§5.3 Surface Theory with Differential Forms

1 Differential forms on \mathbb{R}^n, Click here to see more details

Differential forms provide an approach to multivariable calculus (Click here to see more details) that is independent of coordinates.

Let U be an open set in \mathbb{R}^n. A differential 0-form ("zero form") is defined to be a smooth function f (here smooth means that f is differentiable at any order) on U.

If $v \in \mathbb{R}^n$, then f has a directional derivative $D_v f$ (see “introduction to differentiable function” in Chapter one), which is another function on U whose value at a point $p \in U$ is the rate of change (at p) of f in the v direction:

$$D_v f(p) = \frac{d}{dt} f(p + tv) \bigg|_{t=0}.$$

In particular, if $v = e_j$, where $\{e_1 = (1, 0, \ldots, 0), e_2 = (0, 1, \ldots, 0), \ldots, e_n = (0, \ldots, 1)\}$ is the standard basis of \mathbb{R}^n, then

$$D_{e_j} f = \frac{\partial f}{\partial x_j},$$

is the partial derivative of f with respect to the jth coordinate function, where $x_1, x_2, \ldots x_n$ are the coordinate functions on U. By their very definition, partial derivatives depend upon the choice of coordinates: if new coordinates $y_1, y_2, \ldots y_n$ are introduced, then

$$\frac{\partial f}{\partial x^j} = \sum_{i=1}^{n} \frac{\partial y^i}{\partial x^j} \frac{\partial f}{\partial y^i}.$$

The first idea leading to differential forms is the observation that $D_v f(p)$ is a linear function of v:

$$D_{v+w} f(p) = D_v f(p) + D_w f(p), \quad D_{cv} f(p) = c D_v f(p)$$

for any vectors v, w and any real number c. This linear map from \mathbb{R}^n to \mathbb{R} is denoted df_p and called the (exterior) derivative of f at p. Thus $df_p(v) = D_v f(p)$. The object df can be viewed as a function on U, whose value at p is not a real number, but the linear map df_p, in other words, df assigns, at every point $p \in U$, a linear
map df_p from \mathbb{R}^n to \mathbb{R}. This is just a special case of (general) differential 1-forms. Since any vector v is a linear combination $\sum v_j e_j$ of its components, df is uniquely determined by $df_p(e_j)$ for each j and each $p \in U$ (i.e. $df_p(v) = \sum v_j df_p(e_j)$) which are just the partial derivatives of f on U. Thus df provides a way of encoding the partial derivatives of f. It can be decoded by noticing that the coordinates $x_1, x_2, \ldots x_n$ are themselves functions on U (x_j maps each point in U the j-th coordinate), and so define differential 1-forms $dx_1, dx_2, \ldots dx_n$ (most time, we also write it as $dx^1, dx^2, \ldots dx^n$), in other words,

\begin{equation}
(5.1.1) \quad dx^j(e_i) = \delta_{ij}, \quad ordx^j(v) = v_j, \quad \text{for } v = (v_1, \ldots, v_n) \in \mathbb{R}^n,
\end{equation}

In general, for any 0-form f,

\begin{equation}
(5.1.2) \quad df = \sum_{i=1}^n \frac{\partial f}{\partial x^i} dx^i.
\end{equation}

The meaning of this expression is given by evaluating both sides at an arbitrary point p: on the right hand side, the sum is defined "pointwise", so that

$$df_p = \sum_{i=1}^n \frac{\partial f}{\partial x^i}(p) dx^i|_p.$$

Applying both sides to e_j, the result on each side is the j-th partial derivative of f at p (note: $dx^i|_p$ is actually independent of p, i.e. $dx^i|_p = dx^i$).

Example. Let $f = e^{x^2+y}$, then

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = 2xe^{x^2+y}dx + e^{x^2+y}dy.$$

We now give the general definition of 1–forms on $U \subset \mathbb{R}^n$:

Definition 5.1.1 A 1–form ϕ on $U \subset \mathbb{R}^n$ (either $n = 2$ or $n = 3$) assigns, for every $p \in U \subset \mathbb{R}^n$, a is a linear map $\phi|_p : \mathbb{R}^n \rightarrow \mathbb{R}$.

Remarks:

(1) In linear algebra, given a vector space V, the set of all linear maps $f : V \rightarrow \mathbb{R}$ is called the dual space of V. So the alternative definition of 1–form ϕ is that the 1–form ϕ on $U \subset \mathbb{R}^n$ (either $n = 2$ or $n = 3$) assigns, for every $p \in U \subset \mathbb{R}^n$, an element $\phi_p \in \mathbb{R}^{n*}$, where \mathbb{R}^{n*} is the dual space of \mathbb{R}^n.

2
(2) In particular, the 1–forms dx^1,\ldots, dx^n are defined by the property that for (see (5.1.1)) any vector $v = (v_1,\ldots, v_n) \in \mathbb{R}^n$,

$$dx^i|_p(v) = v_i.$$

The dx^i form a basis for the space of all 1–forms on \mathbb{R}^n, so any 1–form ϕ on $U \subset \mathbb{R}^n$ may be expressed in the form

$$\phi = \sum_{i=1}^{n} \phi_i dx^i, \tag{5.1.3}$$

where ϕ_1,\ldots, ϕ_n are functions on U. If $v = (v_1,\ldots, v_n) \in \mathbb{R}^n$, then

$$\phi_p(v) = \sum_{i=1}^{n} f_i(p)v_i.$$

(3) Note that $\{dx^1,\ldots, dx^n\}$ is in fact the standard basis of the dual space \mathbb{R}^{n*}, it is dual to the standard basis $\{e_1 = (1,0,\ldots,0), e_2 = (0,1,\ldots,0), \ldots, e_n = (0,\ldots,1)\}$ of \mathbb{R}^n.

