The Dictionary Between Nevanlinna Theory and Diophantine approximation

0.1 Valuations on a number field

Definition 1 Let F be a field. By an **absolute value** on F, we mean a real-valued function | | on F satisfying the following three conditions: (i) $|a| \ge 0$, and |a| = 0 if and only if a = 0. (ii) |ab| = |a||b|. (iii) $|a + b| \le |a| + |b|$.

Two absolute values $| |_1$ and $| |_2$ are called **equivalent** if there is a positive constant λ such that $| |_1 = | |_2^{\lambda}$. Over the field of rational numbers \mathbf{Q} we have the following absolute values: **the standard Archimedean absolute value** | | (we also denote it by $| |_{\infty}$), which is defined by |x| = x if $x \ge 0$, and |x| = -x if x < 0; **p-adic absolute value** $| |_p$, for each prime number p, defined by $|x|_p = p^{-r}$, if $x = p^r a/b$, for some integer r, where a and b are integers relatively prime to p. For x = 0, $|x|_p = 0$. The p-adic absolute value $| |_p$ satisfies (i) and (ii), and a property stronger than (iii) in Definition 1, namely

$$(iii)' |a+b|_p \le \max\{|a|_p, |b|_p\}$$

An absolute value that satisfies (iii)' is called a **non-Archimedean absolute value**. Every nonzero rational number has a factorization into prime factors. So for every $x \in \mathbf{Q}$ with $x \neq 0$, we have

$$|x|_{\infty} \cdot \prod_{p} |x|_{p} = 1, \tag{1}$$

where in the product, p runs for all prime numbers. (1) is called the **product** formula.

Theorem 2 (A. Ostrowski) Any absolute value on \mathbf{Q} is equivalent to one of the following: a p-adic absolute value for some prime number p, the standard Archimedean absolute value $| \mid_{\infty}$, or the trivial absolute value $| \mid_{0}$ defined by $|x|_{0} = 1$ for all $x \neq 0$.

To clearly see how Roth's theorem connects to Nevanlinna theory, we have to consider the fields more general than \mathbf{Q} , namely the number fields. Let us first consider the extension of an absolute value to $\mathbf{Q}(\alpha)$ where α is an algebraic number. We know that an algebraic number is usually viewed as a complex roots of its minimal polynomial. Then $|\alpha|$ is just the modulus of this complex number, and extends $| \mid_{\infty}$ to an absolute value of $\mathbf{Q}(\alpha)$. To extend a *p*-adic absolute value is less easy. But if one is willing to accept the *p*-adic closure \mathbf{Q}_p of \mathbf{Q} and the algebraic closure \mathbf{C}_p of \mathbf{Q}_p , with the corresponding extension of $||_p$ to \mathbf{C}_p , this becomes just as easy as for $||_{\infty}$. Namely, every embedding $\sigma : \mathbf{Q}(\alpha) \to \mathbf{C}_p$ gives an extension of $||_p$ defined by $|\beta|_p = |\sigma(\beta)|_p$, for $\beta \in \mathbf{Q}(\alpha)$. More precisely, we present, in the following, the theory of the extension of absolute values to a number field k. A number field k is a finite extension of the rationals \mathbf{Q} . Absolute values on \mathbf{Q} extend to absolute values on k. The absolute values on k are divided into Archimedeans and non-Archimedeans. The Archimedean absolute values arise in the following ways: Let $n = [k : \mathbf{Q}]$. It is a standard fact from the field theory that k admits exactly n distinct embeddings $\sigma: k \hookrightarrow \mathbf{C}$. Each such embedding is used to define an absolute value on k according to the rule

$$|x|_{\sigma} = |\sigma(x)|_{\infty}$$

where $| |_{\infty}$ is the usual absolute value on **C**. Recall that the embeddings $\sigma : k \hookrightarrow \mathbf{C}$ come in two flavors, the real embeddings (i.e., $\sigma(k) \subset \mathbf{R}$) and complex embeddings (i.e. $\sigma(k) \not\subset \mathbf{R}$). The complex embeddings come in pairs that differ by complex conjugation. The usual notation is that there are r_1 real embeddings and $2r_2$ pairs of complex embeddings, so $n = r_1 + 2r_2$. The normalized almost absolute value corresponding to σ is then defined by

$$\|x\|_{\sigma} = |x|_{\sigma},\tag{2}$$

if σ is a real embedding, and

$$\|x\|_{\sigma} = |x|_{\sigma}^2,\tag{3}$$

if σ is a complex embedding. We note that the normalized almost-absolute values arising from the complex embedding do not satisfy the triangle inequality. This is why they are called almost-absolute values.

