1. Let $\omega = xy \, dx + zdy - yz \, dz$, $\eta = x \, dx - y^2 \, dy - 2xz \, dz$, and let $f : \mathbb{R}^2 \to \mathbb{R}^3$ defined by

$$f(u,v) = (uv, u^2, 3u + v), \quad (u,v) \in \mathbb{R}^2.$$

Find: (1) $d\omega$; (2) $d\eta$; (3) $d\omega \wedge \eta - \omega \wedge d\eta$.

2. Define a two form on \mathbb{R}^2 by

$$\omega = dx_1 \wedge dx_2 + dx_3 \wedge dx_4 + \cdots + dx_{2n-1} \wedge dx_{2n}.$$

This is called the standard sympletic form on \mathbb{R}^{2n}. Compute ω^n.

3. Let (r, θ) be the polar coordinates defined on \mathbb{R}^2 outside of the origin. Write 1-forms $dr, d\theta$ in terms of the ordinary coordinates x, y.

4. Define an 1-form ω on the punctured planes $\mathbb{R}^2\setminus\{0\}$ by

$$\omega = \left(\frac{-y}{x^2 + y^2}\right) dx + \left(\frac{x}{x^2 + y^2}\right) dy.$$

(i) Calculate $\int_C \omega$ for any circle C of radius r around the origin.

(ii) Prove that ω is closed, i.e. $d\omega = 0$;

(iii) Prove that in the half-plane $\{x > 0\}$, ω exact, i.e. ω is the differential of a function, (Hint: Try $\arctan(y/x)$).

(iv) Prove that ω is not exact on $\mathbb{R}^2\setminus\{0\}$, i.e. there does not exist a function f globally on $\mathbb{R}^2\setminus\{0\}$ such that $\omega = df$.

5. Consider the 1-form $\omega = x_1 x_2 x_3 dx_1 + x_1^2 x_2 x_3 dx_3$ on \mathbb{R}^3. Verify by direct computation that $d^2 \omega = 0$.

6. Let M be a surface in \mathbb{R}^3 whose first fundamental form is given by $E = 1, F = 0$ and $G = u^2$. Use the moving frame method to calculate its Gauss curvature.

7. Assume that we know the first fundamental form E, F, G with $F = 0$. Derive from the structure equations $d\omega_{13} = \omega_{12} \wedge \omega_{23}$ and $d\omega_{23} = -\omega_{12} \wedge \omega_{13}$ the Mainardi-Codazzi equations.