Part A:

(1). (Residue Formula)

Suppose f is a holomorphic function on a holomorphically simply connected domain $U \subseteq \mathbb{C}$, except for singularities z_1, z_2, \cdots, z_n, and γ is a piecewise closed C^1 curve in U, but not passing through any z_k. Then the following equality holds:

$$\oint_\gamma f(\zeta) d\zeta = 2\pi i \sum_{k=1}^{n} \text{Res}_f(z_k) \cdot n(\gamma, z_k)$$

where $n(\gamma, z_k)$ denotes the winding number of γ about each z_k.

Proof. $U \subseteq \mathbb{C}$ is said to be **holomorphically simply connected** if every holomorphic function on U has an anti-derivative (or primitive). Hence, $\oint_\gamma f dz = 0$ if f is holomorphic on U (because let F with $F' = f$, then $\oint_\gamma f dz = F(\gamma(b)) - F(\gamma(a)) = 0$ since γ is closed. We’ll use this fact to prove the residue theorem.

First, for each z_k, we set the principal part of the Laurent expansion of it to be S_k, then consider the following auxiliary function:

$$F(z) = f - (S_1 + \cdots + S_n), \quad G(z) = S_1 + \cdots + S_n$$

Notice that $G = (S_1 + \cdots + S_n)$ is defined on $U \setminus \{z_1, \cdots, z_n\}$, which is the same as f. Moreover, for each singularity z_k, if we consider the Laurent expansion around it, the $f - S_k$ has just the regular part left, hence, by the Riemann’s theorem, z_k is removable singularity for $F = f - (S_1 + \cdots + S_n)$; therefore, we can regard F as a holomorphic function on U.

Next, by the simple connectedness of U, and the Cauchy’s theorem, we have that $\oint_\gamma F(z) dz = 0$.

Now, consider $\oint_\gamma G(z) dz = \sum_{k=1}^{n} \oint_\gamma S_k dz$, we know that each S_k is the principal part of the Laurent expansion of f at z_k. So $S_k(z) = \sum_{l=1}^{\infty} a^k_{l}(z - z_k)^{-l}$, and by
the fact that γ is compact and does not pass through z_k, we know $\sum_{l=1}^{\infty} a_{-l}^k (z-z_k)^{-l}$ converges uniformly on γ, thus, using the fact that $\oint_{\gamma} (z-z_k)^{-l} = 0$ for $k \neq 1$,

$$\oint_{\gamma} S_k(z)dz = \sum_{l=1}^{\infty} \oint_{\gamma} a_{-l}^k (z-z_k)^{-l}dz = \oint_{\gamma} a_{-1}^k (z-z_k)^{-1}dz = 2\pi i \text{Res}_f(z_k) \cdot n(\gamma, z_k)$$

Therefore, in sum, combine the above results, we conclude that

$$\oint_{\gamma} f(z)dz = \oint_{\gamma} (F(z) + G(z))dz = \oint_{\gamma} G(z)dz = \sum_{k=1}^{n} \oint_{\gamma} S_k dz = 2\pi i \sum_{k=1}^{n} \text{Res}_f(z_k) \cdot n(\gamma, z_k).$$

This proved our desired Residue Formula.

\square

Let $g = f(\zeta)/(\zeta - z_0)$. Observe that $\text{Res}_g(z_0) = f(z_0)$ by the Laurent expansion of $g = f(\zeta)/(\zeta - z_0)$ at the point z_0. Apply the above residue theorem to g to yield that, for any (piecewise smooth) closed simple curve, γ with $z_0 \in \text{int}(\gamma)$, since $n(\gamma, z_0) = 1$,

$$f(z_0) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(\zeta)}{(\zeta - z_0)}d\zeta.$$

Thus the above Cauchy’s integral formula is proved.

