1. Problem 1 on Page 179.

Solution: (a) False.
(b) False.
(c) True, since $(0, ..., 0)$ is always a solution for a homog system.
(d) False.
(e) False.
(f) False.
(g) True, the solution is $x = A^{-1}b$.
(h) False. Only for homog system, the solution set is a subspace.

2. Problem 2 (b), (d), (f) Page 180.

Solution: 2(b): By eliminating x_1, we get $x_2 = \frac{2}{3}x_3$, and $x_1 = x_3 - x_2 = \frac{1}{3}x_3$. So the solution is $((1/3)x_3, (2/3)x_3, x_3) = x_3(1/3, 2/3, 1)$ for $x_3 \in \mathbb{R}$. A basis for the solution is can be $\{(1, 2, 3)\}$. The dimension of the solution space is 1.

2(d): By adding the first and second equation, we get $x_1 = 0$, we also get $x_2 = x_3$. So the solution set is $\{(0, x_2, x_2) = x_2(0, 1, 1), x_2 \in \mathbb{R}\}$. A basis for the solution is can be $\{(0, 1, 1)\}$. The dimension of the solution space is 1.

2(f): The solution set is $\{(0, 0)\}$, there is no basis for it. The dimension of the solution space is zero.

3. Problem 3 (b), (d), (f) Page 180.

Solution: 3(b): First we can find a particular solution for the system which is $(2/3, 1/3, 0)$. Hence, using 2(b), the solution is $(x_1, x_2, x_3) = (2/3, 1/3, 0) + t(1, 2, 3)$ where $t \in \mathbb{R}$.

3(d): First we can find a particular solution for the system which is $(2, 1, 0)$. Hence, using 2(b), the solution is $(x_1, x_2, x_3) = (2, 1, 0) + t(0, 1, 1)$ where $t \in \mathbb{R}$.

3(f): First we can find a particular solution for the system which is $(2, 1)$. Hence, using 2(b), the solution is $(x_1, x_2) = (2, 1, 0)$, i.e. the system has a unique solution.

Solution: 4(b):

\[A = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 1 & 1 \\ 2 & -2 & 1 \end{pmatrix}, \]

so

\[A^{-1} = \begin{pmatrix} 1/3 & 0 & 1/3 \\ 11/9 & 1/3 & -2/9 \\ -4/9 & 2/3 & -1/9 \end{pmatrix}. \]

The solution is

\[\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1/3 & 0 & 1/3 \\ 11/9 & 1/3 & -2/9 \\ -4/9 & 2/3 & -1/9 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ -2 \end{pmatrix}. \]

5. Problem 6 Page 180.

Solution: To find \(T^{-1}(1, 11) \) (Note that \(T \) is not one-to one, here the \(T^{-1}(1, 11) \) means the set \(\{(a, b, c) \mid T(a, b, c) = (1, 11)\} \)). we need to find \((a, b, c) \) with \(T(a, b, c) = (1, 11) \), i.e. we need to solve \(a + b = 1, 2a - c = 11 \). By solving this system, we get

\[(a, b, c) = (11/2, -9/2, 0) + t(1, -1, 2), t \in \mathbb{R}. \]

So

\[T^{-1}(1, 11) = \{(11/2, -9/2, 0) + t(1, -1, 2), t \in \mathbb{R}\}. \]

Solution: (a) \((1, 3, -2) \in R(T)\) means that we can solve \(a + b = 1, b - 2c = 3, a + 2c = -2 \), this system has a solution, for example \(a = -2, b = 3, c = 0 \), so it is true that \((1, 3, -2) \in R(T)\).

(b): No, \((2, 1, 1)\) is also in \(R(T) \), since the system \(a + b = 2, b - 2c = 1, a + 2c = 1 \) has a solution \(a = 1, b = 1, c = 0 \).
7. Problem 9 on Page 181.

Proof: By definition, \(b \in R(L_A) \) if and only if there exists \(x \in \mathbb{R}^n \) such that \(L_A(x) = b \). By the definition of \(L_A \), this means that \(Ax = b \). So \(Ax = b \) has a solution if and only if \(b \in R(L_A) \).

Proof: The statement is true. Here is the proof: From Theorem 3.11, \(Ax = b \) has a solution if and only \(rank(A) = rank(A|b) \), So we only need to show that \(rank(A|b) = m \). In fact, since the span of the columns of the matrix \(A \) is a subset of the space of the columns of \((A|b) \), and the rank of a matrix is the dimension of the space spanned by its column vectors, we have that \(rank(A) \leq rank(A|b) \). Hence \(m = rank(A) \leq rank(A|b) \). On the other hand, the number of rows of \((A|b) \) is still \(m \), hence, \(rank(A|b) \leq m \). So we have

\[
m = rank(A) \leq rank(A|b) \leq m
\]

which implies that \(rank(A|b) = m = ran(A) \). So the system always has a solution.