Example. $\phi = \sin x dx + y^2 dy$ is a 1-form on \mathbb{R}^2.

You might ask the following question: *given a differential 1-form ϕ on U, when does there exist a function f on U such that $\phi = df$?* By comparing (5.1.2) and (5.1.3) reduces this question to the search for a function f whose partial derivatives $\partial f/\partial x_i$ are equal to n given functions ϕ_i. For $n > 1$, such a function does not always exist: any smooth function f satisfies

$$\frac{\partial^2 f}{\partial x^i \partial x^j} = \frac{\partial^2 f}{\partial x^j \partial x^i},$$

so it will be impossible to find such an f unless

$$\frac{\partial \phi_j}{\partial x^i} - \frac{\partial \phi_i}{\partial x^j} = 0.$$

for all i and j.

Differential 2–forms on \mathbb{R}^n.

For two 1–forms ϕ, ψ, define the *wedge product* $\phi \wedge \psi$ as follows, for $p \in \mathbb{R}^n$, $\phi|_p \wedge \psi|_p : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is given by, for every $(v, w) \in \mathbb{R}^n \times \mathbb{R}^n$,

$$\phi|_p \wedge \psi|_p(v, w) = \phi(v)\psi(w) - \psi(v)\phi(w). \tag{5.1.4}$$
The wedge product is a way to produce 2-forms from the given two 1-forms.

By the definition, we have \(\phi \wedge \psi = -\psi \wedge \phi \), and \(\phi \wedge \phi = 0 \).

A basis for the 2-forms on \(\mathbb{R}^n \) is given by the set
\[
\{dx^{i_1} \wedge dx^{i_2} : 1 \leq i_1 < i_2 \leq n\}.
\]

Any 2-forms \(\Omega \) on \(U \) can be expressed in the form
\[
\Omega = \sum_{i_1 < i_2} f_{i_1, i_2} \, dx^{i_1} \wedge dx^{i_2},
\]
where \(f_{i_1, i_2} \) are functions on \(U \). In an alternative definition,

Definition 5.1.2 A 2-form \(\Omega \) on \(U \subset \mathbb{R}^n \) assigns, at each point \(p \in U \), an alternating bilinear mapping \(\Omega|_p : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R} \). Here, “alternating” means that \(\Omega|_p(v, w) = -\Omega|_p(w, v) \), and “bilinear” means that \(\Omega|_p \) is linear in both \(v \) and \(w \). We can also define the concept of the \(k \)-form in a similar way as
\[
\sum_{i_1 < i_2 < \cdots < i_k} f_{i_1, i_2, \ldots, i_k} \, dx^{i_1} \wedge \cdots \wedge dx^{i_k}.
\]

The exterior derivative takes that takes \(k \)-forms to \((k+1)\)-forms. It is defined in a similar way as above. For example, if \(\phi = \sum_{|I|=k} f_I \, dx^{i_1} \wedge \cdots \wedge dx^{i_k} \), then the **exterior derivative** \(d\phi \) of \(\phi \) is the \((k+1)\)-form which is given by
\[
d\phi = \sum_{|I|=k} df_I \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_k}.
\]

If \(\phi \) is a \(p \)-form and \(\psi \) is a \(q \)-form, then the Leibniz rule takes the form
\[
d(\phi \wedge \psi) = d\phi \wedge \psi + (-1)^p \phi \wedge d\psi.
\]

Example. Let \(\omega = f \, dx + g \, dy + h \, dz \) be a 1-form on \(U \subset \mathbb{R}^3 \), then
\[
d\omega = df \wedge dx + dg \wedge dy + dh \wedge dz = (g_x - f_y) \, dx \wedge dy + (h_y - g_z) \, dy \wedge dz + (f_z - h_x) \, dz \wedge dx.
\]

Very Important Theorem: \(d^2 = 0 \).

Proof. We only check for 0-forms, i.e., for functions. In fact, by definition,
\[
d(df) = d \left(\sum_{j=1}^{n} \frac{\partial f}{\partial x^j} \, dx^j \right) = \sum_{i,j} \frac{\partial^2 f}{\partial x^i \partial x^j} \, dx^j \wedge dx^i.
\]
\[
\sum_{i<j} \left(\frac{\partial^2 f}{\partial x^j \partial x^i} - \frac{\partial^2 f}{\partial x^i \partial x^j} \right) dx^j \wedge dx^i = 0.
\]

This verifies the functions case. The general result follows from the similar method.

pull-backs: Given a map \(F = (x_1, x_2, x_3) : U \subset \mathbb{R}^2 \to \mathbb{R}^3 \), and \(\omega = f \, dx + g \, dy + h \, dx \) be a 1-form on \(U \subset \mathbb{R}^3 \), then we can define \(F^* \omega \), the pull-back of \(\omega \) by \(F \) as

\[
F^* \omega = f \circ F \, dx_1 + g \circ F \, dx_2 + h \circ F \, dx_3
\]

\[
= f \circ F \left(\frac{\partial x_1}{du} \, du + \frac{\partial x_1}{dv} \, dv \right) + g \circ F \left(\frac{\partial x_2}{du} \, du + \frac{\partial x_2}{dv} \, dv \right) + h \circ F \left(\frac{\partial x_3}{du} \, du + \frac{\partial x_3}{dv} \, dv \right),
\]

where \((u, v)\) is the coordinate system on \(\mathbb{R}^2 \). Note that \(F^* \omega \) is a differential form on \(U \subset \mathbb{R}^2 \), and it is easy to check that (do it by yourself)

\[
F^* d\omega = dF^* \omega.
\]

2 Differential forms on surfaces

We now define the concept of the differential forms on the surface \(M \) in \(\mathbb{R}^3 \). To do so, we need to look at the tangent space \(T_p(M) \). Recall that when \(M \) is flat, i.e. \(M = U \) or \(M = \mathbb{R}^3 \), then its tangent space \(T_pM \) is the whole space \(\mathbb{R}^2 \), i.e. \(T_pU \cong \mathbb{R}^2 \) for every point \(p \in U \). So when we look at the definition of 1-forms \(\phi \) on \(U \subset \mathbb{R}^3 \), actually we read it as follows: a 1-form \(\phi \) on \(U \subset \mathbb{R}^3 \) assigns, at each point \(p \in U \), a linear map \(\omega|_p : T_p(U) \cong \mathbb{R}^2 \to \mathbb{R} \), i.e., \(\phi|_p \in T^*_p(U) \cong \mathbb{R}^2^* \).