\square

To prove the argument principle, we first suppose f is a meromorphic function on a open set U, $D(P, r) \subseteq U$, and f has no poles or zeros on $\partial D(P, r)$, then we shall show that

$$\frac{1}{2\pi i} \oint_{\partial D(P, r)} \frac{f'(z)}{f(z)}dz = \sum_{j=1}^{p} n_j - \sum_{k=1}^{q} m_k$$

where n_1, \ldots, n_p are the multiplicities of zeros z_1, \ldots, z_p of f in $D(P, r)$, and m_1, \ldots, m_p are the poles w_1, \ldots, w_q of f in $D(P, r)$.

To see this, for the function $h(z) = f'(z)/f(z)$, we know that the possible singularities (actually poles) for it are z_1, \ldots, z_p and w_1, \ldots, w_q. Next, for any
zero of f, z_k, with multiplicity n_k, on a neighborhood of which we can write f as $f(z) = (z - z_k)^{n_k}g(z)$, where g is holomorphic and has no zeros on the neighborhood. Then

$$f'(z) f(z) = \frac{n_k(z - z_k)^{n_k-1}g(z) + (z - z_k)^{n_k}g'(z)}{(z - z_k)^{n_k}g(z)}$$

So it is easily seen that $\text{Res}_g(z_k) = n_k$.

Similarly, for any pole of f, w_k, with multiplicity m_k, on a neighborhood of which we can write f as $f(z) = g(z)/[(z - w_k)m_k]$, where g is holomorphic and has no zeros on the neighborhood. Then

$$f'(z)/f(z) = -\frac{m_k(z - w_k)^{m_k-1}g(z) + (z - w_k)^{m_k}g'(z)}{(z - w_k)^{m_k}g(z)}$$

So it is easily seen that $\text{Res}_g(w_k) = -m_k$.

Thus, applying the residue formula, we have that

$$\oint_{\partial D(P,r)} \frac{f'(z)}{f(z)} dz = 2\pi i \left(\sum_{j=1}^{p} n_j - \sum_{k=1}^{q} m_k \right)$$

which is exactly our desired agreement principle formula.

(2). (Laurent Expansion for Holomorphic functions on annulus)

Suppose that $1 \leq r_1 < r_2 \leq \infty$, and f is holomorphic on $D(P, r_2) \setminus \bar{D}(P, r_1)$, then the following series

$$\sum_{k=-\infty}^{+\infty} a_k(z - P)^k$$

converges to f on $D(P, r_2) \setminus \bar{D}(P, r_1)$, where

$$a_j = \frac{1}{2\pi i} \oint_{\partial D(P,r)} \frac{f(\zeta)}{(\zeta - P)^{j\!+\!1}} d\zeta, \quad \text{for any } r_1 < r_2$$

Moreover, for any pair of number s_1, s_2, such that $r_1 < s_1 < s_2 < r_2$, the above series converges absolutely and uniformly on $D(P, s_2) \setminus \bar{D}(P, s_1)$

Proof.

First, apply the Cauchy’s integral formula on $\bar{D}(P, s_2) \setminus D(P, s_1)$, and we have that for any $z \in D(P, s_2) \setminus \bar{D}(P, s_1)$

$$f(z) = \frac{1}{2\pi i} \oint_{|\zeta - P|=s_1} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \oint_{|\zeta - P|=s_2} \frac{f(\zeta)}{\zeta - z} d\zeta$$

3
For the first integral, since $|z - P| < |\zeta - P|$ on $|\zeta - P| = s_2$, we have the following:

$$\int_{|\zeta - P| = s_2} \frac{f(\zeta)}{\zeta - z} d\zeta = \int_{|\zeta - P| = s_2} \frac{1}{\zeta - P} \cdot \frac{f(\zeta)}{1 - \frac{z - P}{\zeta - P}} d\zeta$$

$$= \int_{|\zeta - P| = s_2} \frac{f(\zeta)}{\zeta - P} \sum_{k=0}^{+\infty} \left(\frac{z - P}{\zeta - P} \right)^k d\zeta$$

$$= \int_{|\zeta - P| = s_2} \sum_{k=0}^{+\infty} f(\zeta)(z - P)^k \left(\frac{\zeta - P}{\zeta - P} \right)^{k+1} d\zeta$$

$$= \sum_{k=0}^{+\infty} \left(\int_{|\zeta - P| = s_2} \frac{f(\zeta)}{(\zeta - P)^{k+1}} d\zeta \right) (z - P)^k$$

Here, the sum and the integral can commute, because the series $\sum_{k=0}^{+\infty} \left(\frac{z - P}{\zeta - P} \right)^k$ converges uniformly to $1/(1 - (z - P)/(\zeta - P))$ on the compact set $|\zeta - P| = s_2$.

