1. Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x, y) = (x + y, 0, 2x - y)$.
 (a) Prove that T is linear.
 (b) Find a basis for $N(T)$, the null space of T. Is T invertible?
 (c) Find a basis for $R(T)$, the range space of T.
 (d) Verify the dimension theorem.
2. Prove that if $T : V \to W$ is linear, then $T(0) = 0$.
3. Let $T : P_1(\mathbb{R}) \to P_1(\mathbb{R})$ be a linear transformation defined by $T(p(x)) = p'(x)$. Let $\beta = \{1, x\}$ and $\beta' = \{1 + x, 1 - x\}$. Find $[T]_\beta$ and $[T]_{\beta'}$. Verify that $[T]_{\beta'} = Q^{-1}[T]_\beta Q$ where Q is the change of coordinate matrix.
4. Let
 \[
 A = \begin{pmatrix}
 1 & 2 & 1 \\
 1 & 0 & 1 \\
 1 & 1 & 2
 \end{pmatrix}.
 \]
 (a) Find the inverse of A.
 (b) Write A^{-1} as a product of elementary matrices.
5. Let \(T : P_2(\mathbb{R}) \to M_{2 \times 2}(\mathbb{R}) \) be the transformation given by
\[
T(f(x)) = \begin{pmatrix}
 f'(0) & 2f(1) \\
 0 & f'''(3)
\end{pmatrix}.
\]

(a) Prove that \(T \) is linear.

(b) Find the matrix of \(T \) with respect to the standard bases for \(P_2(\mathbb{R}) \) and \(M_{2 \times 2}(\mathbb{R}) \).

If \(f(x) = 3x - 2 \), compute \(T(f(x)) \) directly and using the matrix obtained in (b).

6. Find the rank of the following matrix:

\[
\begin{align*}
(a) & \begin{pmatrix}
 1 & 1 & 0 \\
 0 & 1 & 1 \\
 1 & 1 & 0
\end{pmatrix}, &
(b) & \begin{pmatrix}
 1 & 1 & 0 \\
 2 & 1 & 1 \\
 1 & 1 & 1
\end{pmatrix}.
\end{align*}
\]

7. Let \(T : P_2(\mathbb{R}) \to P_2(\mathbb{R}) \) defined by \(T(f(x)) = f(x) + f'(x) + f''(x) \).

(a) Prove that \(T \) is a linear transformation.

(b) Let \(\beta = \{1, x, x^2\} \) be the standard basis for \(P_2(\mathbb{R}) \). Find \([T]_\beta\), the matrix representation of \(T \) in the ordered bases of \(\beta \).

(c) For the matrix you obtained in (b), find its inverse.

(d) Is \(T \) invertible? If so, find \(T^{-1} \) i.e. find \(T^{-1}(a+bx+cx^2) \) for \(a, b, c \in \mathbb{R} \).