We now give the general definition of differential forms on \(M \).

Definition 5.2.2 Given a surface \(M \) in \(\mathbb{R}^3 \), a (differential) 1–form \(\omega \) on \(M \) assigns, at every \(p \in M \), a linear map \(\omega|_p : T_p(M) \to \mathbb{R} \), i.e., \(\omega|_p \in T^*_p(M) \).

A (differential) 2–form \(\Omega \) on \(M \) assigns, at every point \(p \in M \), a two form \(\Omega|_p \in \wedge^2 T^*_p(M) \).

Every \(k \)–form on \(M \) is always zero for \(k \geq 3 \).

For a smooth function \(f \) on \(M \), the **exterior** derivative of \(f \) is the 1–form \(df \) with the property that for any \(p \in M \), \(v_p \in T_p(M) \),

\[
(5.2.1) \quad df_p(v_p) = D_v(f)(p),
\]
where \(D_v(f)(p) \) is the directional derivative of \(f \) at \(p \) with respect to the direction \(v_p \) (see (3.4.1) for the definition of the directional derivative). So as we indicated before, \(df \) provides a way of encoding all the directional derivative of \(f \) at \(p \).

Let \(\sigma : U \subset \mathbb{R}^2 \to \mathbb{R}^3 \) be a parametrization of \(M \). Then the coordinates \(u, v \) on \(\mathbb{R}^2 \) be also regarded as functions on \(M \) sending the point \(\sigma(u, v) \) to \(u \) and \(v \) respectively. Hence, \(du \) and \(dv \) are well-defined 1-forms on \(M \) (more precisely on \(\sigma(U) \)). It can be easily checked by definition that

\[
(5.2.2) \quad du\big|_p(\sigma_u|_p) = 1, \quad dv\big|_p(\sigma_u|_p) = 0, \quad dv\big|_p(\sigma_v|_p) = 0, \quad dv\big|_p(\sigma_v|_p) = 1.
\]

Hence \(\{du, dv\} \) is dual to \(\{\sigma_u, \sigma_v\} \).

For any smooth function \(f \) on \(M \), in terms of parametrization \(\sigma : U \subset \mathbb{R}^2 \to \mathbb{R}^3 \) of \(M \), we can write

\[
(5.2.3) \quad df = D\sigma_u f du + D\sigma_v f dv
\]

We we write \(f(u, v) = f \circ \sigma(u, v) \), since \(D\sigma_u f(p) = (\partial f/\partial u)(u_0, v_0) \), \(D\sigma_v f(p) = (\partial f/\partial v)(u_0, v_0) \), where \(\sigma(u_0, v_0) = p \), we have

\[
(5.2.4) \quad df = f_u du + f_v dv
\]

where \(f_u = \partial f/\partial u, f_v = \partial f/\partial v \). More precisely, we should write \((5.2.4)\) as \(\sigma^*df = f_u du + f_v dv \), but we simply write it as in \((5.2.4)\) without the danger of confusion. In other words, if we work everything on \(\mathbb{R}^2 \) by the pulling back through \(\sigma \), then we can regard \(du, dv \) as the standard 1-forms on \(\mathbb{R}^2 \) which is dual to \(\{(1,0), (0,1)\} \).

In terms of the local parametrization \(\sigma : U \subset \mathbb{R}^2 \to \mathbb{R}^3 \) of \(M \), any 1-form \(\omega \) on \(M \) can be written as

\[
\omega = adu + bdv
\]

where \(a, b \) are functions on \(\sigma(U) \). Similarly, every 2-form \(\Omega \) can be locally (on \(\sigma(U) \)) written as

\[
\Omega = Adu \wedge dv,
\]

where \(A \) is a function on \(\sigma(U) \).

For every 1-form \(\omega \) on \(M \), the exterior derivative of \(\omega \) is a 2-form, which is defined in a similar way as in the previous section, by \(\omega = adu + bdv \), then \(d\omega = da \wedge du + db \wedge dv \). (you can check that it is independent of the choice of the choices of parametrizations). It is easy to check that \(d^2 = 0 \). The exterior operator \(d \) has the following important property: \(d^2 = 0 \), i.e. for every function \(f \) on \(M \), \(d(d(f)) = 0 \).
3 The method of moving frames for curves

