1. Let

\[
A = \begin{pmatrix}
1 & -2 & 0 & 1 & 0 \\
1 & -2 & -1 & 0 & -1 \\
-2 & 4 & 1 & -1 & 1 \\
3 & -6 & 3 & 6 & 0
\end{pmatrix}.
\]

(a) Find a basis for the row space of \(A \) (i.e. the space generated by the row vectors of \(A \)).

(b) Find a basis for the column space of \(A \) (i.e. the space generated by the column vectors of \(A \)).

(c) Consider the linear defined by \(T : \mathbb{R}^5 \to \mathbb{R}^4 \) defined by (i.e. \(T \) is the left multiplication transformation associated to \(A \))

\[
T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = A \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix},
\]

where \(A \) is given above. Find a basis for \(N(T) \) (the nullspace of \(T \)) and a basis for \(R(T) \) (the range of \(T \)).

Solution.

\[
\begin{pmatrix}
1 & -2 & 0 & 1 & 0 \\
1 & -2 & -1 & 0 & -1 \\
-2 & 4 & 1 & -1 & 1 \\
3 & -6 & 3 & 6 & 1
\end{pmatrix} \to \begin{pmatrix}
1 & -2 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

So the reduced echelon form is

\[
R = \begin{pmatrix}
1 & -2 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

(a) Since \(R \) is obtained from the row-reductions from \(A \), the row-space doesn’t change. So \(\{(1, -2, 0, 1, 0), (0, 0, 1, 1, 0), (0, 0, 0, 0, 1)\} \) is a basis for the row space of \(A \).
(b) \(\{(1, 1, -2, 3), (0, -1, 1, 3), (0, -1, 1, 1)\} \) is a basis for the column space of \(A \) by Theorem 3.16.

(c) \(N(T) \) is the solution space of \(Ax = 0 \), which is also the solution space of \(Rx = 0 \), i.e.

\[
\begin{align*}
 x_1 - 2x_2 + x_4 &= 0 \\
x_3 + x_4 &= 0 \\
x_5 &= 0
\end{align*}
\]

where \(x_4, x_2 \) are free variables. So a basis for \(N(T) \) is \(\{(2, 1, 0, 0, 0), (-1, 0, -1, 1, 0)\} \).

As being discussed in the class, the range \(R(T) \) is the same as the column space of \(A \) whose basis is \(\{(1, 1, -2, 3), (0, -1, 1, 3), (0, -1, 1, 1)\} \).

2. Let \(W = \text{span}\{v_1, v_2, v_3, v_4\} \) be a subspace of \(\mathbb{R}^4 \) where \(v_1 = (1, 2, 1, 2), v_2 = (3, 1, 2, 0), v_3 = (1, -1, -1, -1), v_4 = (1, 0, 2, -1) \). Find a basis for the space \(W \).

Solution 2:

\[
\begin{pmatrix}
1 & 3 & 1 & 1 \\
2 & 1 & -1 & 0 \\
1 & 2 & -1 & 2 \\
2 & 0 & -1 & -1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

A basis for \(W \) is \(\{(1, 2, 1, 2), (3, 1, 2, 0), (1, -1, -1, -1)\} \).

3. Find a basis for the solution space of \(AX = 0 \) where

\[
A = \begin{pmatrix}
2 & -1 & 4/3 & -4 & 0 \\
1 & 0 & 2/3 & 0 & -1 \\
9 & -3 & 6 & -3 & -3
\end{pmatrix}.
\]

Solution 3:

\[
\begin{pmatrix}
2 & -1 & 4/3 & -4 & 0 \\
1 & 0 & 2/3 & 0 & -1 \\
9 & -3 & 6 & -3 & -3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 2/3 & 0 & -1 \\
0 & 1 & 0 & 4 & -2 \\
0 & 0 & 0 & 9 & 0
\end{pmatrix}
\]

A basis is \(\{(-2/3, 0, 1, 0, 0), (1, 2, 0, 0, 1)\} \)
4. Suppose \(A \) has row reduced form \(R \),

\[
A = \begin{bmatrix}
1 & 2 & 1 & b \\
2 & a & 1 & 8 \\
\star & \star & \star & \star
\end{bmatrix}, \\
R = \begin{bmatrix}
1 & 2 & 0 & 3 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{bmatrix}.
\]

(a) What are the numbers \(a \) and \(b \)?

(b) What can you say about the third row of \(A \)?

(c) Describe the solution space of \(AX = 0 \).

Solution: (a) Since the system \(Ax = 0 \) is equivalent to \(Rx = 0 \), the (linear) relations between the column vectors of \(A \) is the same as the (linear) relations between the column vectors of \(R \). Notice from \(R \), we have column 2=2 times column 1, column 4=3 times column 1+2 times column 3, hence \(a = 2 \), \(b = 5 \).

(b) \(a_{32} = 2a_{31}, a_{34} = 3a_{31} + 2a_{33} \).

(c) The basis of \(N(A) \) is

\[
\left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 0 \\ -2 \\ 1 \end{bmatrix} \right\}.
\]

5. Problem 2 (a) on Page 208.

Solution. The determinant is 30

Solution. Omitted.