u_k \in \mathbb{R}^{m \times m}, \quad S_{jk} = u_j^T [A_q u_k] \in \mathbb{R}^{m \times m}, \quad j, k = 1, \ldots, n \]

- Then, \(M \) and \(S \) can be obtained from the data as

\[M_{jk} = \frac{1}{\omega_k - \omega_j} (F(\omega_j) - F(\omega_k)), \quad j \neq k, \]

\[M_{kk} = -\frac{\partial F}{\partial \omega}(\omega_k), \]

\[S_{jk} = \frac{1}{\omega_k - \omega_j} (\omega_j F(\omega_j) - \omega_k F(\omega_k)), \quad j \neq k, \]

\[S_{kk} = F(\omega_k) + \omega_k \frac{\partial F}{\partial \omega}(\omega_k) \]
Extracting q from ROM

If mass matrix is known, snapshots (not known!) can be orthogonalized $V = UM^{-1/2}$

Then the ROM is

$$\begin{align*}
\tilde{A}'_q &= V^T[A_qV] = M^{-1/2}U^T[A_qU]M^{-1/2} = M^{-1/2}SM^{-1/2} \\
\tilde{b}' &= V^Tb = M^{-1/2}U^Tb = M^{-1/2}[F(\omega_1), \ldots, F(\omega_n)]^T
\end{align*}$$

How to use ROM to estimate $q(x)$?

Observation: $A_q = -\Delta + q(x)I$ is affine in q, thus perturbation $\delta A = A_q - A_{q_0}$ is linear in $\delta q = q - q_0$!

Conjecture: ROM perturbation is approximately linear in δq

For conjecture to work, ROM must be in a special form, need one more transformation
Block Lanczos transform

- ROM perturbation is approximately linear in \(q \) if ROM corresponds to a **finite-difference discretization** of \(A_q \)
- Perform **block Lanczos** process

\[
\tilde{A}_q = Q^T \tilde{A}_q' Q, \quad \tilde{b} = Q^T \tilde{b}'
\]

to transform the ROM \((\tilde{A}_q', \tilde{b}')\) to **block-tridiagonal form**

\[
\tilde{A}_q = \begin{bmatrix}
\alpha_1 & \beta_2 & 0 & \ldots & 0 \\
\beta_2^T & \alpha_2 & \beta_3 & \ddots & \\
0 & \beta_3^T & \alpha_3 & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \beta_n \\
0 & \ldots & 0 & \beta_n^T & \alpha_n
\end{bmatrix} \in \mathbb{R}^{mn \times mn}, \quad \tilde{b} = \begin{bmatrix}
\beta_1 \\
0 \\
\vdots \\
0
\end{bmatrix} \in \mathbb{R}^{mn \times m}
\]

- Then, \(\delta \tilde{A} = \tilde{A}_q - \tilde{A}_{q_0} \) is **approximately linear** in \(\delta q = q - q_0 \)!
Numerical check: approximate linearity of $\delta \tilde{\mathbf{A}}$ w.r.t. q

- **Left:** approximation error of

 \[
 \tilde{\mathbf{A}} c_1 q_1 + c_2 q_2 - \tilde{\mathbf{A}} q_0 \approx \]

 \[
 c_1 (\tilde{\mathbf{A}} q_1 - \tilde{\mathbf{A}} q_0) + c_2 (\tilde{\mathbf{A}} q_2 - \tilde{\mathbf{A}} q_0)
 \]

 as a function of c_1 and c_2

- **Plateaus at around 7%**
Quantitative imaging method

1. Choose a **background** \(q_0(x) \)
2. Choose a **basis** \(\phi_i, i = 1, \ldots, N \) to expand

\[
\delta q(x) = q(x) - q_0(x) = \sum_{i=1}^{N} g_i \phi_i(x)
\]

3. Compute the expansion coefficient vector \(g = [g_1, \ldots, g_N]^T \) by solving the **linear least squares** problem

\[
[\text{vec}(\tilde{A}_{\phi_1} - \tilde{A}_{q_0}) \ldots \text{vec}(\tilde{A}_{\phi_N} - \tilde{A}_{q_0})]g = \text{vec}(\tilde{A}_q - \tilde{A}_{q_0}) \quad (1)
\]