Let \(\mathbf{x}(t) = (x_1(t), x_2(t), x_3(t)) \) be a space curve. Let \(\mathbf{e}_1 \) be the unit-tangent vector. Let \(\mathbf{e}_2 \) such that \(\frac{d\mathbf{e}_1}{ds} = \kappa \mathbf{e}_2 \). \(\mathbf{e}_2 \) is called the principal normal and \(\kappa \) is the curvature. Let \(\mathbf{e}_3 = \mathbf{e}_1 \times \mathbf{e}_2 \) is the binormal. Then \(\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\} \) form an orthonormal basis (Frenet frame). Write

\[
\frac{d\mathbf{e}_i}{ds} = \sum_{j=1}^{3} \omega_{ij} \mathbf{e}_j,
\]

where \(\omega_{ij} \) are 1-forms. Since \(\langle \mathbf{e}_i, \mathbf{e}_j \rangle = \delta_{ij} \), form \(d < \mathbf{e}_i, \mathbf{e}_j > = 0 \), we have \(\omega_{ij} = -\omega_{ji} \). Hence the matrix \((\omega)_{ij} \) is a \(3 \times 3 \) skew-symmetric matrix, whose entries are differential 1-forms. From the skew-symmetric, we have \(\omega_{jj} = 0 \). From the selection of \(\mathbf{e}_1, \mathbf{e}_2 \) and \(\mathbf{e}_3 \), we have \(\omega_{13} = \omega_{31} = 0 \). Hence, we have (Frenet formula):

\[
\frac{d\mathbf{e}_1}{ds} = \kappa \mathbf{e}_2
\]
\[
\frac{d\mathbf{e}_2}{ds} = -\kappa \mathbf{e}_1 + \tau \mathbf{e}_3
\]
\[
\frac{d\mathbf{e}_3}{ds} = -\tau \mathbf{e}_2.
\]

4 The method of moving frames for surfaces

1. Structure equations

I suggest you to read the appendix below before you start this section.

Let \(M \) be a surface and \(\mathbf{\sigma} : U \rightarrow \mathbb{R}^3 \) be a local parametrization of \(M \). Recall that the vectors \(\{\mathbf{\sigma}_u|_p, \mathbf{\sigma}_v|_p\} \) is a basis for \(T_p(M) \). Let \(\mathbf{e}_1(p), \mathbf{e}_2(p) \) be an orthonormal basis for \(T_p(M), p \in U \) (such orthonormal basis always exists by applying Gram-Schmidt orthonormalization procedure) and let \(\mathbf{e}_3(p) = \mathbf{n}(p) \) be the unit normal (Gauss map). The key point of this section is that we are working on the orthonormal basis, NOT just the basis \(\{\mathbf{\sigma}_u|_p, \mathbf{\sigma}_v|_p\} \). The basis \(\{\mathbf{e}_1(p), \mathbf{e}_2(p), \mathbf{e}_3(p)\} \) serves as a moving frame for \(\mathbb{R}^3 \), where \(\mathbf{e}_1(p), \mathbf{e}_2(p) \) is an orthonormal basis for \(T_p(M) \).

Let \(\mathbf{\sigma} : U \rightarrow \mathbb{R}^3 \) be a local parametrization of \(M \). Consider \(d\mathbf{\sigma} = \mathbf{\sigma}_u du + \mathbf{\sigma}_v dv \). Since \(\{\mathbf{e}_1(p), \mathbf{e}_2(p)\} \) is a basis for \(T_p(M) \), we write

\[
(5.3.1) \quad \mathbf{\sigma}_u = \lambda_1 \mathbf{e}_1 + \lambda_2 \mathbf{e}_2, \quad \mathbf{\sigma}_v = \lambda_3 \mathbf{e}_1 + \lambda_4 \mathbf{e}_4.
\]
Hence we can rewrite $d\sigma$ as

\[(5.3.2) \quad d\sigma = \omega_1 e_1 + \omega_2 e_2,\]

where ω_1, ω_2 are differential 1-forms on M, $\omega_1 = \lambda_1 du + \lambda_3 dv$, $\omega_1 = \lambda_2 du + \lambda_4 dv$. We claim that $\{\omega_1, \omega_2\}$ is dual to $\{e_1, e_2\}$. To prove the claim, we first note that, from (5.3.1) $d\sigma(\sigma_u) = \sigma_u$, and $d\sigma(\sigma_v) = \sigma_v$, so $d\sigma(v) = v$ for every tangent vector. Then the claim can be derived by using (5.3.2) and $d\sigma(e_1) = e_1$ and $d\sigma(e_2) = e_2$. The differential 1-forms ω_1, ω_2 keep track of how our point moves around on M.

Next we want to see how the frame itself twists, we will define 1-forms $\omega_{ij}, i, j = 1, 2, 3$. Consider de_i, the exterior derivative of e_i. Note that de_i is a vector-valued (the image is in \mathbb{R}^3) differential 1-form, and since $\{e_1, e_2, e_3\}$ is linearly independent, so it is a basis for \mathbb{R}^3. Therefore we can

\[(5.3.4) \quad de_i = \sum_{j=1}^{3} \omega_{ij} e_j,\]

where $\omega_{ij}, i, j = 1, 2, 3$ are differential 1-forms. There are total nine of such 1-forms. First we claim that $\omega_{ij} = -\omega_{ji}$. In fact, since $e_i \cdot e_j = \delta_{ij}$, by differentiating, we have, $de_i \cdot e_j + e_i \cdot de_j = 0$. This implies that $\omega_{ij} = -\omega_{ji}$. Hence, we have only three “meaningful” 1-forms ω_{13}, ω_{23} and ω_{12}. Others are just zero. If $v_p \in T_p(M)$, then $\omega_{ij}|_p(v_p)$ tells us how fast e_i is twisting towards e_j at p as we move with velocity v_p. Together with the above two 1-forms above, we obtain, in total, five 1-forms: $\omega_1, \omega_2, \omega_{13}, \omega_{23}, \omega_{12}$.

To summarize, we have the following Equations for moving frame

\[(5.3.5) \quad d\sigma = \omega_1 e_1 + \omega_2 e_2,\]

\[(5.3.6) \quad de_1 = \omega_{12} e_2 + \omega_{13} e_3,\]

\[(5.3.7) \quad de_2 = \omega_{21} e_1 + \omega_{23} e_3,\]

\[(5.3.8) \quad de_3 = \omega_{31} e_1 + \omega_{32} e_2,\]

where $\omega_{ij} = -\omega_{ji}$.