The non-Archimedean absolute values on k arise in much the same way as they do on **Q**. However, one may not be able to uniquely factor elements of k into primes. A key idea in number theory is to look at prime ideals instead. To be more precise, let \mathbf{R}_k be the ring of algebraic integers of k. Recall that $x \in k$ is called an **algebraic integer** if x is a root of a monic polynomial with coefficients in \mathbf{Z} . Note that, although \mathbf{R}_k is not a principle ideal domain, for every $x \in \mathbf{R}_k$, the principal ideal (x) in \mathbf{R}_k generated by x does factor uniquely into a product of prime ideals. For every prime ideal \mathcal{P} of \mathbf{R}_k , we denote by $\mathrm{ord}_{\mathcal{P}} x$ the number of times the prime ideal \mathcal{P} appears in this ideal factorization. Every prime ideal \mathcal{P} lies above some prime p in \mathbf{Q} . For every element $x \in \mathbf{R}_k$, we define

$$|x|_{\mathcal{P}} = p^{-\operatorname{ord}_{\mathcal{P}} x/\operatorname{ord}_{\mathcal{P}} p}.$$

Of course, we always understand that $\operatorname{ord}_{\mathcal{P}} 0 = \infty$. The absolute value $||_{\mathcal{P}}$ extends to k by writing any $x \in k$ as the quotient of two elements in \mathbf{R}_k . Note that the $\operatorname{ord}_{\mathcal{P}} p$ is needed to ensure that $|p|_{\mathcal{P}} = p^{-1}$. To get the normalized non-Archimedean absolute values, let \mathbf{Q}_p be the completion of \mathbf{Q} with respect to the *p*-adic absolute value ||p| on \mathbf{Q} and $k_{\mathcal{P}}$ the completion of k with respect to $||_{\mathcal{P}}$. For every element $x \in \mathbf{R}_k$, we define the normalized norm

$$\|x\|_{\mathcal{P}} = \|x\|_{\mathcal{P}}^{[k_{\mathcal{P}}:\mathbf{Q}_p]}.$$
(4)

,

The absolute value $\| \|_{\mathcal{P}}$ extends to k by writing any $x \in k$ as the quotient of two elements in \mathbf{R}_k . Note the definition in (4) can also be written as

$$||x||_{\mathcal{P}} = \left(N_{k/\mathbf{Q}}\mathcal{P}\right)^{-\operatorname{ord}_{\mathcal{P}}\mathbf{x}}$$

where $N_{k/\mathbf{Q}}\mathcal{P}$ is the norm of the ideal \mathcal{P} .

Theorem 2 is then extended to the following theorem.

Theorem 3 (A. Ostrowski) Let k be a number field. Any almost-absolute value on k is equivalent to one of the following: the Archimedean absolute values which come from the real embeddings $\sigma : k \to \mathbf{R}$ defined by (2); the Archimedean almost-absolute values which come from the complex embeddings $\sigma : k \to \mathbf{C}$ defined by (2); and the non-Archimedean absolute value $\| \|_{\mathcal{P}}$ for some prime number $p \in \mathbf{Q}$, defined by (2).

We refer to the real embeddings $\sigma : k \to \mathbf{R}$, the complex conjugate pairs $\{\sigma, \bar{\sigma}\}$ of the complex embeddings $\sigma : k \to \mathbf{C}$, and the nonzero prime ideals

 \mathcal{P} in the ring \mathbf{R}_k as **real places**, **complex places** and **non-Archimedean places**. We denote by M_k the canonical set of all the non-equivalent places. The set of non-equivalent Archimedean places of k is denoted by M_k^{∞} , the set of non-equivalent non-Archimedean places of k is denoted by M_k^0 . For every place $v \in M_k$, v has **almost-absolute values** $\|\cdot\|_v$ defined by

$$\|x\|_{\upsilon} = \begin{cases} |\sigma(x)| & \text{if } \upsilon \text{ is real, corresponding to } \sigma : \mathbf{k} \to \mathbf{R} \\ |\sigma(x)|^2 & \text{if } \upsilon \text{ is complex, corresponding to } \sigma, \bar{\sigma} : \mathbf{k} \to \mathbf{C} \\ \left(N_{k/\mathbf{Q}}\mathcal{P}\right)^{-\operatorname{ord}_{\mathcal{P}}\mathbf{x}} & \text{if } \upsilon \text{ is non-Arch., corresponding to } \mathcal{P} \subset \mathbf{R}_{\mathbf{k}} \end{cases}$$

