Key to Homework 9, Thanks to Da Zheng for providing the tex-file

December 7, 2011

1. Page 204, #20

Let \(\{ f_\alpha \} \) be a normal family of holomorphic functions on a domain \(U \). Prove that \(\{ f'_\alpha \} \) is a normal family.

Proof.

Pick any sequence \(\{ f'_n \} \subseteq \{ f'_\alpha \} \), then by the given condition, for the sequence \(\{ f_n \} \), there is a subsequence which converges uniformly on compact sets of \(U \), say \(\{ f_{n_k} \} \). By Corollary 3.5.2, \(\{ f'_{n_k} \} \) converges uniformly on compact subset of \(U \). Hence, for any sequence of \(\{ f'_n \} \), we can find a subsequence which converges uniformly on compact subsets, which implies that \(\{ f'_\alpha \} \) is a normal family by definition.

\[\square \]

2. Page 205, #24

Let \(\Omega \subseteq \mathbb{C} \) be a bounded domain and let \(\{ f_j \} \) be a sequence of holomorphic functions on \(\Omega \). Assume that

\[\int_{\Omega} |f_j(z)|^2 \, dxdy < C < \infty \]

where \(C \) does not depend on \(j \). Prove that \(\{ f_j \} \) is a normal family.

Proof. First we note that, as the hint given in the problem, you can use the hint in Problem 8, chapter 4 (Page 146), which you need to show that, if \(f \) is holomorphic on \(D(Q, \epsilon) \), then

\[|F(Q)|^2 \leq \frac{1}{\pi \epsilon^2} \int_{D(Q, \epsilon)} |F(z)|^2 \, dxdy. \]

We will follow the hint given on Page 146 in proving the above. Below is the proof of problem #24
Solution: We will show that \(\{f_j\} \) is uniformly bounded on every compact subsets of \(\Omega \), then the Montel theorem in the book will imply that \(\{f_j\} \) is normal on \(\Omega \). To do so, let \(K \subset \Omega \) be compact. By the Lebesgue number lemma (see Munkers: Topology P. 175-176, or a better proof can be found at http://mathblather.blogspot.com/2011/07/lebesgue-number-lemma-and-corollary.html), there exists \(r_K > 0 \) such that for each \(z \in K \), \(D(z, r_K) \subset \Omega \). Now fix \(Q \in K \).

by the Cauchy integral formula, for every \(0 \leq r \leq r_K \),

\[
f_j^2(Q) = \frac{1}{2\pi i} \oint_{\partial D(Q,r)} \frac{f_j^2(\zeta)}{\zeta - Q} d\zeta
\]

So, if we parameterize \(\partial D(Q,r) \) as \(re^{i\theta} \), where \(\theta \in [0, 2\pi] \).

\[
|f_j(Q)|^2 = \left| \frac{1}{2\pi i} \oint_{\partial D(Q,r)} \frac{f_j^2(\zeta)}{\zeta - Q} d\zeta \right|
\]

\[
\leq \frac{1}{2\pi} \oint_{\partial D(Q,r)} \left| \frac{f_j^2(\zeta)}{\zeta - Q} \right| |d\zeta|
\]

\[
= \frac{1}{2\pi} \int_0^{2\pi} |f_j(Q + re^{i\theta})|^2 r d\theta
\]

\[
= \frac{1}{2\pi} \int_0^{2\pi} |f_j(Q + re^{i\theta})|^2 d\theta
\]

Now, use the Fubini theorem (and the polar coordinates) as well as the above inequality,

\[
\int_{D(Q,r_K)} |f_j(x,y)|^2 dx dy = \int_0^{r_K} \int_0^{2\pi} |f_j(Q + re^{i\theta})|^2 rdrd\theta
\]

\[
\geq 2\pi \int_0^{r_K} |f_j(Q)|^2 rdr \geq 2\pi \frac{r_K^2}{2} |f_j(Q)|^2.
\]

Thus, by the assumption,

\[
C > \int_{\Omega} |f_j(z)|^2 dx dy \geq \int_{D(Q,r_K)} |f_j(x,y)|^2 dx dy = \pi r_K^2 |f_j(Q)|^2.
\]

Hence, for every \(Q \in K \),

\[
|f_j(Q)|^2 \leq \frac{C}{\pi r_K^2}
\]

which proves our claim. \(\square \)

3. (Marty’s Theorem)
Let \mathcal{F} be a family of holomorphic functions on a region U on \mathbb{C}. Prove that \mathcal{F} is normal (in the general sense) if and only if for every compact subset K of U, there is a constant C_K such that

$$f^\#(z) \leq C_K$$

for all $z \in K$ and $f \in \mathcal{F}$, where

$$f^\#(z) := \frac{|f'(z)|}{1 + |f(z)|^2}$$

Proof.

