1 Normal coordinates

The existence of the normal coordinates is as follows: For each point \(p \in M \), there exists the normal coordinate \((U, x^1, \ldots, x^m) \) at \(p \), i.e. we have \(x^i(p) = 0 \), \(g_{ij}(p) = \delta_{ij} \) and \(\Gamma^k_{ij}(p) = 0 \) for \(1 \leq i, j, k \leq m \).

2 Laplacian-Beltrami operator, the musical isomorphism

- **Musical isomorphism:** \(\omega(Y) = g(X,Y) \) gives the map between \(X \) and \(\omega \). Flat \(\flat \) is the map \(X \rightarrow \omega, \# \) is the inverse map, i.e. \(X^\flat(Y) = g(X,Y) \) and \(\omega(Y) = g(\omega^\#, Y) \) for every vector field \(Y \).

- **The divergence operator.** \(div(X) := tr(\nabla X) \) and \(\delta \alpha = -tr(\nabla \alpha) \) (the co-differential of \(\alpha \)) where \(\nabla X \) is the endormorphism \(Y \rightarrow \nabla_Y X \) and the \(\nabla \alpha \) is a covariant two-tensor, where the trace is computed with respect to the Riemannnian metric. In the local frame \(\{e_i\}_{i=1}^n \), write
 \[
 \nabla_{e_i}X = \sum_{j} (\nabla_{e_i}X)^j e_j.
 \]
 then
 \[
 div(X) = \sum_{i=1}^n (\nabla_{e_i}X)^i.
 \]
 To get \(\delta \alpha \), write
 \[
 \nabla_{e_i}\alpha = \sum_{j} (\nabla_{e_i}\alpha)_j e^*_j.
 \]
 Lift the index by taking \(g^{ik} \) to get \(\sum_{j=1}^n (\nabla_{e_i}\alpha)_j g^{ik} \), then take the trace by taking \(k = i \), so we get
 \[
 \delta \alpha = - \sum_{i,j=1}^n g^{ij}(\nabla_{e_i}\alpha)_j.
 \]
 Using the "musical isomorphism", these two notations can be viewed as equivalent (In fact, \(\delta(X^\flat) = -div(X) \). and \(div(\alpha^\#) = -\delta \alpha \).
• The gradient of f. Let $f \in C^\infty(M)$, define a tangent vector field $\text{grad}(f) \in \Gamma(TM)$, by

$$g(\text{grad}(f), X) = df(X) = X(f),$$

for every smooth tangent vector field X. The tangent vector field $\text{grad}(f)$ is called the gradient of f. In terms of local coordinate $(U; x^i)$,

$$\text{grad}(f) = \sum_{j=1}^m \left(\sum_{i=1}^m g^{ij} \frac{\partial f}{\partial x^i} \right) \frac{\partial}{\partial x^j},$$

where $g^{ij} = g(\partial/\partial x^i, \partial/\partial x^j), (g^{ij}) = (g_{ij})^{-1}$.

We have

$$(\text{grad}(f))^\flat = df.$$

• Beltrami-Laplace operator. Let $f \in C^\infty(M)$, define $\triangle f = \text{div} (\text{grad}(f))$. It is called the Beltrami-Laplace operator. The operator $\triangle f = \text{div} \circ \text{grad} : C^\infty(M) \to C^\infty(M)$ is a very important differential operator. From above we We have

$$\triangle f = -\delta df.$$

3 Some Formulas

In this notes, we always assume that M is a Riemannian manifold with the Levi-Civita connection ∇, and $X, Y, ...$ are smooth vector fields.

• A basis formula for d. Let (M, g) be a Riemannian manifold with the Levi-Civita connection ∇. Let $\{e_i\}$ be a local frame field on M (i.e. a basis for $\Gamma(U, TM)$) and $\{\omega^i\}$ be its dual, i.e. $\omega^j(e_i) = \delta^j_i$. Then, for every smooth differential r-form θ,

$$d\theta = \sum_i \omega^j \wedge \nabla_{e_i} \theta. \quad (1)$$

Proof: First notice that it is independent of the choice of coordinates. So we choose normal coordinates x^i, i.e. we have $x^i(p) = 0, g_{ij}(p) = \delta_{ij}$ and $\Gamma^k_{ij}(p) = 0$ for $1 \leq i, j, k \leq m$. Let $\{e_i\}$ is a local orthonormal
frame field on M with $e_i(p) = \frac{\partial}{\partial x_i}|_p$, and let $\{\omega^j\}$ be the dual to $\{e_i\}$. We claim that

$$(\nabla_{e_i} \omega^j)(p) = 0.$$

In fact, since $\delta_{jk} = \omega^j(e_k) = (e_k, \omega^j)$, we have

$$d\delta_{jk} = 0 = (\nabla e_k, \omega^j) + (e_k, \nabla \omega^j),$$

i.e. $\nabla \omega^j(e_k) = \omega^j(\nabla e_k)$, hence

$$\nabla_{e_i} \omega^j = -\sum_{k=1}^{m} \Gamma^j_{ik} \omega^k.$$

Thus we get, using $\Gamma^j_{ik}(p) = 0$,

$$(\nabla_{e_i} \omega^j)(p) = 0.$$

Therefore the claim holds.

Now, since $\nabla_{\partial/\partial x^j} dx^j = 0$, we have, for $\theta = f dx^{i_1} \wedge \cdots \wedge dx^{i_r}$,

$$\sum_i \omega^j \wedge \nabla_{e_i} \theta = \sum_i \frac{\partial f}{\partial x_i} dx^i \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_r} = d\theta.$$

Interior product For any vector field X, $\iota(X)$ sends r-form to $r - 1$ defined by, for every r-form ω and vector fields Y_1, \ldots, Y_{r-1},

$$(\iota(X)\omega)(Y_1, \ldots, Y_{r-1}) = \omega(X, Y_1, \ldots, Y_{r-1}).$$

Let η be its volume form of M. For every smooth tangent vector field X,

$$d(\iota(X)\eta) = \text{div}(X)\eta,$$

where $\iota(X)$ is the interior product.

Proof: By definition, $\eta = \sqrt{G} dx^1 \wedge \cdots \wedge dx^m$, we claim $\iota(X)\eta = \omega$ where

$$\omega = \sum_{i=1}^{m} (-1)^{i+1} \sqrt{G} X^i dx^1 \wedge \cdots \wedge dx^i \wedge \cdots \wedge dx^m.$$
We now prove it. Indep. of the choice of coordinates. Choose normal coordinates x^i. Then, at the point p, $\eta = dx^1 \wedge \cdots \wedge dx^m$ and $X = \sum_{j=1}^m X^j e_j$, hence

$$\iota(e_j)(\omega^1 \wedge \cdots \wedge \omega^m) = (-1)^{j+1} \omega^1 \wedge \cdots \hat{\omega}^j \wedge \cdots \wedge \omega^m.$$

This proves the claim. The rest of proof follows easily.

- **Divergence theorem:** Let (M, g) be a compact oriented Riemannian manifold, then, for every smooth tangent vector field X,

$$\int (\text{div} X) \eta = 0,$$

where η is the volume form.