$$\tag{5}$$

for $x \neq 0 \in k$. We also define $||0||_v = 0$. As we noted, these are not necessarily genuine absolute values. However, instead of having the triangle inequality, we have a value such that if $a_1, \ldots, a_n \in k$, then

$$\left\|\sum_{i=1}^{n} a_{i}\right\|_{v} \le n^{N_{v}} \max_{1 \le i \le n} \|a_{i}\|_{v},$$
(6)

where

$$N_{\upsilon} = \begin{cases} 1 & \text{if } \upsilon \text{ is real} \\ 2 & \text{if } \upsilon \text{ is complex} \\ 0 & \text{if } \upsilon \text{ is non-Archimedean.} \end{cases}$$

If L is a finite extension of $k, v \in M_k$, and $x \in k$, then

$$\prod_{w \in M_L, w \mid v} \|x\|_w = \|x\|_v^{[L:k]}.$$
(7)

Artin-Whaples extended the product formula on \mathbf{Q} to the number fields.

Theorem 4 (Product Formula) Let k be a number field. Let M_k be the canonical set of non-equivalent places on k. Then, for every $x \in k$ with $x \neq 0$,

$$\prod_{\upsilon \in M_k} \|x\|_{\upsilon} = 1.$$
(8)

0.2 Roth's Theorem

Roth's theorem was extended by Mahler to number field k as follows:

Theorem 5 (Roth) Given $\epsilon > 0$, a finite set of places S of k containing M_k^{∞} , and $\alpha_v \in \overline{\mathbf{Q}}$ for each $v \in S$. Then for all, except for finitely many, $x \in k$,

$$\frac{1}{[k:\mathbf{Q}]}\sum_{v\in S} -\log\min(\|x-\alpha_v\|_v, 1) \le (2+\epsilon)h(x),\tag{9}$$

where h(x) is the absolute logarithmic height defined by

$$h(x) = \frac{1}{[k:\mathbf{Q}]} \sum_{v \in M_k} \log^+ \|x\|_v.$$
(10)

Fix a finite set S containing M_k^{∞} , we define, for $a, x \in k$,

$$m(x,a) = \frac{1}{[k:\mathbf{Q}]} \sum_{v \in S} \log^+ \frac{1}{\|x-a\|_v},$$
(11)

$$N(x,a) = \frac{1}{[k:\mathbf{Q}]} \sum_{v \notin S} \log^+ \frac{1}{\|x-a\|_v}.$$
 (12)

Then the product formula (Theorem 4) reads

Theorem 6 For all $x \in k^*$, $a \in k$

$$m(x, a) + N(x, a) = h(x) + O(1).$$

Theorem B1.2.5 can be restated as

Theorem 7 (Roth) Given $\epsilon > 0$, a finite set $S \subset M_k$ containing M_k^{∞} , and distinct points $a_1, \ldots, a_q \in k$. Then the inequality

$$\sum_{j=1}^{q} m(x, a_j) \le (2 + \epsilon)h(x)$$

holds for all, except for finitely many, $x \in k$.

Lang made the following conjecture with a more precise error term.

Conjecture 8 (Lang) Given $\epsilon > 0$, a finite set $S \subset M_k$ containing M_k^{∞} , and distinct points $a_1, \ldots, a_q \in k$, the inequality

$$(q-2)h(x) \le \sum_{j=1}^{q} N^{(1)}(x, a_j) + (1+\epsilon)\log h(x)$$

holds for all, except for finitely many, $x \in k$.

Roth's theorem implies the following analogy of Picard's Theorem.

Theorem 9 Let k be a number field, and let a_1, \ldots, a_q be distinct numbers in $k \cup \{\infty\}$. If $q \ge 3$, then there are only finitely many elements $x \in k$ such that $1/(x - a_j)$ (or x itself if $a_j = \infty$) is an algebraic integer for all $1 \le j \le q$.