"\Rightarrow" Suppose that we have \mathcal{F} as a normal family, but it does not satisfy the Marty's Criterion, i.e. there exists a compact subset K, a sequence of points $z_n \in K$, and a sequence of functions $\{f_n\} \subseteq \mathcal{F}$, such that

$$f_n^\#(z_n) := \frac{|f'(z_n)|}{1 + |f(z_n)|^2} \geq n, \text{ for each } n$$

However, \mathcal{F} being a normal family implies that either $\{f_n\}$ has a uniformly convergent subsequence on K, say $\{f_{n_k}\}$, or uniformly divergent subsequence on K, say $\{f_{n_l}\}$.

Next, if $\{f_{n_k}\}$ converges uniformly to \hat{f}, then $\{f'_{n_k}\}$ also converges uniformly to \hat{f}', so

$$f_{n_k}^\#(z) = \frac{|f'_{n_k}(z)|}{1 + |f_{n_k}(z)|^2} \to \hat{f}^\#(z) = \frac{|\hat{f}'(z)|}{1 + |\hat{f}(z)|^2} \text{ uniformly}$$

which contradict the our assumption at the beginning.

If we have $\{f_{n_l}\}$ diverges uniformly on K, then $\{\frac{1}{f_{n_l}}\}$ converges uniformly to 0, which means

$$\left(\frac{1}{f_{n_l}}\right)^\#(z) = f_{n_l}^\#(z) = \frac{|f'_{n_l}(z)|}{1 + |f_{n_l}(z)|^2} \to 0 \text{ uniformly}$$

which again contradicts our previous assumption.

Thus, we proved that if \mathcal{F} is a normal family, then it satisfies the Marty’s Criterion.

"\Leftarrow" There are Three approaches (may be more) in proving Marty’s theorem, the second and third are similar. The first approach is the most natural one.

The Method I: To deal with the ∞, we study the extended complex plane, i.e. $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. Recall that, in HW8, we can regard $\mathbb{C} \cup \{\infty\}$ as S^2 through
the stereographic projection. The **spherical distance** formula proved in last HW (HW8) is that for \(z, w \in \mathbb{C} \),

\[
\sigma(z, w) = \frac{2|z - w|}{\sqrt{(1 + |z|^2)(1 + |w|^2)}}.
\]

Also you can check if \(z \in \mathbb{C} \)

\[
\sigma(z, \infty) = \frac{2}{\sqrt{(1 + |z|^2)}}.
\]

Moreover, we find that if \(f \) is holomorphic on \(U \), then

\[
f^\#(z) = \frac{|f'(z)|}{1 + |f(z)|^2} = \lim_{w \to z} \frac{\sigma(f(w), f(z))}{|w - z|}.
\]

First, you need to study the relationship of “the sequence \(\{f_n\} \) converges uniformly in the spherical distance on every compact subset \(K \subset U \)” with our convergence in the usual sense (in the Euclidean norm).

Lemma 1: Let \(\{f_n\} \) be a sequence of holomorphic functions on a region \(U \subset \mathbb{C} \). Then \(\{f_n\} \) converges uniformly in the spherical distance on every compact subset \(K \subset U \) if and only if that for every \(z \in U \), there is a neighborhood \(D(z, r) \subset U \) such that either \(\{f_n\} \) or \(\{\frac{1}{f_n}\} \) converges uniformly in the usual sense (in the Euclidean norm).

Proof. “\(\Leftarrow \)” is trivial by the Heini-Borel theorem (i.e. every compact \(K \) has a finite open sub-cover for every open covering of \(K \)).