Recall that the shape operator (see section 3.3) is $S_p = -dn = -de_3$, so the shape operator is embodied in the equation

\[de_3 = \omega_{31} e_1 + \omega_{32} e_2 = -(\omega_{13} e_1 + \omega_{23} e_2).\]
We now calculate the matrix of the shape operator S_p respect to the basis $\{e_1, e_2\}$. In fact,

$$S_p(e_1) = -de_3(e_1) = -\omega_{31}(e_1)e_1 - \omega_{32}(e_1)e_2 = \omega_{13}(e_1)e_1 + \omega_{23}(e_1)e_2,$$

$$S_p(e_2) = -de_3(e_2) = \omega_{13}(e_2)e_1 + \omega_{23}(e_2)e_2.$$

Thus, by the definition, the matrix of the shape operator S_p respect to the basis $\{e_1, e_2\}$ is

$$\begin{pmatrix}
\omega_{13}(e_1) & \omega_{13}(e_2) \\
\omega_{23}(e_1) & \omega_{23}(e_2)
\end{pmatrix}.$$

Recall that the **Gauss curvature** is the determinant of the matrix of S_p (see chapter 4), so we get

$$K = \det(S_p) = \omega_{13}(e_1)\omega_{23}(e_2) - \omega_{13}(e_2)\omega_{23}(e_1) = (\omega_{13} \wedge \omega_{23})(e_1, e_2).$$

Since $\omega_{13} \wedge \omega_{23}$ is a 2-form, and the vector space of the two forms has dimension one (as we noted earlier) we can write

$$\omega_{13} \wedge \omega_{23} = \lambda \omega_1 \wedge \omega_2.$$

So from above,

$$K = (\omega_{13} \wedge \omega_{23})(e_1, e_2) = \lambda \omega_1 \wedge \omega_2(e_1, e_2) = \lambda.$$

So we have a **very important** expression for the Gauss curvature (5.3.9).

$$\omega_{13} \wedge \omega_{23} = K \omega_1 \wedge \omega_2.$$

Most of our results will come from the following:

Theorem 5.2.1 (Structure Equations):

(5.3.10) \hspace{1cm} d\omega_1 = \omega_{12} \wedge \omega_2; \hspace{1cm} d\omega_2 = \omega_1 \wedge \omega_{12};

and

(5.3.11) \hspace{1cm} d\omega_{ij} = \sum_{k=1}^{3} \omega_{ik} \wedge \omega_{kj}.

Proof: Use the property that $d^2 = 0$ and using (5.3.5), we have

$$0 = d(d\sigma) = d(\omega_1 e_1) + d(\omega_2 e_2).$$
This derives the first two equations by using (5.3.6) and (5.3.7). Also, using (5.3.6), (5.2.7), (5.3.8) and \(d^2 = 0\), we get

\[
d(d\mathbf{e}_i) = d\omega_{ij} - \omega_{ij} \wedge d\mathbf{e}_j = 0.
\]

This derives the second equation.

The structure equations give:

Gauss Equation: \(d\omega_{12} = -\omega_{13} \wedge \omega_{23}\),

Mainardi-Codazzi Equation: \(d\omega_{13} = \omega_{12} \wedge \omega_{23}; \quad d\omega_{23} = -\omega_{12} \wedge \omega_{13}\).

From (5.3.9), we have \(\omega_{13} \wedge \omega_{23} = K \omega_1 \wedge \omega_2\).

Hence we get \(d\omega_{12} = -K \omega_1 \wedge \omega_2\).

This provides a **new** and simple proof of Gauss's theorem egregium (see section 5.1), since from above, we see that \(K\) only depends on \(\omega_1\) and \(\omega_2\), so the Gauss curvature is an **intrinsic** quantity!

Example Under the \(\sigma : U \rightarrow \mathbb{R}^3\) be a local parametrization of \(M\) with \(E = G = \frac{4}{1 + u^2 + v^2}, F = 0\) (for example, on the \(\mathbb{R}^2\) with the metric \(g = \frac{4}{(1 + x^2 + y^2)}(dx^2 + dy^2)\)). Calculate the Gauss curvature.

Solution. Write \(A = 1 + u^2 + v^2\). Then \(\mathbf{e}_1 = \frac{4}{2} \mathbf{\sigma}_u, \quad \mathbf{e}_2 = \frac{4}{2} \mathbf{\sigma}_v\). Since \(\{\omega_1, \omega_2\}\) is dual to \(\{\mathbf{e}_1, \mathbf{e}_2\}\), we have

\[
\omega_1 = \frac{2}{A} du, \quad \omega_2 = \frac{2}{A} dv.
\]

To calculate the Gauss curvature, we need to find out the connection form \(\omega_{12}\). We use the structure equations \(d\omega_1 = \omega_{12} \wedge \omega_2, d\omega_2 = \omega_1 \wedge \omega_{12}\) to find out \(\omega_{12}\). From \(\omega_1 = \frac{2}{A} du\), we have

\[
d\omega_1 = d\left(\frac{2}{A}\right) \wedge du = 2 \frac{-dA}{A^2} \wedge du = \frac{4v}{A^2} du \wedge dv.
\]

Writing \(\omega_{12} = adu + bdv\), and noting that \(\omega_2 = \frac{2v}{A} dv\), from \(d\omega_1 = \omega_{12} \wedge \omega_2\) we find out that \(a = 2y/A\). Similarly, we can get \(b = -2u/A\). Hence

\[
\omega_{12} = \frac{2v}{A} du - \frac{2v}{A} dv = v\omega_1 - u\omega_2.
\]
Now we use \(d\omega_{12} = K\omega_1 \wedge \omega_2 \) to find out \(K \). Since
\[
d\omega_{12} = dv \wedge \omega_1 + v d\omega_1 - du \wedge \omega_2 - ud\omega_2
= \frac{A}{2} dv \wedge \omega_1 + \frac{4v^2}{A^2} du \wedge dv - \frac{A}{2} du \wedge \omega_2 + \frac{4u^2}{A^2} du \wedge dv
= -\frac{A}{2} \omega_1 \wedge \omega_2 + (u^2 + v^2) \omega_1 \wedge \omega_2 = -\omega_1 \wedge \omega_2.
\]
Hence \(K \equiv -1 \).

