0.1 Valuations on a number field

Definition 1 Let F be a field. By an absolute value on F, we mean a real-valued function $|\cdot|$ on F satisfying the following three conditions:

(i) $|a| \geq 0$, and $|a| = 0$ if and only if $a = 0$.
(ii) $|ab| = |a||b|$.
(iii) $|a + b| \leq |a| + |b|$.

Two absolute values $|\cdot|_1$ and $|\cdot|_2$ are called equivalent if there is a positive constant λ such that $|\cdot|_1 = |\cdot|_2^\lambda$. Over the field of rational numbers \mathbb{Q} we have the following absolute values: the standard Archimedean absolute value $|\cdot|_\infty$ (we also denote it by $|\cdot|_\infty$), which is defined by $|x| = x$ if $x \geq 0$, and $|x| = -x$ if $x < 0$; p-adic absolute value $|\cdot|_p$, for each prime number p, defined by $|x|_p = p^{-r}$, if $x = p^ra/b$, for some integer r, where a and b are integers relatively prime to p. For $x = 0$, $|x|_p = 0$. The p-adic absolute value $|\cdot|_p$ satisfies (i) and (ii), and a property stronger than (iii) in Definition 1, namely

$$(iii)' \quad |a + b|_p \leq \max\{|a|_p, |b|_p\}.$$

An absolute value that satisfies $(iii)'$ is called a non-Archimedean absolute value. Every nonzero rational number has a factorization into prime factors. So for every $x \in \mathbb{Q}$ with $x \neq 0$, we have

$$|x|_\infty \cdot \prod_p |x|_p = 1,$$

(1)

where in the product, p runs for all prime numbers. (1) is called the product formula.

Theorem 2 (A. Ostrowski) Any absolute value on \mathbb{Q} is equivalent to one of the following: a p-adic absolute value for some prime number p, the standard Archimedean absolute value $|\cdot|_\infty$, or the trivial absolute value $|\cdot|_0$ defined by $|x|_0 = 1$ for all $x \neq 0$.

1
To clearly see how Roth’s theorem connects to Nevanlinna theory, we have to consider the fields more general than \(\mathbb{Q} \), namely the number fields. Let us first consider the extension of an absolute value to \(\mathbb{Q}(\alpha) \) where \(\alpha \) is an algebraic number. We know that an algebraic number is usually viewed as a complex root of its minimal polynomial. Then \(|\alpha| \) is just the modulus of this complex number, and extends \(|\cdot|_\infty \) to an absolute value of \(\mathbb{Q}(\alpha) \). To extend a \(p \)-adic absolute value is less easy. But if one is willing to accept the \(p \)-adic closure \(\mathbb{Q}_p \) of \(\mathbb{Q} \) and the algebraic closure \(\mathbb{C}_p \) of \(\mathbb{Q}_p \), with the corresponding extension of \(|\cdot|_p \) to \(\mathbb{C}_p \), this becomes just as easy as for \(|\cdot|_\infty \). Namely, every embedding \(\sigma : \mathbb{Q}(\alpha) \to \mathbb{C}_p \) gives an extension of \(|\cdot|_p \) defined by \(|\beta|_p = |\sigma(\beta)|_p \), for \(\beta \in \mathbb{Q}(\alpha) \). More precisely, we present, in the following, the theory of the extension of absolute values to a number field \(k \). A number field \(k \) is a finite extension of the rationals \(\mathbb{Q} \). Absolute values on \(\mathbb{Q} \) extend to absolute values on \(k \). The absolute values on \(k \) are divided into Archimedean and non-Archimedean. The Archimedean absolute values arise in the following ways: Let \(n = [k : \mathbb{Q}] \). It is a standard fact from the field theory that \(k \) admits exactly \(n \) distinct embeddings \(\sigma : k \hookrightarrow \mathbb{C} \). Each such embedding is used to define an absolute value on \(k \) according to the rule

\[
|x|_\sigma = |\sigma(x)|_\infty
\]

where \(|\cdot|_\infty \) is the usual absolute value on \(\mathbb{C} \). Recall that the embeddings \(\sigma : k \hookrightarrow \mathbb{C} \) come in two flavors, the real embeddings (i.e., \(\sigma(k) \subset \mathbb{R} \)) and complex embeddings (i.e. \(\sigma(k) \not\subset \mathbb{R} \)). The complex embeddings come in pairs that differ by complex conjugation. The usual notation is that there are \(r_1 \) real embeddings and \(2r_2 \) pairs of complex embeddings, so \(n = r_1 + 2r_2 \). The normalized almost absolute value corresponding to \(\sigma \) is then defined by

\[
\|x\|_\sigma = |x|_\sigma, \quad (2)
\]

if \(\sigma \) is a real embedding, and

\[
\|x\|_\sigma = |x|_\sigma^2, \quad (3)
\]

if \(\sigma \) is a complex embedding. We note that the normalized almost-absolute values arising from the complex embedding do not satisfy the triangle inequality. This is why they are called almost-absolute values.