“\(\Rightarrow \)”: Let \(f \) be the limit function of \(\{f_n\} \) (with respect to the spherical distance). Take \(z_0 \in D \). Since \(\sigma(z, w) = \sigma(1/z, 1/w) \), we only need to discuss the case that \(f(z_0) \neq \infty \). We claim that \(f \) does not take \(\infty \) in a neighborhood of \(z_0 \). Indeed, take \(\delta > 0 \) with \(\overline{D(z_0, \delta)} \subset U \). From the assumption, there is \(m \) such that for all \(z \in \overline{D(z_0, \delta)} \)

\[
\sigma(f(z), f_m(z)) < \frac{1}{6\sqrt{1 + |f(z_0)|^2}}.
\]

For such (fixed) \(m \), take \(r < \rho \) such that for \(z \in D(z_0, r) \),

\[
\sigma(f_m(z), f_m(z_0)) < \frac{1}{6\sqrt{1 + |f(z_0)|^2}}.
\]

Thus, for \(z \in D(z_0, r) \),

\[
\sigma(f(z), f(z_0)) \leq \sigma(f(z), f_m(z)) + \sigma(f_m(z), f_m(z_0)) + \sigma(f_m(z_0), f(z_0)) \leq \frac{1}{2\sqrt{1 + |f(z_0)|^2}}.
\]
Hence \(f(z) \neq \infty \) on \(D(z_0, r) \) (by using the fact that \(\sigma(z, \infty) = \frac{2}{\sqrt{1+|z|^2}} \)) and
\[
\frac{|f(z) - f(z_0)|}{\sqrt{1 + |f(z)|^2}} < \frac{1}{2}.
\]
Thus, \(f \) is bounded on \(D(z_0, r) \), say \(|f(z)| \leq M \) on \(D(z_0, r) \). This proves the claim. From the assumption again, there exists \(N > 0 \) such that for \(n > N \), on \(D(z_0, r) \),
\[
\sigma(f(z), f_n(z)) < \frac{1}{2}.
\]
Thus, on \(D(z_0, r) \),
\[
\frac{1}{\sqrt{1 + M^2}} \leq \frac{1}{2 \sqrt{1 + |f(z)|^2}} = \sigma(f(z), \infty) \leq \sigma(f(z), f_n(z)) + \sigma(f_n(z), \infty) < \frac{1}{2 \sqrt{1 + M^2}} + \sigma(f_n(z), \infty),
\]
which gives, on \(D(z_0, r) \),
\[
\sqrt{1 + |f(z)|^2} < 2 \sqrt{1 + M^2}.
\]
Therefore, we know that for \(n > N \), there are no poles on \(D(z_0, r) \) and, on \(D(z_0, r) \),
\[
|f_n(z) - f(z)| < 2 \sqrt{1 + M^2} \sigma(f(z), f_n(z)).
\]
This means that \(\{f_n\} \) converges uniformly to \(f \) in the usual sense. This proves the lemma.

Corollary: Let \(\{f_n\} \) be a sequence of holomorphic functions on a region \(U \subset \mathbb{C} \) (Assume \(U \) is connected), which converge uniformly in the spherical distance on every compact subset of \(U \) to a function \(f : U \to \mathbb{C} \cup \{\infty\} \). Then either \(f \) is holomorphic on \(U \) (with no poles) or \(f \equiv \infty \).

Proof. Assume that \(f \neq \infty \), i.e. there is \(z_0 \in U \) with \(f(z_0) \neq \infty \). We need to prove that \(f \) is holomorphic. For the lemma (and its proof) above, the limit function \(f : U \to \mathbb{C} \cup \{\infty\} \) has the following property: for every point \(z \in U \), there is a \(r > 0 \) with \(D(z, r) \subset U \) such that either \(f \) is holomorphic on \(D(z, r) \) or \(\frac{1}{f} \) is holomorphic on \(D(z, r) \). Now for any (fixed) \(z \in U \), there is line segments in \(U \), say \(L \), which connected \(z_0 \) and \(z \). By Heine-Borel again, there are finite coverings \(D(z_i, r_i), 1 \leq i \leq m \), for \(L \) with \(D(z_{i-1}, r_{i-1}) \cap D(z_i, r_i) \neq \emptyset \). Since \(f(z_0) \neq \infty \), we know that \(f \) is holomorphic on \(D(z_0, r_0) \); which, in turn, implies that \(f \) is holomorphic on \(D(z_1, r_1) \), ..., eventually, we can get \(f \) is holomorphic on \(D(z_m, r_m) \). Thus \(f \) is holomorphic at \(z \) for any \(z \in U \). This proves the Corollary.