2. Further look of Gauss equation and the Codazzi equations.

To see why the equation \(d\omega_{12} = -\omega_{13} \wedge \omega_{23} \) is the same as the Gauss equation we derived before (in section 5.1), we consider an orthogonal parametrization, i.e. \(F = 0 \). In this case, \(e_1 = e_u/\sqrt{E}, e_2 = e_v/\sqrt{G} \). Then, \(\omega_1 = \sqrt{E} du, \omega_2 = \sqrt{G} dv \) (since \(\{\omega_1, \omega_2\} \) is the dual basis to \(e_1, e_2 \)). We now calculate \(\omega_{12} \). Write \(\omega_{12} = A du + B dv \), we need to determine \(A \) and \(B \). From the structure equation,
\[
-\omega_2 \wedge \omega_{12} = d\omega_1 = -\sqrt{E}_v du \wedge dv.
\]
Also
\[
-\omega_2 \wedge \omega_{12} = \sqrt{G} dv \wedge (A du + B dv) = \sqrt{G} A du \wedge dv.
\]
Hence
\[
\sqrt{G} A = -\sqrt{E}_v.
\]
This implies that
\[
A = -\frac{\sqrt{E}_v}{\sqrt{G}}.
\]
Similarly, we get
\[
B = \frac{\sqrt{G}_u}{\sqrt{E}}.
\]
Hence
\[
\omega_{12} = -\omega_{21} = -\left(\frac{\sqrt{E}_v}{\sqrt{G}} du + \frac{\sqrt{G}_u}{\sqrt{E}} dv \right).
\]
\[
d\omega_{12} = \left[\left(\frac{\sqrt{E}_v}{\sqrt{G}} \right)_v + \left(\frac{\sqrt{G}_u}{\sqrt{E}} \right)_u \right] du \wedge dv.
\]
On the other hand, from a direct computation, we can get
\[
\omega_{13} = (de_1) \cdot e_3 = \frac{e}{\sqrt{E}} du + \frac{f}{\sqrt{E}} dv,
\]
11
\[\omega_{23} = (d\mathbf{e}_2) \cdot \mathbf{e}_3 = \frac{f}{\sqrt{G}} du + \frac{g}{\sqrt{G}} dv. \]

So

\[\omega_{13} \land \omega_{32} = -\omega_{13} \land \omega_{23} = -eg - f^2 du \land dv. \]

Hence, Gauss equation \(d\omega_{12} = -\omega_{13} \land \omega_{23} \) is equivalent to

\[- \left[\left(\frac{(\sqrt{E})_v}{\sqrt{G}} \right)_v + \left(\frac{(\sqrt{G})_u}{\sqrt{E}} \right)_u \right] = \frac{eg - f^2}{\sqrt{EG}}, \]

which is the same as the Gauss equation we derived before in the case \(F = 0 \) (see section 5.1).

Similarly, we can verify the Codazzi equations listed above are the same as what we have derived earlier.

3. Normal curvature and geodesic curvature revisited.

Let \(\mathbf{e} : U \rightarrow M \) be a parametrization, and let \(C \) be a curve on \(M \) given by \(\mathbf{e}(s) = \mathbf{e}(u(s), v(s)) \) where \(s \) is the arc-length parameter. Let \(\mathbf{T}(s) = \mathbf{e}'(s) \) be the tangent vector to \(C \), and let \(\mathbf{e}_1(s) = \mathbf{T}(s), \mathbf{e}_2(s) = \mathbf{e}(s) \times \mathbf{T}(s), \mathbf{e}_3(s) = \mathbf{n}(s) \), where \(\mathbf{n} \) is the unit normal to the surface \(M \). Then, \(\{\mathbf{e}_1(s), \mathbf{e}_2(s), \mathbf{e}_3(s)\} \) is an orthonormal moving frame along \(C \) (which is called Darboux frame). Then we have

\[\frac{d\mathbf{e}_1(s)}{ds} = \mathbf{e}_1(s), \]

\[\frac{d\mathbf{e}_2(s)}{ds} = \kappa_g \mathbf{e}_2(s) + \kappa_n \mathbf{e}_3(s), \]

\[\frac{d\mathbf{e}_3(s)}{ds} = -\kappa_g \mathbf{e}_1(s) + \tau_g(s) \mathbf{e}_2(s), \]

where \(\kappa_g \) is the geodesic curvature, \(\kappa_n \) is the normal curvature and \(\tau_g(s) \) is called the geodesic torsion.