To further explore the analogy, we introduce more notation. Recall the Nevanlinna counting function for a meromorphic function f is defined by

$$N_f(r,a) = \sum_{z \in \mathbf{D}(r), z \neq 0} \operatorname{ord}_z^+(f-a) \log \frac{r}{|z|} + \operatorname{ord}_0^+(f-a) \log r$$

On the other hand, take $S = M_k^{\infty}$, then the number theoretic counting function N(x, a) defined by (12) can be rewritten as

$$N(x,a) = \frac{1}{[k:\mathbf{Q}]} \sum_{v \notin M_k^{\infty}} \log^+ \frac{1}{\|x-a\|_v}$$
$$= \frac{1}{[k:\mathbf{Q}]} \sum_{\mathcal{P} \subset \mathbf{R}_k} \operatorname{ord}_{\mathcal{P}}^+(x-a) \log(N_{k/\mathbf{Q}}\mathcal{P})$$
(13)

where $\operatorname{ord}_{\mathcal{P}}^+ x = \max\{0, \operatorname{ord}_{\mathcal{P}} x\}$. So $N_f(r, a)$ and N(x, a) can be compared by replacing $\log(r/|z|)$ in the definition of $N_f(r, a)$ with $\log(N_{k/\mathbf{Q}}\mathcal{P})$ in the definition of N(x, a). From this point of view, Paul Vojta has compiled a dictionary to translate the terms in Nevanlinna theory to the terms in Diophantine approximation. It is provided on p. 32.

Nevanlinna Theory **Diophantine Approximation** non-constant meromorphic function finfinite $\{x\}$ in a number field k A radius rAn element of kA finite measure set E of radii A finite subset of $\{x\}$ An embedding $\sigma: k \to \mathbf{C}$ An angle θ $|f(re^{i\theta})|$ $|x|_{\sigma}$ $(\operatorname{ord}_{\mathcal{P}} x) \log(N_{k/\mathbf{Q}} \mathcal{P})$ $(\operatorname{ord}_z f) \log \frac{r}{|z|}$ Proximity function Proximity function $m_f(r,a) = \int_0^{2\pi} \log^+ \left| \frac{1}{f(re^{i\theta}) - a} \right| \frac{d\theta}{2\pi}$ $m(x,a) = \sum_{\sigma:k \to \mathbf{C}} \log^+ \left\| \frac{1}{x-a} \right\|_{\mathbf{x}}$ Counting function: Counting function: $N_f(r, a) = \operatorname{ord}_0^+(f - a) \log r$ N(x,a) = $\frac{1}{[k:\mathbf{Q}]}\sum_{\mathcal{P}\subset\mathbf{R}_k}\mathrm{ord}_{\mathcal{P}}^+(x-a)\log(N_{k/\mathbf{Q}}\mathcal{P})$ $+\sum_{0 < |z| < r} \operatorname{ord}_{z}^{+}(f - a) \log \frac{r}{|z|}$ Characteristic function Logarithmic height $h(x) = \frac{1}{[k:\mathbf{Q}]} \sum_{\sigma:k\to\mathbf{C}} \log^+ \|x\|_{\sigma}$ $T_f(r) = \int_0^{2\pi} \log^+ |f(re^{i\theta})| \frac{d\theta}{2\pi}$ $+N_f(r,\infty)$ $+N(x,\infty)$ Jensen's formula: Atin-Whaples Product Formula: $\int_0^{2\pi} \log |f(re^{i\theta})| \frac{d\theta}{2\pi}$ $\sum_{\sigma:k\to\mathbf{C}}\log\|x\|_{\sigma}$ $= N_f(r, 0) - N_f(r, \infty) + O(1)$ $= N(x,0) - N(x,\infty)$ First Main Theorem: Height Property: $m_f(r, a) + N_f(r, a) = T_f(r) + O(1)$ m(x, a) + N(x, a) = h(x) + O(1)Weaker Second Main Theorem: Roth's Theorem: $(q-2)T_f(r) - \sum_{j=1}^q N_f(r,a_j) \le .\epsilon T_f(r) \mid (q-2)h(x) - \sum_{j=1}^q N(x,a_j) \le .\epsilon h(x)$ Lang's conjecture: Second Main Theorem: $\left| (q-2)h(x) - \sum_{j=1}^{q} N^{(1)}(x, a_j) \right|$ $(q-2)T_f(r) - \sum_{j=1}^q N_f^{(1)}(r, a_j)$. $\leq .(1+\epsilon) \log T_f(r)$

Note that, in above, we use the notation $. \leq .$ to denote that the inequality holds for all r except a set $E \subset (0, +\infty)$ with finite Lebesgue measure in Nevanlinna theory and the inequality holds for all, except for finitely many, $x \in k$ in Diophantine approximation.