Similarly, on $|\zeta - P| = s_1$, notice that $|z - P| > s_1$, we have

$$\frac{1}{2\pi i} \int_{|\zeta - P| = s_1} \frac{f(\zeta)}{\zeta - z} d\zeta = -\int_{|\zeta - P| = s_1} \frac{1}{z - P} \cdot \frac{f(\zeta)}{1 - \frac{z - P}{\zeta - P}} d\zeta$$

$$= -\sum_{k=0}^{+\infty} \left(\int_{|\zeta - P| = s_1} f(\zeta)(z - P)^k d\zeta \right) (z - P)^{-k-1}$$

$$= -\sum_{k=-\infty}^{k=-1} \left(\int_{|\zeta - P| = s_1} f(\zeta) \frac{(z - P)^k}{(\zeta - P)^{k+1}} d\zeta \right) (z - P)^k$$

Moreover, since on $D(P, r_2) \setminus \bar{D}(P, r_1)$, and each $r > 0$, such that $r_1 < r < r_2$, both $|\zeta - P| = s_1$ and $|\zeta - P| = s_2$ can be continuously deformed to $|\zeta - P| = r$, so we have that

$$\sum_{k=0}^{+\infty} \left(\int_{|\zeta - P| = s_2} \frac{f(\zeta)}{(\zeta - P)^{k+1}} d\zeta \right) (z - P)^k = \sum_{k=0}^{+\infty} \left(\int_{|\zeta - P| = r} \frac{f(\zeta)}{(\zeta - P)^{k+1}} d\zeta \right) (z - P)^k$$

$$\sum_{k=-\infty}^{k=-1} \left(\int_{|\zeta - P| = s_1} \frac{f(\zeta)}{(\zeta - P)^{k+1}} d\zeta \right) (z - P)^k = \sum_{k=-\infty}^{k=-1} \left(\int_{|\zeta - P| = r} \frac{f(\zeta)}{(\zeta - P)^{k+1}} d\zeta \right) (z - P)^k$$

Hence, we conclude that

$$f(z) = \sum_{-\infty}^{+\infty} \frac{1}{2\pi i} \int_{\partial D(P, r)} \frac{f(\zeta)}{(\zeta - P)^{k+1}} d\zeta (z - P)^k$$
and the theorem is proved.

③. (Schwartz-Pick Lemma)

Let \(f : D(0, 1) \to D(0, 1) \) be holomorphic, and \(f(a) = b \) for some \(a \in D(0, 1) \), then we have the following estimation

\[
|f'(a)| \leq \frac{1 - |b|^2}{1 - |a|^2}
\]

Moreover, if \(f(a_1) = b_1 \) and \(f(a_2) = b_2 \), then

\[
\left| \frac{b_2 - b_1}{1 - b_1 b_2} \right| \leq \left| \frac{a_2 - a_1}{1 - \bar{a}_1 a_2} \right|
\]

Proof.

First, we consider the Möbius transform for any \(a \in D(0, 1) \)

\[
\phi_a(z) = \frac{z - a}{1 - \bar{a} z}
\]

Then, it is easily proved that \(\phi_a \) is biholomorphic from \(D(0, 1) \) to itself, and \(\phi_a(a) = 0 \).

Next, given that \(f(a) = b \), notice that \(\phi_{-a} \) is also holomorphic, we shall set

\[
g(z) = \phi_b \circ f \circ \phi_{-a}(z)
\]

then \(g \) is holomorphic and \(g(0) = 0 \), \(g(z) \leq 1 \) for all \(z \in D(0, 1) \). By Schwartz Lemma, we have that

\[
|g'(0)| \leq 1
\]

By the chain rule, we actually have that

\[
g'(0) = \phi'_b(b) \cdot f'(a) \cdot \phi'_{-a}(0)
\]

Also, \(\phi'_{-a}(0) = 1 - |a|^2 \), \(\phi'_b(b) = \frac{1}{1 - |b|^2} \), so we have that

\[
|f'(a)| \leq \frac{1 - |b|^2}{1 - |a|^2}
\]

Next, assume \(f(a_1) = b_1 \) and \(f(a_2) = b_2 \), then we take

\[
h(z) = \phi_{b_1} \circ f \circ \phi_{-a_1}(z)
\]

So \(h \) is again a holomorphic function with \(h(0) = 0 \) and \(h(z) \leq 1 \) for all \(z \in D(0, 1) \), and using the Schwartz Lemma gives us

\[
|h(z)| = |\phi_{b_1} \circ f \circ \phi_{-a_1}(z)| \leq |z|
\]
Put $z = \phi_{a_1}(w)$, we then have

$$|\phi_{b_1} \circ f(w)| \leq |\phi_{a_1}(w)|$$

Put $w = a_2$, and we obtain

$$|\phi_{b_1}(b_2)| \leq |\phi_{a_1}(a_2)|$$

This implies that, by the definition of ϕ_{a_1} and ϕ_{b_1},

$$\left| \frac{b_2 - b_1}{1 - b_1 b_2} \right| \leq \frac{|a_2 - a_1|}{1 - \bar{a}_1 a_2}$$

And this completes the proof of the Schwartz-Pick Lemma.

Next, we shall prove that $Aut(D(0, 1)) = \{ e^{i\theta} \frac{z - a}{1 - \bar{a}z} | \theta \in [0, 2\pi], a \in D(0, 1) \}$. To see this, first we suppose f is biholomorphic from $D(0, 1)$ to $D(0, 1)$, and $f(0) = a$. Then, consider the following Möbius transform,

$$\phi_a(z) = \frac{z - a}{1 - \bar{a}z}$$

So $\phi_a \circ f(0) = 0$, and $g = \phi_a \circ f$ is biholomorphic from $D(0, 1)$ to $D(0, 1)$. Thus, the Schwartz lemma gives us

$$|g(z)| \leq |z|, \quad \text{for all } z \in D(0, 1)$$

On the other hand, since g^{-1} is also biholomorphic from $D(0, 1)$ to $D(0, 1)$, with $g^{-1}(0) = 0$, so the Schwartz lemma gives us

$$|g^{-1}(w)| \leq |w|, \quad \text{for all } w \in D(0, 1)$$

Put $w = g(z)$ in the above inequality, we obtain that

$$|z| \leq |g(z)|, \quad \text{for all } z \in D(0, 1)$$

Hence, we have that $|g(z)| = |z|$ for all $z \in D(0, 1)$, and by the Schwartz lemma, we know that g is just a rotation, i.e. there is a $\theta \in [0, 2\pi]$, such that

$$g(z) = \phi_a \circ f(z) = e^{i\theta} z$$

Since $\phi^{-1}_{a_1}(z) = (z + a)/(1 + \bar{a}z)$, and if we write $ae^{i\theta} = -b$, the above equality implies that our f can be written as

$$f(z) = e^{i\theta} \frac{z - b}{1 - bz}$$

This proves our assumption, as f is arbitrarily chosen.
(4). (Rouché’s Theorem)

Suppose \(f \) and \(g \) are both holomorphic on an open set \(U \subseteq \mathbb{C} \), and \(D(P, r) \subseteq U \). Moreover, \(f \) and \(g \) have no zeros on \(\partial D(P, r) \). If on \(\partial D(P, r) \), we have that
\[
|f(z)| < |g(z)|
\]
then \(f \pm g \) and \(g \) have the same number of zeros in \(D(P, r) \).

Next, we shall use Rouché’s Theorem to prove the following open mapping theorem.

(Open mapping Theorem)

Suppose \(f \) is holomorphic and nonconstant on a connected open set \(U \subseteq \mathbb{C} \), then \(f(U) \) is also open.

Proof.

First, for each \(z_0 \in U \), we consider \(f(z_0) \in f(U) \), and will show that there is a \(D(f(z_0), r) \) such that \(D(f(z_0), r) \subseteq f(U) \). If this is true, then \(f(U) \) is open by definition.

By the isolatedness of zeros of a nonconstant holomorphic function, we choose a suitable \(r \) such that \(f(z) - f(z_0) \) is nonzero on \(D(z_0, r) \setminus \{z_0\} \). Also, we can make that \(\delta = \min_{z \in \partial D(z_0, r)} |f(z) - f(z_0)| > 0 \).

However, for any \(z_1 \in D(z_0, r) \setminus \{z_0\} \) such that \(0 < |f(z_1) - f(z_0)| < \delta \) (this can be done by the continuity of \(f \)), we have that
\[
|(f(z) - f(z_1)) - (f(z) - f(z_0))| = |f(z_1) - f(z_0)| < \delta \leq |f(z) - f(z_0)|,
\]
on \(\partial D(z_0, r) \)

Thus, we know that by Rouché’s theorem, \(f(z) - f(z_1) \) and \(f(z) - f(z_0) \) have the same number of zeros in \(D(z_0, r) \), hence \(f(z) - f(z_1) \) has one zero (since \(f(z) - f(z_0) = 0 \) for \(z = z_0 \)) in \(D(z_0, r) \setminus \{z_0\} \).

This means for each \(z_0 \in U \), \(\{z : 0 \leq |f(z) - f(z_0)| < \delta\} \subseteq f(U) \), which implies that \(f(U) \) is open and this completes our proof.

\(\Box \)

(5). (Liouville’s Theorem)

Suppose \(f \) is entire and \(|f(z)| \leq M \), on \(\mathbb{C} \), for some \(M > 0 \), then \(f \) is constant function.

Proof.
For each $R > 0$, we consider $h(z) = f(Rz)/M$, which is holomorphic on $D(0, 1)$ and satisfies $|h(z)| \leq 1$. So by the Schwartz-Pick Lemma, we have that for any $|z| < 1$,

$$\frac{R}{M} \cdot |f'(Rz)| = |h'(z)| \leq \frac{1 - |h(z)|^2}{1 - |z|^2} \leq \frac{1}{1 - |z|^2}$$

Next, for each $w \in \mathbb{C}$, we take enough large R such that $|w|/R < 1$, then, applying above inequality with $z = (w/R)$,

$$|f'(w)| \leq \frac{M}{R} \cdot \frac{1}{1 - |w|^2/R^2}$$

Letting $R \to +\infty$, the right hand side of the above inequality goes to 0, thus $|f'(w)| = 0$ for each $w \in \mathbb{C}$, which indicates that f is constant on \mathbb{C}.

\[\square\]

Part B:

1. Let

$$f(z) = \frac{z^2 - 2z + 5}{(z - 2)(z^2 + 1)}$$

Find the Laurent expansion of f in

(a) the neighborhood of 2 (b) the annulus $\{ z : 1 < |z| < 2 \}$.

Proof.

(a). On $\{ z : 0 < |z - 2| < \sqrt{5} \}$, we can expand $f(z)$ as:

$$f(z) = \frac{z^2 - 2z + 5}{(z - 2)(z^2 + 1)}$$

$$= \frac{(z - 2)^2 + 4(z - 2) + 5 - 2(z - 2)}{(z - 2)((z - 2)^2 + 4(z - 2) + 5)}$$

$$= \frac{1}{z - 2} - \frac{2}{(z - 2)^2 + 4(z - 2) + 5}$$

$$= \frac{1}{z - 2} + i \cdot \left(\frac{1}{(z - 2) - (2 + i)} - \frac{1}{(z - 2) - (2 - i)} \right)$$

$$= \frac{1}{z - 2} + i \cdot \left(\frac{1}{2 - i} \cdot \frac{1}{1 - \frac{(z - 2)}{2 - i}} - \frac{1}{2 + i} \cdot \frac{1}{1 - \frac{(z - 2)}{2 + i}} \right)$$

$$= \frac{1}{z - 2} + \frac{i}{2 - i} \cdot \sum_{k=0}^{\infty} \left(\frac{z - 2}{2 - i} \right)^k - \frac{i}{2 + i} \cdot \sum_{k=0}^{\infty} \left(\frac{z - 2}{2 + i} \right)^k$$