4 Hodge-Laplacian Operator

We first extend the codifferential operator δ to acting on r-forms.

- **Global inner product for differential forms:** We first define the inner product for differential forms. Let ϕ, ψ are two r-forms. Let (U, x^t) be a local coordinate. We write

$$\phi|_U = \frac{1}{r!} \phi_{i_1 \cdots i_r} dx^{i_1} \wedge \cdots \wedge dx^{i_r},$$

$$\psi|_U = \frac{1}{r!} \psi_{j_1 \cdots j_r} dx^{j_1} \wedge \cdots \wedge dx^{j_r}.$$

We define, the inner product $< , >$ of ϕ, ψ as

$$< \phi, \psi > = \frac{1}{r!} \phi^{i_1 \cdots i_r} \psi_{i_1 \cdots i_r} = \sum_{i_1 < \cdots < i_r} \phi^{i_1 \cdots i_r} \psi_{i_1 \cdots i_r},$$

where $\phi^{i_1 \cdots i_r} = g^{i_1 j_1} \cdots g^{i_r j_r} \phi_{j_1 \cdots j_r}$. It is important to note that the definition is independent of the choice of local coordinates. We also have $< \phi, \phi > \geq 0$ and $< \phi, \phi > = 0$ if and only if $\phi = 0$.

We now define the **global** inner product of ϕ, ψ as

$$(\phi, \psi) = \int_M < \phi, \psi > \eta,$$

where η is the volume form of M.
• **The exterior differential operator** d and its co-operator: Denote by $\Lambda^r(M)$ the set of smooth r-forms on M. Let $(\ , \)$ be the (global) inner product defined above. As the formal adjoint operator of the exterior differential operator d, the codifferential operator $\delta : \Lambda^{r+1}(M) \to \Lambda^r(M)$ is defined by, for every $\phi \in \Lambda^r(M), \psi \in \Lambda^{r+1}(M)$,

$$(d\phi, \psi) = (\phi, \delta \psi).$$

• **Hodge-star operator** $*$: In order to find the expression of the codifferential operator δ, we introduce the Hodge-star operator $*$, which is an isomorphism $* : \Lambda^r(M) \to \Lambda^{m-r}(M)$ defined by, for every $\phi, \eta \in \Lambda^r(M)$,

$$\phi \wedge (*\psi) = (\phi, \psi) \eta.$$ Let ω be a r-form. Let (U, x^i) be a local coordinate. We write

$$\omega|U = \frac{1}{r!} \sum_{i_1, \ldots, i_r} a_{i_1 \ldots i_r} dx^{i_1} \wedge \cdots \wedge dx^{i_r}.$$ Then

$$*\omega = \frac{\sqrt{G}}{r!(m-r)!} \delta^{1 \ldots m}_{i_1 \ldots i_r} a^{i_1 \ldots i_r} dx^{i_{r+1}} \wedge \cdots \wedge dx^{i_m},$$

where

$$a^{i_1 \ldots i_r} = g^{i_1 j_1} \cdots g^{i_r j_r} a_{j_1 \ldots j_r},$$

and $\delta^{1 \ldots m}_{i_1 \ldots i_m}$ is the Levi-Civita permutation symbol, i.e. $\delta^{1 \ldots m}_{i_1 \ldots i_m} = 1$ if $(i_1 \ldots i_m)$ is an even permutation of $(1 \ldots m)$, $\delta^{1 \ldots m}_{i_1 \ldots i_m} = -1$ if $(i_1 \ldots i_m)$ is an odd permutation of $(1 \ldots m)$, $\delta^{12 \ldots m}_{1 \ldots m} = 0$ otherwise. It can be shown that $*\omega$ is independent of the choice of local coordinates. So $*\omega$ is a globally defined $(m-r)$-form (it can be regarded as an alternative definition). The operator $*$ which sends r-forms to $(m-r)$-forms.

It has the following properties, for any r-forms ϕ and ψ:

1. $\phi \wedge *\psi = (\phi, \psi) \eta$,
2. $*\eta = 1, *1 = \eta$,

5
Expression of δ in terms of the Hodge-Star operator. Define
\[\delta = (-1)^{mr+1} \circ d \circ \ast : \Lambda^{r+1}(M) \to \Lambda^r(M), \]
where $\Lambda^r(M)$ is the set of smooth r-forms, is called the \textit{codifferential operator}. It is easy to verify that $\delta \circ \delta = 0$. We also have the following very important property for δ: For $\phi \in \Lambda^r(M), \psi \in \Lambda^{r+1}(M)$, we have
\[(d\phi, \psi) = (\phi, \delta \psi), \]
i.e. δ is \textit{conjugate} to d. So $(-1)^{mr+1} \circ d \circ \ast$ is the expression of the \textit{co-differential operator} δ.

\textit{Proof.} Note
\[
d(\phi \wedge \ast \psi) = d\phi \wedge \ast \psi + (-1)^r \phi \wedge d(\ast \psi)
\]
\[
= d\phi \wedge \ast \psi + (-1)^r(-1)^{mr+r} \phi \wedge (\ast d \ast \psi)
\]
\[
= d\phi \wedge \ast \psi - \phi \wedge \ast \delta \psi.
\]
Then desired identity is obtained by applying the Stokes theorem.

Another expression of the co-differential operator δ: Let $\{e_i\}$ be a local frame field on M compatible with the orientation of M. Let $g_{ij} = g(e_i, e_j)$, and $(g^{ij}) = (g_{ij})^{-1}$. Then the codifferential operator δ can be written as
\[
\delta \alpha = - \sum_{i,j=1}^m g^{ij} (\nabla_{e_i} \alpha), \quad \text{for every} \quad \alpha \in \Lambda^r(M).
\]

If $\{e_i\}$ is orthonormal, then we can write
\[
\delta = - \sum_{j=1}^m \iota(e_j) \nabla_{e_j},
\]
(2)
where $i(X)$ is the interior product operator, i.e. for every $\alpha \in \Lambda^r(M)$, and for every tangent vector fields X_1, \ldots, X_{r-1}.

$$\delta\alpha(X_1, \ldots, X_{r-1}) = -\sum_{j=1}^{m} \iota(e_j) (\nabla_{e_j} \alpha)(X_1, \ldots, X_{r-1})$$

$$= -\sum_{j=1}^{m} (\nabla_{e_j} \alpha)(e_j, X_1, \ldots, X_{r-1}).$$

Proof: For $p \in M$, choose the normal coordinate (U, x^1, \ldots, x^m) at p. Let $\{e_i\}$ is a local orthonormal frame field on M with $e_i(p) = \frac{\partial}{\partial x_i}|_p$, and let $\{\omega^j\}$ be the dual to $\{e_i\}$. Then

$$(\nabla_{e_j} \omega^j)(p) = 0.$$ To prove

$$\delta(\alpha) = -\sum_{j=1}^{m} \iota(e_j) (\nabla_{e_j} \alpha). \quad (3)$$

We need only to verify it at each point $p \in M$. Since the operator is linear, without loss of generality, we assume that

$$\alpha = f \omega^1 \wedge \cdots \wedge \omega^r.$$ Hence

$$\nabla_{e_j} \alpha = \nabla_{e_j} (f \omega^1 \wedge \cdots \wedge \omega^r) + f \nabla_{e_j} (\omega^1 \wedge \cdots \wedge \omega^r)$$

$$= e_j(f) \omega^1 \wedge \cdots \wedge \omega^r + f \nabla_{e_j} (\omega^1 \wedge \cdots \wedge \omega^r).$$