Take an orthonormal moving frame (Darboux frame) \(\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\} \) on \(M \) with \(\mathbf{e}_3 = \mathbf{n} \), such that the restriction of this frame to the curve \(C \) is \(\{\mathbf{e}_1(s), \mathbf{e}_2(s), \mathbf{e}_3(s)\} \). We write

\[d\mathbf{e}_1 = \omega_{12} \mathbf{e}_2 + \omega_{13} \mathbf{e}_3, \]
\[d\vec{e}_2 = \bar{\omega}_{21}\vec{e}_1 + \bar{\omega}_{23}\vec{e}_3, \]
\[d\vec{e}_3 = \bar{\omega}_{31}\vec{e}_1 + \bar{\omega}_{32}\vec{e}_2, \]

where \(\bar{\omega}_{ij} = -\bar{\omega}_{ji} \). We have the following theorem:

Theorem 5.2.2 Let \(C \) be a curve on \(M \), then

\[\kappa_g = \bar{\omega}_{12}(\vec{e}_1), \kappa_n = \bar{\omega}_{13}(\vec{e}_1), \tau_g = \bar{\omega}_{23}(\vec{e}_1). \]

Proof: Since \(\alpha(s) = \sigma(u(s),v(s)) \),

\[\vec{e}_1 = T = \frac{d\alpha(s)}{ds} = \frac{du}{ds} \sigma_u + \frac{dv}{ds} \sigma_v. \]

Hence, for \(1 \leq i,j \leq 3 \),

\[\bar{\omega}_{ij}(T) = \frac{d\vec{e}_i}{ds}, \vec{e}_j > \]
\[= \frac{d\vec{e}_i}{ds}(\sigma_u) + \frac{d\vec{e}_i}{ds}(\sigma_v), \vec{e}_j > \]
\[= \frac{d\vec{e}_i}{ds}(\sigma_u, \vec{e}_j) + \frac{d\vec{e}_i}{ds}(\sigma_v, \vec{e}_j) \]
\[= \frac{d\vec{e}_i}{ds}, \vec{e}_j >. \]

Hence

\[\kappa_g = \bar{\omega}_{12}(T), \kappa_n = \bar{\omega}_{13}(T), \tau_g = \bar{\omega}_{23}(T). \]

This finishes the proof.

We now re-derive the formula of \(\kappa_g \) in terms of the orthogonal parameterization. Let \(\mathbf{x} : U \to S \) be a orthogonal parametrization, i.e \(F = 0 \) (where \(\{E,F,G\} \) is its first fundamental form). Let \(C \) be a curve on \(S \) and let \(\{\vec{e}_1, \vec{e}_2, \vec{e}_3\} \) be the Darboux frame. Then, form above

\[\kappa_g = \bar{\omega}_{12}(\vec{e}_1). \]

On the other hand, consider another (natural) orthonormal frame: i.e. let \(\vec{e}_1 = \mathbf{x}_u/\sqrt{E}, \vec{e}_2 = \mathbf{x}_v/\sqrt{G}, \vec{e}_3 = \mathbf{n} \). Then the frame \(\{\vec{e}_1, \vec{e}_2, \vec{e}_3\} \) is also an orthonormal moving frame. Let \(\omega_1, \omega_2 \) be the dual of \(\vec{e}_1, \vec{e}_2 \) and let \(\omega_{12} \) be the connection form. Then, as we derived before,

\[\omega_{12} = -\omega_{21} = -\frac{(\sqrt{E})_v}{\sqrt{G}}du + \frac{(\sqrt{G})_u}{\sqrt{E}}dv. \]
Next, we want to derive a relationship between $\bar{\omega}_{12}$ and ω_{12}. To do so, let θ be the angle from x_u to $\bar{e}_1 = T$, then we have

$$\left(\begin{array}{c} \bar{e}_1 \\ \bar{e}_2 \end{array} \right) = \left(\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array} \right) \left(\begin{array}{c} e_1 \\ e_2 \end{array} \right).$$

Since $\{\omega_1, \omega_2\}$ is the dual basis of $\{e_1, e_2\}$ (resp., $\{\bar{\omega}_1, \bar{\omega}_2\}$ is the dual basis of $\{\bar{e}_1, \bar{e}_2\}$), hence

$$\bar{\omega}_1 = \cos \theta \omega_1 + \sin \theta \omega_2$$
$$\bar{\omega}_2 = -\sin \theta \omega_1 + \cos \theta \omega_2$$
$$\bar{\omega}_{12} = \omega_{12} + d\theta.$$

Hence

$$\bar{\omega}_{12} = \omega_{12} + d\theta = -\frac{(\sqrt{E})_v}{\sqrt{G}} du + \frac{(\sqrt{G})_u}{\sqrt{E}} dv + d\theta.$$

Since

$$e_1 = T = \frac{d\alpha(s)}{ds} = \frac{du}{ds} x_u + \frac{dv}{ds} x_v,$$

we have

$$\kappa_g = \bar{\omega}_{12}(\bar{e}_1) = -\frac{(\sqrt{E})_v}{\sqrt{G}} du(T) + \frac{(\sqrt{G})_u}{\sqrt{E}} dv(T) + d\theta(T) = -\frac{(\sqrt{E})_v}{\sqrt{G}} \frac{du(s)}{ds} + \frac{(\sqrt{G})_u}{\sqrt{E}} \frac{dv(s)}{ds} + d\theta(T).$$

Now $d\theta = \theta_udu + \theta_v dv$, so

$$d\theta(T) = \theta_u \frac{du(s)}{ds} + \theta_v \frac{dv(s)}{ds} = \frac{d\theta}{ds}.$$

Hence

$$\kappa_g = -\frac{(\sqrt{E})_v}{\sqrt{G}} \frac{du(s)}{ds} + \frac{(\sqrt{G})_u}{\sqrt{E}} \frac{dv(s)}{ds} + \frac{d\theta}{ds}.$$

Therefore we re-proved the following Liouville theorem:

Theorem 5.2.3 Let $x : U \to S$ be an orthogonal parametrization, i.e $F = 0$ (where $\{E, F, G\}$ is its first fundamental form). Let C be a curve on S. Then

$$\kappa_g = -\frac{(\sqrt{E})_v}{\sqrt{G}} \frac{du(s)}{ds} + \frac{(\sqrt{G})_u}{\sqrt{E}} \frac{dv(s)}{ds} + \frac{d\theta}{ds}.$$

6. **A simple proof of Gauss-Bonnet theorem.** The formula

$$d\omega_{12} = -K \omega_1 \wedge \omega_2$$
is the key in applying Green’s theorem to prove Gauss-Bonnet theorem. The formula can be re-written as

\[K d\sigma = -d\omega_{12}, \]

where \(d\sigma = \omega_1 \wedge \omega_2 \).