4. Form the **quantitative image** \(q^*(x) = q_0(x) + \sum_{i=1}^{N} g_i \phi_i(x) \)

- Only the right hand side of (1) depends on the data via \(\tilde{A}_q \)
- Left hand side of (1) can be **precomputed** for a fixed \(\Omega \) and \(q_0 \)
Quantitative images from measurements at $m = 6$ extended sensors (yellow) at $n = 4$ frequencies
Imaging with (acoustic) waves

- Similar approach works for imaging with waves from time-domain data
- Need to separate kinematics (wave speed $c(x)$) from reflective behavior (acoustic impedance $\sigma(x)$):

$$\frac{\partial^2}{\partial t^2}u_s(x; t) - \sigma(x)c(x)\nabla \cdot \left[\frac{c(x)}{\sigma(x)} \nabla u_s(x; t) \right] = f(t)\delta(x - x_s),$$

as before, $s = 1, \ldots, m$ are source indices
- Time domain data $F(t) \in \mathbb{R}^{m \times m}$ with entries

$$F_{rs}(t) = \int_{\Omega} \delta(x - x_r)u_s(x; t)dx = u_s(x_r; t), \quad r, s = 1, \ldots, m,$$

sampled discretely in time $F(k \tau), \ k = 0, 1, \ldots, 2n - 1$
- Assume kinematics $c(x)$ is known, seek image of $\sigma(x)$
First order form

- Transform to **first order form** via Liouville transformation

\[
\begin{bmatrix}
0 & -L_q \\
L_q & 0
\end{bmatrix}
\begin{bmatrix}
u_s(x; t) \\
\hat{u}_s(x; t)
\end{bmatrix} = \frac{\partial}{\partial t}
\begin{bmatrix}
u_s(x; t) \\
\hat{u}_s(x; t)
\end{bmatrix} - \begin{bmatrix} f(t)\delta(x - x_s) \\
0
\end{bmatrix},
\]

where

\[
L_q = -\sqrt{c(x)}\nabla \cdot \sqrt{c(x)} + \frac{c(x)}{2} \nabla q(x),
\]

\[
L^T_q = \sqrt{c(x)}\nabla \sqrt{c(x)} + \frac{c(x)}{2} \nabla q(x),
\]

with **reflectivity** \(q(x) = \log \sigma(x) \)

- Observe \(L_q, L^T_q \) are **affine in** \(q \), same as \(A_q \) before!

- Data-driven ROM \(\tilde{L}_q \) of \(L_q \) is **approximately affine** in \(q \)

- This approximation is worse than that for diffusion equation, iteration may be needed
Quantitative imaging with waves

1. Choose an initial guess $q_0^*(x)$, fix the wave speed $c(x)$
2. Choose a basis ϕ_i, $i = 1, \ldots, N$ for expansion

\[
\delta q(x) = \sum_{i=1}^{N} g_i \phi_i(x)
\]

3. For $k = 1, 2, \ldots$ iterate
 - Find expansion coefficient vector g^k by solving the linear least squares problem

\[
[\text{vec}(\tilde{L}_{\phi_1} - \tilde{L}_{q_{k-1}^*}) \ldots \text{vec}(\tilde{L}_{\phi_N} - \tilde{L}_{q_{k-1}^*})] g^k = \text{vec}(\tilde{L}_q - \tilde{L}_{q_{k-1}^*})
\]

 - Update the quantitative image $q_k^*(x) = q_{k-1}^*(x) + \sum_{i=1}^{N} g_i^k \phi_i(x)$

 Above iteration converges very quickly, typically 3 – 5 iterations are sufficient
Numerical results

- Constant wave speed, lots of **multiple reflections**, $m = 50$ sensors (crosses, not all shown)
Conclusions and future work

- Unified **ROM-based** framework for quantitative imaging of PDE coefficients
- Transforms **diffusion** inversion to **essentially a linear problem**: converges in a single iteration
- Greatly improves **imaging with waves** by eliminating the adverse effects of **multiple scattering**
- **Robust** version exists: spectral truncation of the mass matrix

Future work:
- **Vectorial** imaging problems (elasticity, electromagnetics)
- **Partial data** case when not all entries of F are measured, including non-collocated sources/receivers, moving sensors, etc.
References

Related prior work:

