
Summary: The Euclidean Algorithm and Linear
Diophantine Equations

The main goals of this chapter are to develop:

� The Euclidean Algorithm1 to efficiently compute greatest common divisors;

� A method for quickly determining when an equation of the form ax + by = c
has integer solutions (x, y).

� A method for quickly finding a single solution (x, y) to an equation of the form
ax + by = c (when there are solutions).

� A method for determining all solutions to an equation of the form ax + by = c
starting from a single solution.

In the end, we are able to find all solutions to any linear diophantine equation.

Before addressing the Research Questions we will first prove a lemma. Without
the lemma, we would end up reproving this fact several times in slightly different
contexts in the Research Questions below.

Lemma 2.1 Suppose a, b, c, d, n 2 Z. If n j a and n j b, then n j (ac + bd).

Proof. Since n j a, there exists an integer a1 such that na1 = a. Similarly since n j b,
there exists b1 2 Z such that nb1 = b. Thus,

ac + bd = na1c + nb1d

= n(a1c + b1d).

Thus, n j (ac + bd).

The key observation that makes the Euclidean Algorithm work is the subject of
Research Question 1.

Theorem 2.2 (RQ1) Suppose that a and b are positive integers, and let q and r be
integers such that a = qb + r and 0 � r < b. (The existence of q and r is guaranteed
by the Division Algorithm.) Then gcd(a, b) = gcd(b, r).

1The Euclidean Algorithm was published by Euclid in his treatise on geometry, Elements, during
the third century B.C. The Euclidean Algorithm is the oldest algorithm on record to be presented in
general terms, as opposed to earlier algorithms for arithmetic operations which are given as a series
of examples. Moreover, the term algorithm (for its modern usage) was first employed in the 1950s
to describe the Euclidean Algorithm.
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Proof. To simplify notation, we let d1 = gcd(a, b) and d2 = gcd(b, r). Our strategy in
this proof will be to show two things: (1) d1 � d2, and (2) d2 � d1. From this, the
only possible conclusion is that d1 = d2, which is exactly what we want to prove.

Since d2 = gcd(b, r), it follows that d2 j b and d2 j r. By Lemma 2.1, this implies
that d2 divides

bq + r � 1 = qb + r = a.

Since d2 is a common divisor of a and b and d1 = gcd(a, b), it follows that d2 � d1.
To show that the second required inequality holds, we reorganize the equation

a = qb+r and then use the same approach as in the first part of the proof. Specifically,
since d1 = gcd(a, b) and a � qb = r, we have

r = a � qb

= a � 1� bq.

Using an argument analogous to the one above employing Lemma 2.1, it follows that
d1 j r, which in turn implies that d1 � d2.

2 Thus we have established both of the
required inequalities.

Recall from the lab that we can reverse the steps of the Euclidean Algorithm to
find one solution to the linear diophantine equation

ax + by = gcd(a, b). (2.1)

For the record, we will state the existence of this solution formally.

Lemma 2.3 (GCD Trick) If a and b are integers which are not both 0, then there
exist integers x and y such that

ax + by = gcd(a, b).

If x = x0 and y = y0 is a solution to equation (2.1), then it is easy to see that
x = kx0 and y = ky0 is a solution to the equation

ax + by = k gcd(a, b), (2.2)

where k is any integer. Thus it follows that any equation of this more general form
will have a solution. The conjecture associated with Research Question 2 shows that
only equations equivalent to equation (2.2) will have solutions.

Theorem 2.4 (RQ2) In order for ax + by = c to have solutions, c must be of the
form c = k gcd(a, b) for some integer k.

2You should fill in the gaps yourself to be sure that the cited argument really works in this case.
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Proof. To simplify notation, let d = gcd(a, b). Then we have d j a and d j b. By
Lemma 2.1 we have that d j (ax + by), and so d j c. Hence c = k gcd(a, b) for some
integer k.

Research Question 2 and the discussion which preceeds it can be phrased in the
following way. Fix integers a and b (not both 0) and let d = gcd(a, b). We will refer
to numbers of the form ax + by with x, y 2 Z as (integer) linear combinations of a
and b. Then, the set of linear combinations of a and b is exactly the same as the set
of multiples of d. Written in terms of sets, this statement becomes

fax + by j x, y 2 Zg = fkd j k 2 Zg. (2.3)

This formulation matches some of the computations you did in the lab where you
computed many linear combinations ax+by and found that the results were multiples
of d.

The remainder of the chapter is devoted to finding a general form for all solutions
to the linear diophantine equation ax + by = k gcd(a, b). This problem is attacked
in a series of steps, starting with Research Question 3, which addresses the equation
ax + by = 1, where gcd(a, b) = 1.

Theorem 2.5 (RQ3) Suppose that gcd(a, b) = 1 and that x = x0 and y = y0 is a
solution to the equation

ax + by = 1.

Then all solutions to this equation are given by x = x0 + mb and y = y0 �ma, where
m is any integer.

Proof. The proof breaks into two parts. In the first part, we verify that the forms for
x and y given above do indeed yield solutions to our equation. For the second part,
we show that any solution to our equation must be of the form asserted above.

Suppose that x = x0+mb and y = y0�ma for some integer m where ax0+by0 = 1.
Then

ax + by = a(x0 + mb) + b(y0 � ma)

= (ax0 + by0) + (amb � bma)

= 1 + 0 = 1.

Thus we see that x = x0 + mb and y = y0 � ma provides a solution to our equation
for any integer m.
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Now, suppose that x and y satisfy ax + by = 1. Define s = x� x0 and t = y� y0,
so that x = x0 + s and y = y0 + t. Then we have

1 = ax + by

= a(x0 + s) + b(y0 + t)

= (ax0 + by0) + (as + bt)

= 1 + (as + bt).

Therefore it follows that as + bt = 0, and so we have

as = �bt. (2.4)

At least one of a and b must be nonzero, or gcd(a, b) would not exist. Suppose that
b 6= 0 (the case when a 6= 0 is similar).

Since gcd(a, b) = 1, this means that s must be divisible by b by exercise 1.13 (or
Lemma 2.9 below), so that s = mb for some integer m. Plugging this into equation
(2.4) above, we have amb = �bt, and thus t = �am. Therefore x = x0 + mb and
y = y0 �ma, which is the form required.

Research Question 4 generalizes RQ3 to the equation ax + by = d, where d =
gcd(a, b) � 1.

Theorem 2.6 (RQ4) Suppose that d = gcd(a, b) � 1, and x = x0 and y = y0 is a
solution to the equation

ax + by = d.

Then all solutions to this equation are given by x = x0+m(b/d) and y = y0�m(a/d),
where m is any integer.

Proof. We begin by noting that the two equations

ax + by = d and (a/d)x + (b/d)y = 1

have exactly the same set of solutions. Furthermore, gcd(a/d, b/d) = 1 by exer-
cise 1.14, so that the right-hand equation above is of the form covered in Research
Question 3. Applying that result with the coefficients (a/d) and (b/d), we find that

x = x0 + m(b/d) and y = y0 �m(a/d),

as required.

Research Question 5 addresses the most general linear diophantine equation that
has solutions. Note that if k = 1, then we reduce to Research Question 4, and further
if d = 1, then we reduce to Research Question 3.
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Theorem 2.7 (RQ5) Let a, b, and k be integers with a or b not equal to 0. Suppose
that d = gcd(a, b), and x = x0 and y = y0 is a solution to ax + by = d. Then all
solutions to the equation

ax + by = kd,

are given by x = kx0 + m(b/d) and y = ky0 � m(a/d), where m is any integer.

Proof. The proof can be carried out in a manner similar to the proof of the conjecture
associated with Research Question 3. The details are left to the reader.

With the above work complete, we now have completely resolved the question of
the nature of solutions to the equation

ax + by = c.

Here’s a summary: If c 6= k gcd(a, b) for any integer k, then there are no solutions. If
c = k gcd(a, b), then all solutions can be found by

1. Finding a single solution x = x0 and y = y0 to ax+by = d (where d = gcd(a, b))
using the reverse Euclidean Algorithm

2. Using this solution to find a single solution x = kx0 and y = ky0 to ax+by = kd

3. Setting x = kx0 + m(b/d) and y = ky0 � m(a/d) to obtain all solutions to the
equation

Example 2.1 Let’s solve 52x +56y = 36, first finding all integer solutions, and then
finding all positive solutions. We begin by determining that gcd(52, 56) = 4. Since
4 j 36, we know that there are infinitely many solutions to our equation. Using the
reverse Euclidean Algorithm (or by inspection), we find that

52(�1) + 56(1) = 4.

Thus we have x0 = �1, y0 = 1, and k = 36/4 = 9. Therefore the general solution is
given by

x = 9 � (�1) + m(56/4) = �9 + 14m

and

y = 9 � 1 � m(52/4) = 9 � 13m,

where m is any integer.



136 CHAPTER 2.

With the general solution in hand, we can easily see that there are no solutions
with both x and y positive because

x > 0 =) �9 + 14m > 0 =) m > 0

and

y > 0 =) 9� 13m > 0 =) 0 � m.

Since these two conditions on m are mutually exclusive, there are no positive
solutions to the equation 52x + 56y = 4.

Solutions to Selected Exercises

Exercise 2.1 Repeat the above procedure to compute gcd(7920, 4536).

Solution. We start by computing gcd(7920, 4536), and as an added bonus, we’ll also
throw in (at no additional charge) a solution to the equation

7920x + 4536y = gcd(7920, 4536). (2.5)

Here’s the gcd computation:

1. 7920 = 1 � 4536 + 3384.

2. 4536 = 1 � 3384 + 1152.

3. 3384 = 2 � 1152 + 1080.

4. 1152 = 1 � 1080 + 72.

5. 1080 = 15 � 72 + 0.

Thus we see that gcd(7920, 4536) = 72. Next we reverse the steps to find a solution
to equation (2.5).

72 = 1152� 1 � 1080

= 1152� 1 � (3384� 2 � 1152)

= �1 � 3384 + 3 � 1152

= �1 � 3384 + 3 � (4536� 1 � 3384)

= 3 � 4536� 4 � 3384

= 3 � 4536� 4 � (7920� 1 � 4536)

= �4 � 7920 + 7 � 4536

Therefore we see that x = �4 and y = 7 is a solution to equation (2.5).