For the above lemma and Corollary, we conclude that
Theorem: Let \mathcal{F} be a family of holomorphic functions on a region U on \mathbb{C}. Prove that \mathcal{F} is normal (in the general sense) if and only if for every sequence $\{f_n\} \subset \mathcal{F}$, there is a subsequence such that it converges uniformly in spherical distance on every compact subset of U.

Once the above theorem is established, you can use the Ascoli-Arzala’s theorem (note that Ascoli-Arzala’s theorem works for any distance, so it also works for the spherical distance). Note that S^2 is compact, so the “uniformly bounded” condition is NOT a problem. So you only need to check that \mathcal{F} is equi-continuous on every compact subset $K \subset U$. So you only need to check that \mathcal{F} is equi-continuous on every compact subset $K \subset U$. This can be achieved as follows:

Recall that if f is holomorphic on U, then

$$f^\#(z) = \frac{|f'(z)|}{1 + |f(z)|^2} = \lim_{w \to z} \frac{\sigma(f(w), f(z))}{|w - z|}. $$

This implies the following equality

$$\sigma(f(z + h), f(z)) = f^\#(z) \cdot |h| + o(|h|).$$

Then, taking any compact subset K of U, and $z_1, z_2 \in K$ (z_1 and z_2 are close enough so that the line segment between them lies in U), for an arbitrary $f \in \mathcal{F}$, we set $h = (z_1 - z_2)/n$, and shall have

$$\sigma(f(z_1), f(z_2)) \leq \sum_{i=0}^{n-1} \sigma(f(z_1 + ih), f(z_1 + (i + 1)h))
= \sum_{i=0}^{n-1} (f^\#(z_1 + ih)|h| + o(|h|))
\leq C_K |z_1 - z_2| + \frac{|z_1 - z_2|}{|h|} o(|h|)$$

So letting $n \to +\infty$, we have

$$d(f(z_1), f(z_2)) \leq C_K |z_1 - z_2|, \quad \text{for each } z_1, z_2 \in K \quad (*)$$

Using the Arzela’s theorem (with the fact that S^2 is compact), similar to the proof of Montel’s theorem in the book, by taking a compact exhaustion, named $\{K_n\}$, of U and using the “diagonal method”, we can prove that for every sequence $\{f_n\} \subset \mathcal{F}$, there is a subsequence such that it converges uniformly in spherical distance on every compact subset of U. By the theorem above, it means that \mathcal{F} is normal in the extended sense. This finishes the proof.

The Method II: We use the \tan^{-1} directly convert the spherical distance to Euclidean distance without using the lemma (but use the Montel’s theorem proved earlier in the class).
"⇒" : As in the proof of Montel’s theorem in the textbook, to prove \(F \) is normal, we only need to consider each compact subset \(K \), i.e. to prove that any sequence \(f_n \subset F \) has a subsequence \(f_{n_k} \) which converges uniformly on \(K \). For each point \(z_0 \in U \), take \(r > 0 \) such that \(\overline{D(z_0, r)} \subset U \). By the Heine-Borel, there are only finite many of such \(D(z_0, r) \) which covers the given compact set \(K \). Hence we only need to consider a neighborhood of some fixed \(z_0 \in U \).

Take \(\delta > 0 \) such that \(\overline{D(z_0, \delta)} \subset U \). From the condition, there is \(M > 0 \) such that

\[f^\#(z) \leq M, \quad z \in \overline{D(z_0, \delta)}. \]

Consider \(h(r) = \tan^{-1}|f(z_0 + re^{i\theta})|, 0 \leq r \leq \delta \). Then

\[|h(r) - h(0)| \leq \int_0^r |h'(t)|dt = \int_0^r \frac{\frac{\partial f}{\partial t}|f(z_0 + te^{i\theta})|}{1 + |f(z_0 + te^{i\theta})|^2}dt. \]