Using $(\nabla_{e_j} \omega^j)(p) = 0$, (only) at the point p, we have

$$\nabla_{e_j} \alpha = e_j(f) \omega^1 \wedge \cdots \wedge \omega^r.$$ Hence, at the point p, we have

$$\iota(e_j)(\nabla_{e_j} \alpha) = e_j(f)(\iota(e_j)(\omega^1 \wedge \cdots \wedge \omega^r)).$$

Because

$$\iota(e_j)(\omega^1 \wedge \cdots \wedge \omega^r) = (-1)^{j+1} \omega^1 \wedge \cdots \wedge \hat{\omega}^j \wedge \cdots \wedge \omega^r,$$
we have
\[\iota(e_j)(\nabla e_j \alpha) = (-1)^{j+1} e_j(f) \omega^1 \wedge \cdots \wedge \hat{\omega}^j \wedge \cdots \wedge \omega^r. \]

This tells us, at the point \(p \), that
\[-\sum_{j=1}^{m} \iota(e_j)(\nabla e_j \alpha) = -\sum_{j} (-1)^{j+1} e_j(f) \omega^1 \wedge \cdots \wedge \hat{\omega}^j \wedge \cdots \wedge \omega^r. \quad (4) \]

We now calculate the left-hand side. By defintion, \(\delta = (-1)^{n(r+1)+1} \star d \star \)
We have,
\[\delta(\alpha) = (-1)^{n(r+1)+1} \star d \star (\alpha) = (-1)^{n(r+1)+1} \star d \star (f \omega^1 \wedge \cdots \wedge \omega^r) \]
\[= (-1)^{n(r+1)+1} \star d(f \omega^{r+1} \wedge \cdots \wedge \omega^m) \]
\[= (-1)^{n(r+1)+1} \star (\sum_j e_j(f) \omega^j \wedge \omega^{r+1} \wedge \cdots \wedge \omega^m) \]

Note that
\[\star (\omega^j \wedge \omega^{r+1} \wedge \cdots \wedge \omega^m) = (-1)^{(r-1)(n-r-1)+(r-j)} \omega^1 \wedge \cdots \wedge \hat{\omega}^j \wedge \cdots \wedge \omega^r, \]
hence
\[\delta(\alpha) = \sum_j (-1)^{n(r+1)+1} (-1)^{(r-1)(n-r-1)+(r-j)} e_j(f) \omega^1 \wedge \cdots \wedge \hat{\omega}^j \wedge \cdots \wedge \omega^r \]
\[= \sum_j (-1)^j e_j(f) \omega^1 \wedge \cdots \wedge \hat{\omega}^j \wedge \cdots \wedge \omega^r. \]

Comparing the above identity with (4), we conclude that (2) holds at every point \(p \). Hence the theorem holds.

- **Hodge-Laplace operator.** We define the Hodge-Laplace operator
 \[\tilde{\Delta} = d \delta + \delta d : \Lambda^r(M) \to \Lambda^r(M). \]

For \(f \in C^\infty(M) \), then \(\delta(f) = 0 \), so
\[\tilde{\Delta}(f) = \delta(df) = -\star d \star df, \quad \tilde{\Delta} f \eta = \star \tilde{\Delta} f = -d \star df. \]

Let \((U, x^i)\) be a local coordinate, then
\[df|_U = \frac{\partial f}{\partial x^i} dx^i, \]
\[
*df|_U = \frac{\sqrt{G}}{(m-1)!} \delta_{1...m}^{i_1...i_m} g^{i_1j} \frac{\partial f}{\partial x^j} dx^{i_2} \wedge \cdots \wedge dx^{i_m}
\]

\[
= \sqrt{G} \sum_{i=1}^{m} (-1)^{i+1} g^{i_2j} \frac{\partial f}{\partial x^j} dx^1 \wedge \cdots \wedge dx^i \wedge \cdots \wedge dx^m.
\]

Hence

\[
(\tilde{\Delta} f)|_U = -d(*df)|_U = -\frac{\partial}{\partial x^i} \left(\sqrt{G} g^{i_2j} \frac{\partial f}{\partial x^j} \right) dx^1 \wedge \cdots \wedge dx^m
\]

This tells us

\[
\tilde{\Delta} f = -\Delta f.
\]

So \(-\tilde{\Delta}\) when acts on \(C^\infty(M)\) is the Beltrami-Laplace operator \(\Delta\).

5 Bochner-Weitzenbock Formulas

The Bochner-Weitzenbock Formulas, sometimes referred to as the Bochner technique, is one of the most important technique in the theory of geometric analysis.

Bochner Formula: For \(f \in C^3(M)\),

\[
\frac{1}{2} \Delta |\text{grad} f|^2 = |\text{Hess} f|^2 + \langle \text{grad} f, \text{grad}(\Delta f) \rangle + \text{Ric}(\text{grad} f, \text{grad} f),
\]

where \(\text{grad} f\) is the gradient of \(f\) which is given by \(\langle \text{grad} f, Y \rangle = Y(f)\), the \(\text{Hess}(f)\) is the two tensor \(\nabla(\nabla f)\), which is defined by for two vector fields \(X, Y\),

\[
\text{H}(f)(X, Y) = \langle \nabla_X (\text{grad} f), Y \rangle
\]

and the Laplacian-Beltrami operator is \(\Delta f = \text{tr}(\text{Hess}(f))\).

Proof: Fix \(p \in M\), let \(\{X_i\}_{i=1}^m\) be a local o.n. frames such that \(\langle X_i, X_j \rangle = \delta_{ij}, \nabla_{X_i} X_j(p) = 0\). Computation at \(p\) gives

\[
\frac{1}{2} \Delta |\text{grad} f|^2 = \frac{1}{2} X_i X_i \langle \text{grad} f, \text{grad} f \rangle = \sum_i X_i \langle \nabla_{X_i} \text{grad} f, \text{grad} f \rangle
\]
\[\sum_i X_i \text{Hess}(f)(X_i, \text{grad} f) = \sum_i X_i \text{Hess}(f)(\text{grad} f, X_i) \quad \text{(Hessian is symmetric)} \]

\[= \sum_i X_i < \nabla_{\text{grad} f}(\text{grad} f), X_i > \]

\[= \sum_i < \nabla X_i \nabla_{\text{grad} f}(\text{grad} f), X_i > + < \nabla_{\text{grad} f}(\text{grad} f), \nabla X_i > \]

\[= \sum_i < \nabla X_i \nabla_{\text{grad} f}(\text{grad} f), X_i > \quad \text{the other term vanishes at } p \]

\[= \sum_i < R(X_i, \text{grad} f \text{grad} f), X_i > + \sum_i < \nabla_{\text{grad} f} \nabla X_i (\text{grad} f), X_i > \]

\[+ \sum_i < \nabla_{[X_i, \text{grad} f]} \text{grad} f, X_i > . \]

The first term is by definition \(\text{Ric}(\text{grad} f, \text{grad} f) \); the second term is

\[\sum_i (\text{grad} f) < \nabla X_i \text{grad} f, X_i > - < \nabla X_i \text{grad} f, \nabla_{\text{grad} f} \nabla X_i > \]

\[= (\text{grad} f) \sum_i < \nabla X_i \text{grad} f, X_i > - 0 \; \text{at} \; p \]

\[= (\text{grad} f) (\Delta f) < \text{grad} f, \text{grad} (\Delta f) > \]

and the third term is

\[\sum_i \text{Hess}(f)([X_i, \text{grad} f], X_i) = \sum_i \text{Hess}(f)(\nabla X_i \text{grad} f - \nabla_{\text{grad} f} X_i, X_i) \]

\[= \sum_i \text{Hess}(f)(\nabla X_i \text{grad} f, X_i) - \text{Hess}(f)(\nabla_{\text{grad} f} X_i, X_i) \]

\[= \sum_i \text{Hess}(f)(\nabla X_i \text{grad} f, X_i) - 0 \; \text{at} \; p \]

\[= \sum_i \text{Hess}(f)(X_i, \nabla X_i \text{grad} f) \]

\[= \sum_i < \nabla X_i \text{grad} f, \nabla X_i \text{grad} f > = |\text{Hess}(f)|^2. \]

The theorem follows.

We now look for the differential form version of the Bochner Formula. The goal is to prove the following theorem:

Bochner’s formula. Let \(e_1, \ldots, e_m \) be a local orthonormal frame field, with the dual frame field \(\omega^1, \cdots, \omega^m \). Let \(\eta \) be a \(r \)-form on \(M \). Then

\[
\frac{1}{2} \Delta |\eta|^2 = <\nabla \eta, \eta> - |\nabla \eta|^2 + <\omega^i \wedge \iota(e_j) R(e_i, e_j) \eta, \eta>.
\]
Remark: The above Δ is the Laplacian-Hodge operator, which is different (which restricting to the functions) from the Laplacian-Beltrem operator by a negative sign.

- The Weitzenbock formula above the expression of Δ: We first consider the function case. For functions, i.e. 0-form f, by definition, $g(\text{grad}(f), Y) = Y(f)$ and $df(Y) = Y(f)$, so $\text{grad}(f)\flat = df$. Hence, from above, $\delta(df) = -\text{div}(\text{grad}(f))$. Thus

$$\Delta f = \delta df = -\text{div}(\text{grad}(f)) = -tr \nabla^2 f,$$

where $tr \nabla^2 := \sum_{i=1}^{m} \nabla e_i \nabla e_i$ for an orthonormal basis $\{e_i\}$. Hence, we have the Weitzenbock formula for functions:

$$\Delta f = -tr \nabla^2 f.$$

In general, let $\{e_i\}$ be a local frame for a Riemannian manifold (M, g), define

$$tr \nabla^2 : \Lambda^r(M) \to \Lambda^r(M)$$

as

$$tr \nabla^2 (\alpha) = g^{ij}(\nabla e_i \nabla e_j - \nabla \nabla e_i e_j)\alpha,$$

for every $\alpha \in \Lambda^r(M)$.

Weitzenbock formula for 1-forms: For 1-form α, we have

$$\Delta \alpha(X) = -tr \nabla^2 \alpha(X) + r(\alpha^#, X),$$

where r is the Ricci tensor of (M, g).

Proof. The right hand side is independent of the choice of our orthonormal frame field. Therefore, we only need to verify it at every point $p \in M$. To do so, we choose normal coordinates centered at p and put at p,

$$e_i = \frac{\partial}{\partial x^i}.$$
Let ω^j be its dual frame. Then, always at p,

$$\nabla e_i e_j = 0.$$

This also gives, at p,

$$\nabla e_j \omega^j = 0.$$

Using (1) and (2), we then have at p,

$$\begin{align*}
(\delta d\alpha)(X) &= (\delta(\omega^j \wedge \nabla e_j \alpha))(X) \\
&= -((\nabla e_i (\omega^j \wedge \nabla e_j \alpha))(e_i, X) \\
&= -(\omega^j \wedge \nabla e_i \nabla e_j \alpha)(e_i, X) \\
&= -\nabla e_i \nabla e_j \alpha(X) + X^j \nabla e_i \nabla e_j \alpha(e_i).
\end{align*}$$

$$\begin{align*}
(d\delta \alpha)(X) &= (\omega^j \nabla e_j (\delta \alpha))(X) \\
&= X^j \nabla e_j (\delta \alpha) \\
&= -X^j \nabla e_j \nabla e_i \alpha(e_i).
\end{align*}$$

Hence,

$$\begin{align*}
\Delta \alpha(X) &= -tr\nabla^2 \alpha(X) + X^j \nabla e_i \nabla e_j \alpha(e_i) - X^j \nabla e_j \nabla e_i \alpha(e_i) = X^j R(e_i, e_j) \alpha(e_i),
\end{align*}$$

where where $X = X^k e_k$ and

$$R(e_i, e_j) \alpha = (\nabla e_i \nabla e_j - \nabla e_j \nabla e_i) \alpha.$$

We now claim that

$$X^j R(e_i, e_j) \alpha(e_i) = r(\alpha^#, X).$$

In fact, write $\alpha = \alpha_k \omega^k$, then $\alpha^# = \alpha_k e_k$, and

$$X^j R(e_i, e_j) \alpha(e_i) = X^j \alpha_k R(e_i, e_j) \omega^k(e_i)$$

$$= X^j \alpha_k R(e_i, e_j) \omega^k(e_i)$$

$$= -X^j \alpha_k R(kmji) \omega^m(e_i)$$

$$= -X^j \alpha_k R_{klij}$$

$$= -r(\alpha^#, X).$$
This proves the statement.