(b). However, on \(\{ z : 1 < |z| < 2 \} \), we can expand \(f(z) \) as:

\[
\begin{align*}
f(z) &= \frac{z^2 - 2z + 5}{(z - 2)(z^2 + 1)} \\
&= \frac{1}{z - 2} - \frac{2}{z^2 + 1} \\
&= -\frac{1}{2} \sum_{k=0}^{\infty} \left(\frac{z}{2} \right)^k - 2 \sum_{k=0}^{\infty} (-1)^k \left(\frac{1}{z^2} \right)^{k+1}
\end{align*}
\]

\(\square \)

2. The values of the line integral

\[
\oint_{\gamma} \frac{1}{z^2(z^2 + 1)} \, dz
\]

depends on \(\gamma \)-the integration path. What are the possible values of this integral as \(\gamma \) varies over all simple closed curves?

Proof.

Obviously, \(f(z) = 1/z^2(z^2 + 1) \) has three poles: 0, \(i \), \(-i \). So if the interior of the closed piecewise \(C^1 \) curve \(\gamma \) does not contain any of the three poles, then \(\oint_{\gamma} \frac{1}{z^2(z^2 + 1)} \, dz = 0 \).

If the interior of \(\gamma \) contains just 0, then by generalized Cauchy’s integral formula:

\[
\begin{align*}
\oint_{\gamma} \frac{1}{z^2(z^2 + 1)} \, dz &= \oint_{\gamma} \frac{1/(z^2 + 1)}{z^2} \, dz \\
&= 2\pi i \left(\frac{1}{z^2 + 1} \right)' \big|_{z=0} \\
&= 2\pi i \frac{-2z}{(z^2 + 1)^2} \big|_{z=0} \\
&= 0
\end{align*}
\]

If the interior of \(\gamma \) contains just \(i \), then by generalized Cauchy’s integral formula:

\[
\begin{align*}
\oint_{\gamma} \frac{1}{z^2(z^2 + 1)} \, dz &= \oint_{\gamma} \frac{1/[z^2(z + i)]}{z - i} \, dz \\
&= 2\pi i \frac{1}{z^2(z + i)} \big|_{z=i} \\
&= -\pi
\end{align*}
\]
If the interior of γ contains just $-i$, then by generalized Cauchy’s integral formula:

$$\oint_{\gamma} \frac{1}{z^2(z^2 + 1)} \, dz = \oint_{\gamma} \frac{1}{z [z^2(z - i)]} \, dz$$

$$= 2\pi i \frac{1}{z^2(z - i)} \bigg|_{z=-i}$$

$$= \pi$$

Next, if the interior of γ contains just 0 and i, then by generalized Cauchy’s integral formula:

$$\oint_{\gamma} \frac{1}{z^2(z^2 + 1)} \, dz = \oint_{\gamma} \left(\frac{1}{z^2} - \frac{1}{z^2 + 1} \right) \, dz$$

$$= 0 - 2\pi i \frac{1}{z + i} \bigg|_{z=i}$$

$$= -\pi$$

Similarly, if the interior of γ contains just 0 and $-i$, then by generalized Cauchy’s integral formula:

$$\oint_{\gamma} \frac{1}{z^2(z^2 + 1)} \, dz = \pi$$

Lastly, if the interior of γ contains 0, i and $-i$, then by generalized Cauchy’s integral formula:

$$\oint_{\gamma} \frac{1}{z^2(z^2 + 1)} \, dz = \oint_{\gamma} \left(\frac{1}{z^2} + \frac{1}{2i z + i} - \frac{1}{2i z - i} \right) \, dz$$

$$= 0 + 2\pi i \frac{1}{2i} - 2\pi i \frac{1}{2i}$$

$$= 0$$

In sum, the possible values of integral over all the simple curves are π, $-\pi$ and 0.

3. Evaluate the integral

$$\oint_{|z|=1} z^{407} \cos(1/z) \, dz$$

where the integration curve is the unit circle with its usual counter-clockwise orientation.

Proof.
On \(\{ z : 0 < |z| < \infty \} \), the function \(\cos(1/z) \) has the following Laurent expansion:

\[
\cos(1/z) = \sum_{k=0}^{\infty} \frac{(-1)^k (1/z)^{2k}}{(2k)!}
\]

This means

\[
z^{407} \cos(1/z) = \sum_{k=0}^{\infty} \frac{(-1)^k z^{407-2k}}{(2k)!}
\]

So the residue of \(f(z) = z^{407} \cos(1/z) \) at the essential singularity \(z = 0 \) is easily seen as

\[\text{Res}_f(0) = \frac{1}{408!}\]

Hence, by the residue formula, since the interior of \(\{ z : |z| = 1 \} \) contains only the only singularity of \(f, z = 0 \), and the winding number of the curve about \(z = 0 \) is 1, we have

\[
\oint_{|z|=1} z^{407} \cos(1/z) \, dz = 2\pi i \text{Res}_f(0) = \frac{2\pi i}{408!}
\]

4. Use the residue theorem to prove that

\[
\int_0^{\infty} \frac{x^2}{1 + x^4} \, dx = \frac{\pi \sqrt{2}}{4}
\]

Proof.

We consider the following auxiliary holomorphic function and the contour \(\gamma_R = \gamma_R^1 + \gamma_R^2 \):

\[
f(z) = \frac{z^2}{1 + z^4}
\]
Next, we parameterize γ_R^1, and γ_R^2 as:

$$\gamma_R^1(t) := \text{Re}^{2\pi it}, \quad t \in [0, \frac{1}{2}]$$

$$\gamma_R^2(t) := t, \quad t \in [-R, R]$$

On the other hand, since for each R, the interior γ_R contains two poles of $f(z)$, $z_1 = -\sqrt{2}/2 + i\sqrt{2}/2$, $z_2 = \sqrt{2}/2 + i\sqrt{2}/2$, both of order 1; also, the winding number about each pole is one, so by the residue formula, we have

$$\oint_{\gamma_R} f(z) \, dz = 2\pi i \left(\text{Res}_{z_1} f(z) + \text{Res}_{z_2} f(z) \right)$$

Calculating the residues gives us

$$\text{Res}_{z_1} f(z) = \lim_{z \to z_1} \frac{z^2(z - z_1)}{1 + z^4} = -\frac{1}{4} \left(\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right)$$

$$\text{Res}_{z_2} f(z) = \lim_{z \to z_2} \frac{z^2(z - z_2)}{1 + z^4} = -\frac{1}{4} \left(-\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right)$$

So, $\oint_{\gamma_R} f(z) \, dz = \frac{\sqrt{2}\pi}{2}$ (*).

For the integral on the left hand side, we the following evaluation:

$$\oint_{\gamma_R} f(z) \, dz = \oint_{\gamma_R^1} f(z) \, dz + \oint_{\gamma_R^2} f(z) \, dz$$
And
\[
\left| \oint_{\gamma_1} f(z)dz \right| = \left| \oint_{\gamma_1} \frac{z^2}{1+z^4}dz \right|
\]
\[
\leq \oint_{\gamma_1} \frac{|z^2|}{1+z^4}dz
\]
\[
\leq \pi R \frac{R^2}{R^4 - 1}
\]
\[
\to 0, \quad \text{when } R \to +\infty
\]

\[
\oint_{\gamma_2} f(z)dz = \oint_{\gamma_R} \frac{z^2}{1+z^4}dz
\]
\[
= \int_{-R}^{+R} \frac{t^2}{t^4 + 1} dt
\]
\[
\to \int_{-\infty}^{+\infty} \frac{t^2}{t^4 + 1} dt, \quad \text{when } R \to +\infty
\]
\[
= 2 \int_{0}^{+\infty} \frac{t^2}{t^4 + 1} dt
\]

Hence, letting \(R \to +\infty \) in the left hand side of equation (*), we have
\[
2 \int_{0}^{+\infty} \frac{t^2}{t^4 + 1} dt = \frac{\sqrt{2\pi}}{2}
\]
i.e. \(\int_{0}^{\infty} \frac{x^2}{1+x^4}dx = \frac{\sqrt{2\pi}}{4} \)

5. Let \(f \) be entire and \(0 < r < R < \infty \) be two fixed numbers. Consider the family \(\mathcal{F} \) of functions \(f_n(z) = f(nz) \) for \(z \in \{ z | r < |z| < R \} \). Assume the family \(\mathcal{F} \) is normal (in the extended sense). What can you conclude for \(f \)?

\textbf{Proof.}

We claim that \(f \) is a polynomial or constant, and the proof is as follows:

First, if there is a subsequence of \(\mathcal{F} \), say \(\{f_{n_k}\} \), which diverges uniformly on compact subsets of \(\{ z | r < |z| < R \} \), then, choose two numbers \(r_1, r_2 \) such that \(r < r_1 < r_2 < R \), and consider the compact set \(\{ z | r_1 \leq |z| \leq r_2 \} \subseteq \{ z | r < |z| < R \} \), on which \(\{f_{n_k}\} \) diverges uniformly to \(\infty \). So given any \(M > 0 \), we can find a \(n_{k_0} \), such that for all \(n_k \geq n_{k_0} \),
\[
|f_{n_k}| \geq M
\]
This implies that for all $n_k \geq n_{k_0}$, on sets of $E_{n_k} = \{ z | n_k r_1 \leq |z| \leq n_k r_2 \}$, we have

$$|f(z)| \geq M$$

Take $U = \bigcup_{k=k_0}^{\infty} E_{n_k}$, then $|f(z)| \geq M$ on U.

Now, if there exist $k_1 \geq k_0$ such that $\{ z | n_{k_1} r_2 < |z| < n_{k_1+1} r_1 \} \not\subseteq U$, then, by the maximal modulus theorem (we need to apply the maximal modulus theorem to $1/f$), as $|f(z)| \geq M$ on the boundaries $|z| = n_k r_2$ and $|z| = n_{k+1} r_1$, we should have $|f(z)| \geq M$ on $\{ z | n_k r_2 < |z| < n_{k+1} r_1 \}$.

Thus, we have showed that on the infinite annulus $\{ z | |z| \geq n_{k_0} r_1 \}$, $|f(z)| \geq M$.

So, actually we have

$$\lim_{z \to \infty} |f(z)| = +\infty$$

This implies that ∞ is a pole for $f(z)$, so the power series expansion for $f(z)$ can only have finitely many terms, i.e. $f(z)$ is polynomial.

Second, if there is a subsequence of F, say $\{ f_{n_k} \}$, which converges uniformly to $\tilde{f}(z)$ on compact subsets of $\{ z | r < |z| < R \}$, then again take the compact set $\{ z | r_1 \leq |z| \leq r_2 \} \subseteq \{ z | r < |z| < R \}$, and $\{ f_{n_k} \}$ converges uniformly to $\tilde{f}(z)$ on it.

Thus, since $|\tilde{f}(z)| \leq M$ on $\{ z | r_1 \leq |z| \leq r_2 \}$, we know that for large enough n_k, $|f_{n_k}(z)| \leq 2M$ on $\{ z | r_1 \leq |z| \leq r_2 \}$. Next, by the similar argument as above, as well as the maximal modulus theorem, we have that $|f(z)| \leq 2M$ on $\{ z | |z| \geq n_{k_0} r_1 \}$, which means that f is bounded on \mathbb{C}, so we conclude that f is constant.

In sum, f can be either polynomial or constant, which depends on uniform divergence or uniform convergence.