From the Gauss equation and Stoke’s Theorem, the Gauss-Bonnet formula follows immediately for an oriented surface \(M \) with (piecewise smooth) boundary \(\partial M \) on which we can globally define a moving frame. That is, we can reprove the local Gauss-Bonnet formula quite effortlessly.

Proof: We start with an arbitrary moving frame \(e_1, e_2, e_3 \), and take a Darboux frame (i.e. a moving frame for the surface with \(e_1 \) tangent to \(\partial M \)) \(\bar{e}_1, \bar{e}_2, \bar{e}_3 \) along \(\partial M \). We write \(\bar{e}_1 = \cos \theta e_1 + \sin \theta e_2 \), \(\bar{e}_2 = -\sin \theta e_1 + \cos \theta e_2 \) (where \(\theta \) is smoothly chosen along the smooth pieces of \(\partial M \) and the exterior angle \(\epsilon_j \) at \(P_j \) gives the jump of theta as we cross \(P_j \)). Then, by Stokes’ theorem, we have

\[
\int \int_M K d\sigma = -\int \int_M d\omega_{12} = -\int_{\partial M} \omega_{12} = -\int_{\partial M} (\bar{\omega}_{12} - d\theta) = -\int_{\partial M} \kappa_g ds + (2\pi - \sum \epsilon_j).
\]

7. Covariant Derivative, Connection Form

The covariant derivative \(D_v e_1 \) is the tangential component of \(d e_1(v) = \omega_{12}(v)e_2 + \omega_{13}(v)e_3 \). Hence, \(D_v e_1 = pr(de_1(v)) = \omega_{12}(v)e_2 \). Similarly, \(D_v e_2 = \omega_{21}(v)e_1 \). The form \(\omega_{12} \) is called the connection form and it measures the tangential twist of \(e_1 \) and \(e_2 \).

5 Appendix: Review of Surface Theory

We review here the theory of the surfaces we have learnt so far. Let \(M \) be a surface and \(\sigma : U \rightarrow M \) be an orthogonal parametrization (i.e. \(F = 0 \) in the first fundamental form). Recall that the vectors \(\{\sigma_u, \sigma_v\} \) span \(T_p(M) \). From \(0 = F = \sigma_u \cdot \sigma_v \), we see that \(\sigma_u \) and \(\sigma_v \) are orthogonal. Let \(e_1 = \frac{\sigma_u}{\sqrt{E}}, \ e_2 = \frac{\sigma_v}{\sqrt{G}} \). Then \(\{e_1(p), e_2(p)\} \) forms an orthonormal basis for \(T_p(M), p \in M \) (i.e. \(||e_1(p)|| = 1, ||e_2(p)|| = 1 \) and \(e_1(p) \cdot e_2(p) = 0 \)). So \(\{e_1, e_2\} \) is called a moving frame for the tangent spaces of \(S \) (since for each point \(p \in M \), we have that \(\{e_1(p), e_2(p)\} \) forms an orthonormal basis for \(T_p(M) \), here the name ”moving” because \(p \) varies from \(M \) and the name ”frame” comes from the fact it is a basis). Such orthonormal basis exists because we can always apply the Gram-Schmidt orthonormalization procedure if \(\sigma \) is not an
orthogonal parametrization. Let $e_3 = n$ be the unit normal (Gauss map). Then $\{e_1, e_2, e_3\}$ forms an (moving) orthonormal basis for \mathbb{R}^3.

We have (for an orthogonal parametrization) (do your own calculations using the formulas in section 5.1), in below, E, F, G is first fundamental form with $F = 0$ and e, f, g are the second fundamental form.

$$
(e_1)_u = -\frac{E_v}{2\sqrt{EG}}e_2 + \frac{e}{\sqrt{E}}e_3,
$$

$$
(e_1)_v = \frac{G_u}{2\sqrt{EG}}e_2 + \frac{f}{\sqrt{E}}e_3,
$$

$$
(e_2)_u = \frac{E_v}{2\sqrt{EG}}e_1 + \frac{f}{\sqrt{G}}e_3,
$$

$$
(e_2)_v = \frac{G_u}{2\sqrt{EG}}e_1 + \frac{g}{\sqrt{G}}e_3,
$$

$$
(e_3)_u = -\frac{e}{\sqrt{E}}e_1 - \frac{f}{\sqrt{G}}e_2,
$$

$$
(e_3)_v = -\frac{f}{\sqrt{E}}e_1 - \frac{g}{\sqrt{G}}e_2.
$$

Gauss equation:

$$
K = -\frac{1}{2\sqrt{EG}} \left(\frac{(\sqrt{E})_v}{\sqrt{G}}\right)_v + \left(\frac{(\sqrt{G})_u}{\sqrt{E}}\right)_u.
$$

Codazzi equations:

$$
\left(\frac{e}{\sqrt{E}}\right)_v - \left(\frac{f}{\sqrt{E}}\right)_u - g \frac{(\sqrt{E})_v}{G} - f \frac{(\sqrt{G})_u}{\sqrt{EG}} = 0,
$$

$$
\left(\frac{g}{\sqrt{G}}\right)_u - \left(\frac{f}{\sqrt{G}}\right)_v - e \frac{(\sqrt{G})_u}{E} - f \frac{(\sqrt{E})_v}{\sqrt{EG}} = 0.
$$