We now derive the formula for a general r-form. For the purpose, we define the second covariant derivative as

$$\nabla^2_{XY} = \nabla_X \nabla_Y - \nabla_{\nabla_X Y}.$$

Weitzenbock’s formula. Let e_1, \ldots, e_m be a local orthonormal frame field, with the dual frame field $\omega^1, \ldots, \omega^m$. Then the Hodge-Laplace operator Δ acting on r-differential forms is given by

$$\Delta = -\sum_{i=1}^m \nabla^2_{e_i e_i} - \sum_{i,j} \omega^i \wedge \iota(e_j) R(e_i, e_j).$$

Proof. The right hand side is independent of the choice of our orthonormal frame field. Therefore, we only need to verify it at every point $p \in M$. To do so, we choose normal coordinates centered at p and put at p,

$$e_i = \frac{\partial}{\partial x^i}.$$

Then, always at p,

$$\nabla_{e_i} e_j = 0.$$

Hence,

$$\nabla^2_{e_i e_i} = \nabla_{e_i} \nabla_{e_i},$$

and also

$$[\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}] = 0.$$

Therefore

$$R(e_i, e_j) = \nabla_{e_i} \nabla_{e_j} - \nabla_{e_j} \nabla_{e_i}.$$

Using (1) and (2), we then have at p,

$$\delta d = -\iota(e_j) \nabla_{e_j} (\omega^i \wedge \nabla_{e_i})$$

$$= -\iota(e_j) (\omega^i \wedge \nabla_{e_j} \nabla_{e_i})$$

$$= -\nabla_{e_j} \nabla_{e_j} \omega^i + \omega^i \wedge \iota(e_j) \nabla_{e_j} \nabla_{e_i}.$$
To calculate $d\delta$, we note that, since $\nabla_{e_i}\omega^j = 0$,

$$\iota(e_j)\nabla_{e_i} = \nabla_{e_i}\iota(e_j).$$

Hence,

$$d\delta = -\omega^i \wedge \nabla_{e_i}(\iota(e_j)\nabla_{e_j}) = -\omega^i \wedge \iota(e_j) \nabla_{e_i} \nabla_{e_j}.$$

So

$$\triangle = d\delta + \delta d = -\sum_{i=1}^{m} \nabla^2_{e_i e_i} - \sum_{i,j} \omega^i \wedge \iota(e_j) R(e_i, e_j).$$

This proves the statement.

Remark: On functions, i.e. 0-form f, we have

$$R(e_i, e_j)f = f R(e_i, e_j)1 = 0.$$

Hence, we have, for a local orthonormal frame field,

$$\triangle f = -\sum_{i=1}^{m} \nabla^2_{e_i e_i} f.$$

• **Bochner’s formula:** We first prove the following theorem.

Theorem. For any smooth differential form η (r-forms),

$$-\triangle |\eta|^2 = 2|\nabla \eta|^2 + 2 < \sum_i \nabla^2_{e_i e_i} \eta, \eta >,$$

where

$$|\nabla \eta|^2 = \sum_i |\nabla_{e_i} \eta|^2.$$

Remark: Consider the Euclidean case \mathbb{R}^2 and $\eta = f$. Then

$$-\triangle |f|^2 = 2f_x f_x + 2f_y f_y + 2f_{xx} f + 2f_{yy} f = 2|\nabla f|^2 + 2 < f_{xx} + f_{yy}, f >.$$
The theorem is motivated by it, and can be derived by direct computation. We only verify it for 1-form η. We only need to verify it at every point $p \in M$. Let $\{e_1, \ldots, e_m\}$ be a local orthonormal frame fields and $\{\omega_1, \ldots, \omega_m\}$ be the coframe fields. Write

$$\eta = \sum_i \eta_i \omega^i,$$

then, at point p, using the formula of \triangle for smooth functions,

$$-\frac{1}{2} \triangle |\eta|^2 = \sum_i <\nabla_{e_i} \nabla_{e_i} \eta, \eta > + \sum_i |\nabla_{e_i} \eta|^2.$$

This finishes the proof.

Combining the above theorem with the Weitzenbock’s formula for r-forms, we get

Bochner’s formula. Let e_1, \ldots, e_m be a local orthonormal frame field, with the dual frame field $\omega^1, \ldots, \omega^m$. Let η be a r-form on M. Then

$$\frac{1}{2} \triangle |\eta|^2 = <\triangle \eta, \eta > - |\nabla \eta|^2 + <\omega^i \wedge \iota(e_j) R(e_i, e_j) \eta, \eta >.$$

Proof: Choose normal coordinate. From above,

$$\frac{1}{2} \triangle |\eta|^2 = -|\nabla \eta|^2 - \sum_i <\nabla^2_{e_i} \eta, \eta >.$$

And from the Weitzenbock’s formula,

$$\Delta \eta = -\sum_{i=1}^{m} \nabla^2_{e_i} \eta - \sum_{i,j} \omega^i \wedge \iota(e_j) R(e_i, e_j) \eta.$$

Hence,

$$-\sum_{i=1}^{m} \nabla^2_{e_i} \eta = \Delta(\eta) + \sum_{i,j} \omega^i \wedge \iota(e_j) R(e_i, e_j) \eta.$$
Sbustituting it into above, we get

\[\frac{1}{2} \Delta |\eta|^2 = <\Delta \eta, \eta> - |\nabla \eta|^2 + <\omega^i \wedge \iota(e_j)R(e_i, e_j) \eta, \eta>. \]

For any smooth one-form, we get

Corollary Let \(e_1, \ldots, e_m \) be a local orthonormal frame field, with the dual frame field \(\omega^1, \ldots, \omega^m \). Let \(\eta \) be a smooth one-form, then

\[\frac{1}{2} \Delta |\eta|^2 = <\Delta \eta, \eta> - |\nabla \eta|^2 - r(\eta, \eta), \]

where \(|\nabla \eta|^2 := \sum_i <\nabla_{e_i} \eta, \nabla_{e_i} \eta> \), and writing \(\eta = \sum f_i \omega^i \),

\[r(\eta, \eta) := \sum_{i,j} r(f_i e_i, f_j e_j) = \sum_{i,j} f_i f_j r(e_i, e_j). \]

Proof: We only need to compute, for 1-form \(\eta \),

\[<\eta, \omega^i \wedge \iota(e_j)R(e_i, e_j) \eta> = <f_i \omega^i, \omega^j \wedge \iota(e_j)R(e_i, e_j) f_k \omega^k> \]
\[= -f_i f_k <\omega^i, \omega^j \wedge \iota(e_j)R(e_i, e_j) \omega^k> \]
\[= -f_i f_k <\omega^i, \omega^j \wedge \iota(e_j)R_{k\langle i\rangle} \omega^m> \]
\[= -f_i f_k <\omega^i, R_{k\langle i\rangle j} \omega^j> \]
\[= -f_i f_k R_{k\langle i\rangle j} \]
\[= -f_i f_k R_{kl} \]
\[= -r(\eta, \eta). \]

Theorem (Bochner) Let \(M \) be a compact Riemannian manifold. If \(M \) has positive Ricci curvature, then \(M \) has no nontrivial harmonic 1-form, thus,

\[H^1_{\text{dR}}(M, \mathbb{R}) = \{0\}. \]
Proof. We integrate the formula above, and using the divergence theorem,

\[0 = -\int_M \Delta |\omega| \eta = 2 \int_M (|\nabla \omega|^2 + r(\omega, \omega)) \eta. \]

By the assumption, the integrand on the right hand side is pointwise nonnegative. It therefore has to vanish identically. Hence \(r(\omega, \omega) = 0 \), which implies that \(\omega = 0 \) since the Ricci curvature on \(M \) is positive.

This proves the statement.