Since \(|f| = \sqrt{u^2 + v^2} \) when write \(f = u + iv \),

\[\left| \frac{\partial}{\partial t}|f(z_0 + te^{i\theta})| \right| = \left| \frac{u \frac{\partial u}{\partial t} + v \frac{\partial v}{\partial t}}{\sqrt{u^2 + v^2}} \right| \leq \sqrt{\left(\frac{\partial u}{\partial t} \right)^2 + \left(\frac{\partial v}{\partial t} \right)^2} = \left| \frac{\partial f}{\partial t} \right| = |f'(z_0 + te^{i\theta})|, \]

so

\[|h(r) - h(0)| \leq \int_0^r \frac{|f'(z_0 + te^{i\theta})|}{1 + |f(z_0 + te^{i\theta})|^2}dt \leq Mr \leq M\delta. \]

By taking \(\delta < \frac{\pi}{12 \pi M} \), we have that, for \(z \in \overline{D(z_0, \delta)} \),

\[|\tan^{-1}|f(z)| - \tan^{-1}|f(z_0)|| \leq \frac{\pi}{12}. \]

For each \(f \in F \), we devide it into two cases:

case 1: \(|f(z_0)| \leq 1 \), then

\[|\tan^{-1}|f(z)| \leq |\tan^{-1}|f(z_0)| + \frac{\pi}{12} = \frac{\pi}{4} + \frac{\pi}{12} = \frac{\pi}{3}, \]

i.e.

\[|f(z)| \leq \sqrt{3}. \]

case 2: \(|f(z_0)| > 1 \), then

\[|\tan^{-1}|f(z)| \geq |\tan^{-1}|f(z_0)| - \frac{\pi}{12} = \frac{\pi}{4} - \frac{\pi}{12} = \frac{\pi}{6}, \]

i.e.

\[|f(z)| \geq \frac{1}{\sqrt{3}}. \]

7
Now for any sequence \(f_n \subset F \), from the above discussion, there is a subsequence \(f_{n_k} \) such that either \(|f_{n_k}(z)| \leq \sqrt{3} \) for ALL \(f_{n_k} \) or \(|f(z)| \geq \frac{1}{\sqrt{3}} \) ALL \(f_{n_k} \), which in both cases, has a subsequence converges uniformly on \(K \) by Montel’s theorem. This proves the Marty’s theorem.

Remark about the proof: You may be concerned about the existence of \(\frac{\partial}{\partial t} |f(z_0 + te^{i\theta})| \) (whether \(|f(z_0 + te^{i\theta})| \) is differentiable). It certainly exists at the point \(t_0 \) with \(f(z_0 + t_0e^{i\theta}) \neq 0 \). Since the holomorphic function \(f \) has finitely many zeros in the compact set \(K \), so the integral \(\frac{f}{1+|f(z_0+te^{i\theta})|^2} dt \) can be taken by removing those points where \(f(z_0+t_0e^{i\theta}) \neq 0 \). Hence our proof goes through. In another way, you can, at first assume that \(f(z_0) \neq 0 \) (otherwise you can take another point which is sufficiently close to \(z_0 \)), and for any fixed \(r \) with \(0 < r \leq \delta \) take \(\theta \) such that \(f(z_0 + te^{i\theta}) \) has no zeros for \(0 \leq t \leq r \). Once you prove the bounds for those \(f(z) \), you can prove that it also holds for all \(\theta \) without restriction due to the fact that \(|f(z_0 + te^{i\theta})| \) is continuous in terms of \(\theta \).

The Method III: This argument is similar to the the second one, but more straightforward.

“\(\Leftarrow\)” : As in the proof of Montel’s theorem in the textbook, to prove \(F \) is normal, we only need to consider each compact subset \(K \), i.e. to prove that any sequence \(f_n \subset F \) has a subsequence \(f_{n_k} \) which converges uniformly on \(K \). For each point \(z_0 \in U \), take \(r > 0 \) such that \(\overline{D(z_0, r)} \subset U \). By the Heine-Borel, there are only finite many of such \(D(z_0, r) \) which covers the given compact set \(K \). Hence we only need to consider a neighborhood \(D(z_0, \delta) \subset K \). From the assumption, for \(z \in K \),

\[
\frac{|f'(z)|}{1 + |f(z)|^2} \leq C_K,
\]

i.e. \(|f'(z)| \leq C_K(1 + |f(z)|^2) \).