The non-Archimedean absolute values on \(k \) arise in much the same way as they do on \(\mathbb{Q} \). However, one may not be able to uniquely factor elements
of \(k \) into primes. A key idea in number theory is to look at prime ideals instead. To be more precise, let \(\mathbf{R}_k \) be the ring of algebraic integers of \(k \). Recall that \(x \in k \) is called an **algebraic integer** if \(x \) is a root of a monic polynomial with coefficients in \(\mathbb{Z} \). Note that, although \(\mathbf{R}_k \) is not a principle ideal domain, for every \(x \in \mathbf{R}_k \), the principal ideal \((x) \) in \(\mathbf{R}_k \) generated by \(x \) does factor uniquely into a product of prime ideals. For every prime ideal \(\mathcal{P} \) of \(\mathbf{R}_k \), we denote by \(\text{ord}_{\mathcal{P}} x \) the number of times the prime ideal \(\mathcal{P} \) appears in this ideal factorization. Every prime ideal \(\mathcal{P} \) lies above some prime \(p \) in \(\mathbb{Q} \). For every element \(x \in \mathbf{R}_k \), we define

\[
|x|_\mathcal{P} = p^{-\text{ord}_{\mathcal{P}} x / \text{ord}_{\mathcal{P}} p}.
\]

Of course, we always understand that \(\text{ord}_{\mathcal{P}} 0 = \infty \). The absolute value \(|\cdot|_\mathcal{P} \) extends to \(k \) by writing any \(x \in k \) as the quotient of two elements in \(\mathbf{R}_k \). Note that the \(\text{ord}_{\mathcal{P}} p \) is needed to ensure that \(|p|_\mathcal{P} = p^{-1} \). To get the normalized non-Archimedean absolute values, let \(\mathbb{Q}_p \) be the completion of \(\mathbb{Q} \) with respect to the \(p \)-adic absolute value \(|\cdot|_p \) on \(\mathbb{Q} \) and \(k_p \) the completion of \(k \) with respect to \(|\cdot|_p \). For every element \(x \in \mathbf{R}_k \), we define the normalized norm

\[
\|x\|_\mathcal{P} = |x|_\mathcal{P}^{[k_p:Q_p]}.
\]

The absolute value \(\|\cdot\|_\mathcal{P} \) extends to \(k \) by writing any \(x \in k \) as the quotient of two elements in \(\mathbf{R}_k \). Note the definition in (4) can also be written as

\[
\|x\|_\mathcal{P} = \left(N_{k/Q} \mathcal{P} \right)^{-\text{ord}_{\mathcal{P}} x},
\]

where \(N_{k/Q} \mathcal{P} \) is the norm of the ideal \(\mathcal{P} \).

Theorem 2 is then extended to the following theorem.

Theorem 3 (A. Ostrowski) Let \(k \) be a number field. Any almost-absolute value on \(k \) is equivalent to one of the following: the Archimedean absolute values which come from the real embeddings \(\sigma : k \to \mathbb{R} \) defined by (2); the Archimedean almost-absolute values which come from the complex embeddings \(\sigma : k \to \mathbb{C} \) defined by (2); and the non-Archimedean absolute value \(\|\cdot\|_p \) for some prime number \(p \in \mathbb{Q} \), defined by (2).

We refer to the real embeddings \(\sigma : k \to \mathbb{R} \), the complex conjugate pairs \(\{\sigma, \overline{\sigma}\} \) of the complex embeddings \(\sigma : k \to \mathbb{C} \), and the nonzero prime ideals
\[P \] in the ring \(\mathbb{R}_k \) as real places, complex places and non-Archimedean places. We denote by \(M_k \) the canonical set of all the non-equivalent places. The set of non-equivalent Archimedean places of \(k \) is denoted by \(M_{k}^\infty \), the set of non-equivalent non-Archimedean places of \(k \) is denoted by \(M^0_k \). For every place \(\nu \in M_k \), \(\nu \) has almost-absolute values \(\| \cdot \|_\nu \) defined by

\[
\| x \|_\nu = \begin{cases} |\sigma(x)| & \text{if } \nu \text{ is real, corresponding to } \sigma : k \to \mathbb{R} \\ |\sigma(x)|^2 & \text{if } \nu \text{ is complex, corresponding to } \sigma, \overline{\sigma} : k \to \mathbb{C} \\ (N_k/Q)^{-\text{ord}_P} & \text{if } \nu \text{ is non-Arch., corresponding to } \mathcal{P} \subset \mathbb{R}_k \end{cases}
\]

for \(x \neq 0 \in k \). We also define \(\|0\|_\nu = 0 \). As we noted, these are not necessarily genuine absolute values. However, instead of having the triangle inequality, we have a value such that if \(a_1, \ldots, a_n \in k \), then

\[
\left\| \sum_{i=1}^{n} a_i \right\|_\nu \leq n^{N_\nu} \max_{1 \leq i \leq n} \|a_i\|_\nu,
\]

where

\[
N_\nu = \begin{cases} 1 & \text{if } \nu \text{ is real} \\ 2 & \text{if } \nu \text{ is complex} \\ 0 & \text{if } \nu \text{ is non-Archimedean}.\end{cases}
\]

If \(L \) is a finite extension of \(k \), \(\nu \in M_k \), and \(x \in k \), then

\[
\prod_{w \in M_L, w|\nu} \| x \|_w = \| x \|^{[L:k]}_\nu.
\]

Artin-Whaples extended the product formula on \(\mathbb{Q} \) to the number fields.