6 Proof of Garding’s inequality

Theorem Garding’s inequality: There exist constant \(c_1, c_2 > 0 \), such that for every \(f \in \Lambda^*(M) \), we have

\[(\Delta f, f) \geq c_1 \|f\|^2_1 - c_2 \|f\|^2_0. \]

Proof. For every \(f \in \Lambda^*(M) \), from Bochner’s formula,

\[< \Delta f, f > = \frac{1}{2} \Delta |f|^2 + |\nabla f|^2 - < \omega^i \wedge \iota(e_j) R(e_i, e_j) f, f > \geq \frac{1}{2} \Delta |f|^2 + |\nabla f|^2 - a_1 |f|^2, \]

where \(a_1 \) is a constant independent of \(f \). Note that the last inequality holds because \(< \omega^i \wedge \iota(e_j) R(e_i, e_j) f, f > \) does not depend on the derivative(differential) of \(f \) (Note: although \(R(e_i, e_j) \) depends on the derivative(differential), but since \(R(e_i, e_j)(\alpha f) = \alpha R(e_i, e_j) f \) for every \(\alpha \in C^\infty(M) \), so \(< \omega^i \wedge \iota(e_j) R(e_i, e_j) f, f > \) is a quadratic form on \(\Lambda^*(M) \), its coefficients only depend on \(M \), and since \(M \) is compact, such constant \(a_1 \) exists). Taking the integration on \(M \) and by definition, we get

\[(\Delta f, f) \geq c_1 \|f\|^2_1 - c_2 \|f\|^2_0 + \frac{1}{2} \int_M \Delta |f|^2 \eta. \]

But by Stokes theorem,

\[\int_M \Delta |f|^2 \eta = 0. \]

This proves the Garding’s inequality.
7 Hodge Theory

In this section, we denote the Hodge-Laplace operator by \triangle. Let $\mathcal{H}^r(M) = \ker \triangle$ and $\mathcal{H} = \bigoplus \mathcal{H}^r(M)$. Let $\Lambda^r(M) = \bigoplus_{r=0}^{\infty} \Lambda^r(M)$.

The Hodge theorem Let (M, g) be an n-dimensional compact oriented Riemannian manifold without boundary. For each integer $0 \leq r \leq n$, $\mathcal{H}^r(M)$ is finite dimensional, and there exists a bounded linear operator $G : \Lambda^r(M) \to \Lambda^r(M)$ (called Green’s operator) such that
(a) $\ker G = \mathcal{H}$;
(b) G keeps types, and commute with the operators \ast, d and δ;
(c) G is a compact operator, i.e. the closure of image of an arbitrary bounded subset of $\Lambda^r(M)$ under G is compact;
(d) $I = \mathcal{H} + \triangle \circ G$, where I is the identity operator, and \mathcal{H} is the orthogonal projection from $\Lambda^r(M)$ to \mathcal{H} with respect to the inner product $(\ , \)$.

From the Hodge theorem, since $I = \mathcal{H} + \triangle \circ G$, we can write (called the Hodge-decomposition)

Corollary (Hodge-decomposition)

$$\Lambda^r(M) = \triangle (\Lambda^r(M)) \oplus \mathcal{H}^r(M)$$

$$= d\delta \Lambda^r(M) \oplus \delta d \Lambda^r(M) \oplus \mathcal{H}^r(M)$$

$$= d\Lambda^{r-1}(M) \oplus \delta \Lambda^{r+1}(M) \oplus \mathcal{H}^r(M).$$

To prove this theorem, basically we need to show two things: (1): \mathcal{H} is a finite dimensional vector space, (2): Write $\Lambda^r(M) = \mathcal{H} \oplus \mathcal{H}^\perp$, where \mathcal{H}^\perp is the orthogonal complement of \mathcal{H} with respect to $(\ , \)$, we need to show that $\triangle : \mathcal{H}^\perp \to \mathcal{H}^\perp$ and \triangle is one-to-one and onto. (note that: for every $\phi \in \Lambda^r(M)$, $\psi \in \mathcal{H}$, $(\triangle \phi, \psi) = (\phi, \triangle \psi) = 0$, so $\triangle \phi \in \mathcal{H}^\perp$. Hence $\triangle : \mathcal{H}^\perp \to \mathcal{H}^\perp$). Once (1) and (2) are proved, then we take $G|_{\mathcal{H}} = 0$, and $G|_{\mathcal{H}^\perp} = \triangle^{-1}$. This will prove the Hodge theorem.

To do so, we first note that the operator \triangle is positive (i.e. its eigenvalues are all positive). In fact, write $P = d + \delta$. Then it is easy to verify that both P are \triangle are self-dual, and $\triangle = P^2$. Hence

$$(\triangle \phi, \phi) = (P \phi, P \phi) = (d \phi, d \phi) + (\delta \phi, \delta \phi) \geq 0.$$
So \triangle is an elliptic self-adjoint operator. We therefore use the “theory of elliptic (self-adjoint) differential operator”. To do so, we need first introduce the concept of “Sobolov space”.

Let s be a nonnegative integer. Define the inner product $(\ , \)_s$ on $\bigwedge^*(M)$ as follows: for every $f_1, f_2 \in \bigwedge^*(M)$, define
\[
(f_1, f_2)_s = \sum_{k=0}^{s} \int_M <\nabla^k f_1, \nabla^k f_2 > \ast 1,
\]
where $\ast 1$ is the volume form on M. Let $H_s(M)$ be the completion of $\bigwedge^*(M)$ with respect to the Sobolov norm $\| \cdot \|_s$, which is called the ‘Sobolov space.

We use the following three facts (proofs are omitted):

- **Garding’s inequality:** There exist constant $c_1, c_2 > 0$, such that for every $f \in \bigwedge^*(M)$, we have
 \[
 (\triangle f, f) \geq c_1 \| f \|_1^2 - c_2 \| f \|_0^2.
 \]

Remark: This is a variant of so-called *Bocher technique*.

To state the second fact, we introduce the concept of weak derivative: Write $P = d + \delta$ and $\triangle = P^2$. For $\phi \in H_s(M)$ and $\psi \in H_t(M)$, we say $P\phi = \psi$(weak), if for every test form $f \in \bigwedge^*(M)$, we have $(\phi, Pf) = (\psi, f)$. In similar way, $\triangle \phi = \psi$(weak) is defined. If $\phi \in H_s(M)$, $\psi \in H_t(M)$, and $P\phi = \psi$(weak), we denote it by $P\phi \in H_t(M)$.

- **Regularity of the operator P:** If $\phi \in H_0(M)$ and $P\phi \in \bigwedge^*(M)$, then $\phi \in \bigwedge^*(M)$.

- **Rellich Lemma:** If $\{\phi_i\} \subset \bigwedge^*(M)$ is bounded in the $\| \cdot \|_1$, then it has a Cauchy subsequence with respect to the norm $\| \cdot \|_0$.

The above theorem about the **Regularity of the operator P** implies the following lemma
• The weak form of the Wyle lemma: If $\phi \in H_1(M)$, and $\Delta \phi = \psi$ (weak) with $\psi \in \Lambda^*(M)$, then $\phi \in \Lambda^*(M)$.