For each \(f \in F \), we devide it into two cases:

Case 1: \(|f(z_0)| \leq 1 \). We claim that for \(z \) with \(|z - z_0| \leq \min\{\delta, 1/(5C_K)\} \), we have \(|f(z)| < 2 \). Indeed, if on \(D(z_0, \delta) \), \(|f(z)| < 2 \), then we are done. Otherwise, there is \(z_1 \in D(z_0, \delta) \) with \(|f(z_1)| = 2 \) and on the line segment \(\overline{z_0z_1} \) we have \(|f(z)| < 2 \). Hence

\[
2 = |f(z_1)| \leq |f(z_0)| + \left| \int_{z_0z_1} f'(\zeta)d\zeta \right| \leq 1 + 5C_K|z_1 - z_0|.
\]

Thus \(|z_1 - z_0| > 1/(5C_K) \). This proves the claim.
Case 2: $|f(z_0)| \geq 1$. In this case, we claim that z with $|z - z_0| \leq \min\{\delta, 1/(5C_K)\}$, we have $|f(z)| > 1/2$. Indeed, if on $D(z_0, \delta)$, $|f(z)| > 1/2$, then we are done. Otherwise, there is $z_1 \in D(z_0, \delta)$ with $|f(z_1)| = 1/2$ and on the line segment $\overline{z_0 z_1}$ we have $|f(z)| > 1/2$. Using the fact that

$$\frac{|\left(\frac{1}{f(z)}\right)'|}{1 + \left|\frac{1}{f(z)}\right|^2} \leq \frac{|f'(z)|}{1 + |f(z)|^2} \leq C_K$$

we have that, for $z \in D(z_0, \delta)$

$$|\left(\frac{1}{f(z)}\right)'| \leq 5C_K.$$

Hence

$$2 = \frac{1}{|f(z_1)|} \leq \frac{1}{|f(z_0)|} + \left|\int_{z_0 z_1} \left(\frac{1}{f(\zeta)}\right)' \, d\zeta\right| \leq 1 + 5C_K |z_1 - z_0|.$$

Thus $|z_1 - z_0| > 1/(5C_K)$. This proves the claim.

Now for any sequence $f_n \subset F$, from the above discussion, there is a subsequence f_{nk} such that either $|f_{nk}(z)| < 2$ for ALL f_{nk} or $|f(z)| \geq 1/2$ ALL f_{nk}, which in both cases, has a subsequence converges uniformly on K by Montel’s theorem. This proves the Marty’s theorem.

(Zalcman’s theorem)

Let F be a family of holomorphic functions on the unit disc D of \mathbb{C}. Assume F is not normal in the extended sense, then there exist an r with $0 < r < 1$, a sequence of points $\{z_n\}$ with $|z_n| < r$, a sequence $\{f_n\} \subset F$, and a sequence of positive numbers $\{\rho_n\}$ with $\lim_{n \to +\infty} \rho_n = 0$ such that $f_n(z_n + \rho_n \xi) \to g(\xi)$ uniformly on every compact subset K in \mathbb{C}, and g is not constant.

Proof.

By the previous Marty’s theorem, since F is not normal, then there should be a compact subset K of D, such that Marty’s criterion is violated on it; moreover, we can take K as one of the exhaustion $\{K_n\}$, where $K_n = \overline{D(0, 1 - 1/n)}$. So, equivalently, we actually have an r_0, with $0 < r_0 < 1$, a sequence of points $\{z_n^*\}$, with $z_n^* < r_0$, and a sequence of holomorphic functions $\{f_n\} \subset F$, such that

$$f_n^*(z_n^*) \to +\infty, \quad \text{as } n \to +\infty.$$

Next, we set, for any fixed $r_0 < r < 1$,

$$M_n = \max_{|z| \leq r} \left(1 - \frac{|z|^2}{r^2}\right) f_n^*(z).$$

9
Since \((1 - \frac{|z|^2}{r^2}) f_n^\#(z)\) is continuous for every \(n\), and the set \(\{ z : |z| \leq r \}\) is compact, then the above maximum exists for every \(n\), i.e. there is a sequence \(\{z_n\}\) such that
\[
M_n = \left(1 - \frac{|z_n|^2}{r^2}\right) f_n^\#(z_n)
\]
In addition, because
\[
\left(1 - \frac{|z_n^*|^2}{r^2}\right) f_n^\#(z_n^*) \geq \left(1 - \frac{r_0^2}{r^2}\right) f_n^\#(z_n^*) \rightarrow +\infty
\]
So, indeed, we obtain that \(M_n \rightarrow +\infty\).