Proof of the Hodge Theorem. We first prove that \mathcal{H} is a finite dimensional vector space. If not, there exists an infinite orthonormal set \{\omega_1, \ldots, \omega_n, \ldots\}. By Garding’s inequality, there exist constants c_1, c_2 such that for all i, we have

$$\|\omega_i\|_1^2 \leq \frac{1}{c_1}\{(\Delta \omega_i, \omega_i) + c_2\|\omega_i\|_0^3\} = \frac{c_2}{c_1}.$$ \hspace{1cm} \text{(1)}

By Rellich Lemma, \{\omega_i\} must have a Cauchy subsequence with respect to the norm $\|\|_0$, which is impossible, since $\|\omega_i - \omega_j\|_0^2 = 2$ for $i \neq j$. This proves that \mathcal{H} is a finite dimensional vector space.

Next, write

$$\bigwedge^\ast(M) = \mathcal{H} \oplus \mathcal{H}^\perp,$$

where \mathcal{H}^\perp is the orthogonal complement of \mathcal{H} with respect to $(\ , \)$. We now prove a simpler version of Garding’s inequality:

Garding’s Lemma there exists a positive constant c_0 such that for all $f \in \mathcal{H}^\perp$, we have

$$\|f\|_1^2 \leq c_0(\Delta f, f).$$

Proof. If not, there exists a sequence $f_i \in \mathcal{H}^\perp$ with $\|f_i\|_1 = 1$ and $(\Delta f_i, f_i) \to 0$. From Rellich lemma, we assume, WLOG, that f_i is convergent with respect to $\|\|_0$, i.e. there exists $F \in H_0(M)$ such that $\lim_{i \to +\infty} \|F - f_i\|_0 = 0$. We claim that $F = 0$. In fact, from above,

$$(\Delta f_i, f_i) = \|P f_i\|_0^2 \to 0,$$

hence for every $\phi \in \Lambda^*(M)$,

$$(F, P\phi) = \lim_{i \to +\infty} (f_i, P\phi) = \lim_{i \to +\infty} (P f_i - \phi) = 0.$$

Hence $PF = 0$ (weak). From the regularity of P, we have $F \in \Lambda^*(M)$. Hence

$$\Delta F = P(PF) = 0,$$

20
so \(F \in \mathcal{H} \). Also, since \(f_i \in \mathcal{H}^\perp \), we have, for every \(\phi \in \mathcal{H} \),
\[
(F, \phi) = \lim_{i \to +\infty} (f_i, \phi) = 0,
\]
so \(F \in \mathcal{H}^\perp \). Thus \(F \in \mathcal{H} \cap \mathcal{H}^\perp \). This implies that \(F = 0 \). This means that \(\lim_{i \to +\infty} \|f_i\|_0 = 0 \). Now, by the Garding inequality, there exist constant \(c_1, c_2 > 0 \) such that
\[
(\Delta f_i, f_i) \geq c_1 \|f_i\|_1^2 - c_2 \|f_i\|_0^2.
\]
Because, from above, both \((\Delta f_i, f_i)\) and \(\|f_i\|_0^2\) converge to zero, so \(\lim_{i \to +\infty} \|f_i\|_1 = 0\), which contradicts the assumption that \(\|f_i\|_1 = 1\). This proves Garding’s lemma.

We now prove that \(\Delta : \mathcal{H}^\perp \to \mathcal{H}^\perp \) and \(\Delta \) is one-to-one and onto.

First we show that \(\Delta : \mathcal{H}^\perp \subset \mathcal{H}^\perp \). In fact, for every \(\phi \in \Lambda^*(M), \psi \in \mathcal{H} \),
\[
(\Delta \phi, \psi) = (\phi, \Delta \psi) = 0,
\]
so \(\Delta \phi \in \mathcal{H}^\perp \). To show \(\Delta \) is one-to-one, let \(\phi_1, \phi_2 \in \mathcal{H}^\perp \), and assume that \(\Delta \phi_1 = \Delta \phi_2 \). Then, from one hand, \(\phi_1 - \phi_2 \in \mathcal{H}^\perp \). On the other hand, since \(\Delta(\phi_1 - \phi_2) = 0 \), \(\phi_1 - \phi_2 \in \mathcal{H} \). Hence \(\phi_1 = \phi_2 \). It remains to show that \(\Delta \) is onto, i.e. for every \(f \in \mathcal{H}^\perp \), there exists \(\phi \in \mathcal{H}^\perp \) such that \(\Delta \phi = f \). This gets down to solve the differential equation \(\Delta \phi = f \) (with unknown \(\phi \)). Let \(B \) be the closure of \(\mathcal{H}^\perp \) in \(H_1(M) \).

From Wyle’s theorem, we only need to solve \(\Delta \phi = f \) in the weak sense, i.e. there exists \(\phi \in B \) such that, for every \(g \in \Lambda^*(M) \),
\[
(\phi, \Delta g) = (f, g).
\]
Since \(\Lambda^*(M) = \mathcal{H} \oplus \mathcal{H}^\perp \), we can write \(g = g_1 + g_2 \) where \(g_1 \in \mathcal{H}, g_2 \in \mathcal{H}^\perp \). So the above identity is equivalent to every \(g_2 \in \mathcal{H}^\perp \),
\[
(\phi, \Delta g_2) = (f, g_2).
\]
So the proof is reduced to the following statement: for every \(f \in \mathcal{H}^\perp \), there exists \(\phi \in B \) such that, for every \(g \in \mathcal{H}^\perp \),
\[
(\phi, \Delta g) = (f, g).
\]

21
We now use the **Riesz representation** theorem to prove this statement. In fact, for every $\phi, \psi \in \mathcal{H}^\perp$, define $\langle \phi, \psi \rangle = (\phi, \Delta \psi)$, and consider the linear transformation $L : B \to \mathbb{R}$ defined by $l(g) = (f, g)$ for every $g \in B$. Our goal is to show that we can extend $\langle \ , \ \rangle$ to B such that l is continuous with respect to $\langle \ , \ \rangle$ (or bounded). Then by **Riesz representation** theorem, there exists $\phi \in B$ such that, for every $g \in B$ (in particular for $g \in \mathcal{H}^\perp$),

$$l(g) = \langle \phi, g \rangle.$$

This will prove our statement. To extend $\langle \ , \ \rangle$, we compare $\langle \ , \ \rangle$ with $(\ , \)_1$. From definition, $\langle \ , \ \rangle$ is bilinear. From Garding’s inequality, for every $\phi \in \mathcal{H}^\perp$,

$$\langle \phi, \phi \rangle = (\phi, \Delta \phi) \geq \frac{1}{c_0} \|\phi\|_1^2.$$

On the other hand,

$$\langle \phi, \phi \rangle = (\phi, \Delta \phi) = \|P\phi\|_0.$$

By direct verification, we have, for every $\phi \in \Lambda^*(M)$,

$$\|P\phi\|_0^2 \leq c \|\phi\|_1^2.$$

Hence

$$\langle \phi, \phi \rangle \leq c\|\phi\|_1^2.$$

So $\langle \ , \ \rangle$ and $(\ , \)_1$ are equivalent on \mathcal{H}^\perp. So there exists an unique continuation on B, and for every $g \in B$, we have

$$\langle g, g \rangle \geq \frac{1}{c_0} \|g\|_1^2.$$

To show that l is continuous with respect to $\langle \ , \ \rangle$(or bounded), we notice that

$$|l(g)| = |(f, g)| \leq \|f\|_0 \|g\|_0 \leq \|f\|_0 \|g\|_1 \leq \sqrt{c_0} \|f\|_0 \sqrt{\langle g, g \rangle}.$$

So the claim is proved. This finishes the proof that Δ is onto.

To prove Hodge’s theorem, since, from above, $\Delta : \mathcal{H}^\perp \to \mathcal{H}^\perp$ is one-to-one and onto, we let $G : \Lambda^*(M) \to \Lambda^*(M)$ be defined as follows: $G|_{\mathcal{H}} =$
0, and $G|_{\mathcal{H}} = \triangle^{-1}$. Then we see that $\ker G = \mathcal{H}$ and $I = \mathcal{H} + \triangle \circ G$. The rest of properties are also easy to verify.

This finishes the proof.

- **Application of the Hodge Theory.** Let M be a compact manifold. Denote by $\Lambda^r(M)$ the set of all r-forms on M. Clearly $\Lambda^0(M)$ is the set of all differential functions on M. By the rule of the exterior multiplication, we see that $0 \leq r \leq n$.

The exterior differential operator is a map $d : \Lambda^r(M) \rightarrow \Lambda^{r+1}(M)$, which satisfies conditions:

(i) d is \mathbb{R}-linear;

(ii) For $f \in \Lambda^0(M)$, df is the usual differential of f, and $d(df) = 0$;

(iii) $d(\phi \wedge \psi) = d\phi \wedge \psi + (-1)^r \phi \wedge d\psi$ for any $\phi \in \Lambda^r(M)$ and any ψ.

There are three important properties for d: (a) $d^2 = 0$ (called the Poincare lemma), (b) For $\omega \in \Lambda^1(M)$ and $X,Y \in \Gamma(TM)$, we have

$$d\omega(X,Y) = X(\omega(Y)) - Y(\omega(X)) - \omega([X,Y]).$$

(c) If $F : M \rightarrow N$, then $F^* \circ d = d \circ F^*$.

A differential r-form $\phi \in \Lambda^r(M)$ is said to be **closed** if $d\phi = 0$, and $\phi \in \Lambda^r(M)$ is said to be **exact** if there exists $\eta \in \Lambda^{r-1}(M)$ such that $\phi = d\eta$. Since $d \circ d = 0$, we know that every exact form is also closed. Let $Z^r(M, \mathbb{R})$ denote the set of all (smooth) closed r-forms on M, and let $B^r(M, \mathbb{R})$ denote the set of all (smooth) exact r-forms on M. Then $B^r(M, \mathbb{R}) \subset Z^r(M, \mathbb{R})$ which allows us to form the quotient space $H^r(M, \mathbb{R}) := Z^r(M, \mathbb{R})/B^r(M, \mathbb{R})$, called the **deRham cohomology group** of dimension r. Set

$$H^r(M, \mathbb{R}) = H^0(M, \mathbb{R}) \oplus H^1(M, \mathbb{R}) \oplus \cdots \oplus H^m(M, \mathbb{R}),$$

which is an algebra with the exterior multiplication.
Theorem (the deRham Theorem) There is a natural isomorphism of $H^*(M, \mathbb{R})$ and the cohomology ring of M.

As an application of Hodge theory, we can study $H^r(M, \mathbb{R})$ using the nice representation of harmonic forms as follows

Theorem (Representing Cohomology Classes by Harmonic Forms). Each deRham cohomology class on (M, g) contains a unique harmonic representative.

Proof. Let $h : \Lambda^r(M) \to \mathcal{H}^r(M)$ be the orthogonal projection. If $\omega \in \Lambda^r(M)$ is closed, then according to the Hodge decomposition, we have

$$\omega = d\alpha + h(\omega)$$

which implies that $[\omega] = [h(\omega)] \in H^r(M, \mathbb{R})$. Since $\mathcal{H}^r(M) \perp d\Lambda^{r-1}(M)$ we see that two different harmonic forms must belong to two different deRham cohomology classes. In fact, if $\gamma_1, \gamma_2 \in \mathcal{H}^r(M)$ and $[\gamma_1] = [\gamma_2]$, then $\gamma_1 - \gamma_2 = d\alpha$. But, $d\alpha \perp (\gamma_1 - \gamma_2)$, thus $d\alpha = 0$, so $\gamma_1 = \gamma_2$. Hence $h(\omega)$ is unique in $H^r(M, \mathbb{R})$.

From the proof of the Hodge theorem, we see that $\dim \mathcal{H}^r(M) < +\infty$ if M is finite, so we get that $\dim H^r(M, \mathbb{R}) < +\infty$ if M is compact.

Let M be a compact, oriented, differentiable manifold of dimension m. We define a bilinear function

$$H^r(M, \mathbb{R}) \times H^{m-r}(M, \mathbb{R}) \to \mathbb{R}$$

by sending

$$([\phi], [\psi]) \mapsto \int_M \phi \wedge \psi.$$

Observe that the bilinear map is well-defined, i.e. if $\phi_1 = \phi_1 + d\xi$, then, by Stoke’s theorem,

$$\int_M \phi_1 \wedge \psi = \int_M \phi \wedge \psi.$$
Theorem. Poincare duality theorem. The bilinear function above is non-singular pairing and consequently determines isomorphisms of $H^{m-r}(M)$ with the dual space of $H^r(M)$:

$$H^{m-r}(M, \mathbb{R}) \simeq (H^r(M, \mathbb{R}))^*.$$

In fact, given a non-zero cohomology class $[\phi] \in H^r(M, \mathbb{R})$, we must find a non-zero cohomology class $[\psi] \in H^{m-r}(M, \mathbb{R})$, such that $([\phi], [\psi]) \neq 0$. Choose a Riemannian structure. We can assume that ϕ is harmonic, and $\phi \neq 0$. Since $*\Delta = \Delta *$, we have that $*\phi$ is also harmonic, and $*\phi \in H^{m-r}(M, \mathbb{R})$. Now,

$$([\phi], [\psi]) = \int_M \phi \wedge *\phi = ||\phi||^2 \neq 0.$$

So the statement is proved.

The r-th Betti number $\beta_r(M)$ of (M, g) is defined by

$$\beta_r(M) = \dim H^r(M, \mathbb{R}) = \dim \mathcal{H}^r.$$

Then we have

$$\beta_r(M) = \beta_{m-r}(M).$$

The Euler-Poincare characteristic number $\chi(M)$ of (M, g) is defined by

$$\chi(M) = \sum_{r=0}^{m} (-1)^r \dim H^r(M, \mathbb{R}) = \sum_{r=0}^{m} (-1)^r \beta_r(M).$$

Then, we have the statement that if $m = \dim M$ is odd, then $\chi(M) = 0$.

Another statement we can prove (will be proved later) is Let (M, g) be a compact oriented Riemannian manifold without boundary. If its Ricci curvature is positive, then

$$\beta_1(M) = \beta_{m-1}(M) = 0.$$