Now, set
\[
\delta_n = \frac{1}{M_n} \left(1 - \frac{|z_n|^2}{r^2}\right) = \frac{1}{f_n^\#(z_n)}
\]
So,
\[
\frac{\delta_n}{r - |z_n|} = \frac{r + |z_n|}{r^2 M_n} \leq \frac{2r}{r^2 M_n} \rightarrow 0, \quad \text{as} \ n \rightarrow +\infty
\]
Also, \(\delta_n \rightarrow 0\) as \(n \rightarrow +\infty\).

Now, we shall construct the following sequence of holomorphic functions,
\[
g_n(\xi) := f_n(z_n + \delta_n \xi)
\]
and it is easily seen that \(g_n\) is defined on \(|\xi| < R_n\), where \(R_n = (r - |z_n|)/\delta_n \rightarrow +\infty\).

To see that the limit function \(g(\xi) = \lim_{n \rightarrow +\infty} g_n(\xi)\) is an entire function, we will apply the Marty’s theorem as follows,

First, compute \(g^\#\) for each \(g_n\), we have that
\[
g_n^\#(\xi) = \frac{\delta_n |f_n'(z_n + \delta_n \xi)|}{\sqrt{1 + |f_n(z_n + \delta_n \xi)|^2}} = \frac{f_n^\#(z_n + \delta_n \xi)}{f^\#(z_n)}
\]

Second, on \(|\xi| \leq R < R_n\), since \(|z_n + \delta_n \xi| \leq r^* < r\) for each \(n\), we can evaluate \(g_n^\#(\xi)\) as
\[
g_n^\#(\xi) \leq \frac{1 - \frac{|z_n|}{r^*}}{1 - \frac{|z_n + \delta_n \xi|^2}{r^*}} \leq \frac{r^2}{r^2 - (r^*)^2}
\]
Hence, by the Marty’s theorem, we know that \(\{g_n\}\) is normal, which implies that there is a subsequence, \(\{g_{n_k}\}\), which converges uniformly to \(g(\xi)\) on every compact subset of \(C\), so \(g\) is entire.
Moreover, it is easily calculated that $g_n^\#(0) = 1$ for each n, so $g^\#(0) = 1$, implying that $g'(0) \neq 0$. Thus, g is nonconstant.

This completes the proof of the Zalcman’s theorem.

\[\square\]

(Generalized Montel’s Theorem)

Let \mathcal{F} be a family of holomorphic functions on a region U of \mathbb{C}. Assume that $f \neq 0, 1$ for each $f \in \mathcal{F}$, then \mathcal{F} is a normal family.

Proof.

If $U = \mathbb{C}$, then the proof becomes trivial, since by the little Picard’s theorem, each function in \mathcal{F} is constant functions, so \mathcal{F} is normal.

If $U \subsetneq \mathbb{C}$, then by the Riemann Mapping Theorem, we can use a conformal mapping G to map U to the unit disc D, and prove the new family, $\{G \circ f : f \in \mathcal{F}\}$ is normal, so \mathcal{F} is also normal.

Hence, without loss of generality, we can suppose that $U = D$, then the proof goes as the following,

Suppose \mathcal{F} is not normal, then by the Zalcman’s theorem, there exist an r with $0 < r < 1$, a sequence of points $\{z_n\}$ with $|z_n| < r$, a sequence $\{f_n\} \subset \mathcal{F}$, and a sequence of positive numbers $\{\rho_n\}$ with $\lim_{n \to +\infty} \rho_n = 0$ such that $f_n(z_n + \rho_n \xi) \to g(\xi)$ uniformly on every compact subset K in \mathbb{C}, and g is not constant entire function.

However, the fact that each f_n omits $0, 1$ tells us that g omits $0, 1$. So, by the little Picard’s theorem, we conclude that g is constant function, but this contradicts the result of Zalcman’s theorem, which states that g is nonconstant.

Finally, due to the contradiction, we should have \mathcal{F} is a normal family.

\[\square\]