Theorem 4 (Product Formula) Let \(k \) be a number field. Let \(M_k \) be the canonical set of non-equivalent places on \(k \). Then, for every \(x \in k \) with \(x \neq 0 \),

\[
\prod_{\nu \in M_k} \| x \|_\nu = 1.
\]
0.2 Roth’s Theorem

Roth’s theorem was extended by Mahler to number field k as follows:

Theorem 5 (Roth) Given $\epsilon > 0$, a finite set of places S of k containing M_k^∞, and $\alpha_v \in \overline{Q}$ for each $v \in S$. Then for all, except for finitely many, $x \in k$,

$$\frac{1}{[k : Q]} \sum_{v \in S} -\log \min(\|x - \alpha_v\|_v, 1) \leq (2 + \epsilon)h(x),$$ \hspace{1cm} (9)

where $h(x)$ is the absolute logarithmic height defined by

$$h(x) = \frac{1}{[k : Q]} \sum_{v \in M_k} \log^+ \|x\|_v.$$ \hspace{1cm} (10)

Fix a finite set S containing M_k^∞, we define, for $a, x \in k$,

$$m(x, a) = \frac{1}{[k : Q]} \sum_{v \in S} \log^+ \frac{1}{\|x - a\|_v},$$ \hspace{1cm} (11)

$$N(x, a) = \frac{1}{[k : Q]} \sum_{v \in S} \log^+ \frac{1}{\|x - a\|_v}.$$ \hspace{1cm} (12)

Then the product formula (Theorem 4) reads

Theorem 6 For all $x \in k^*$, $a \in k$

$$m(x, a) + N(x, a) = h(x) + O(1).$$

Theorem B1.2.5 can be restated as

Theorem 7 (Roth) Given $\epsilon > 0$, a finite set $S \subset M_k$ containing M_k^∞, and distinct points $a_1, \ldots, a_q \in k$. Then the inequality

$$\sum_{j=1}^{q} m(x, a_j) \leq (2 + \epsilon)h(x)$$

holds for all, except for finitely many, $x \in k$.

Lang made the following conjecture with a more precise error term.
Conjecture 8 (Lang) Given $\epsilon > 0$, a finite set $S \subset M_k$ containing M_k^∞, and distinct points $a_1, \ldots, a_q \in k$, the inequality

$$(q - 2)h(x) \leq \sum_{j=1}^{q} N^{(1)}(x, a_j) + (1 + \epsilon) \log h(x)$$

holds for all, except for finitely many, $x \in k$.

Roth’s theorem implies the following analogy of Picard’s Theorem.

Theorem 9 Let k be a number field, and let a_1, \ldots, a_q be distinct numbers in $k \cup \{\infty\}$. If $q \geq 3$, then there are only finitely many elements $x \in k$ such that $1/(x - a_j)$ (or x itself if $a_j = \infty$) is an algebraic integer for all $1 \leq j \leq q$.

To further explore the analogy, we introduce more notation. Recall the Nevanlinna counting function for a meromorphic function f is defined by

$$N_f(r, a) = \sum_{z \in D(r), z \neq 0} \text{ord}_z^+(f - a) \log \frac{r}{|z|} + \text{ord}_z^-(f - a) \log r.$$

On the other hand, take $S = M_k^\infty$, then the number theoretic counting function $N(x, a)$ defined by (12) can be rewritten as

$$N(x, a) = \frac{1}{[k : Q]} \sum_{v \in M_k^\infty} \log^+ \frac{1}{\|x - a\|_v}$$

$$= \frac{1}{[k : Q]} \sum_{P \in \mathcal{R}_k} \text{ord}_P^+(x - a) \log(N_{k/Q} P) \quad (13)$$

where $\text{ord}_P^+ x = \max\{0, \text{ord}_P x\}$. So $N_f(r, a)$ and $N(x, a)$ can be compared by replacing $\log(r/|z|)$ in the definition of $N_f(r, a)$ with $\log(N_{k/Q} P)$ in the definition of $N(x, a)$. From this point of view, Paul Vojta has compiled a dictionary to translate the terms in Nevanlinna theory to the terms in Diophantine approximation. It is provided on p. 32.
Nevanlinna Theory
non-constant meromorphic function \(f \)
A radius \(r \)
A finite measure set \(E \) of radii
An angle \(\theta \)
\(|f(re^{i\theta})| \)
\((\text{ord}_x f) \log \frac{r}{|x|} \)
Proximity function
\(m_f(r, a) = \int_0^{2\pi} \log^+ \left| \frac{1}{f(re^{i\theta}) - a} \right| \frac{d\theta}{2\pi} \)
Counting function:
\(N_f(r, a) = \text{ord}_0^+ (f - a) \log r + \sum_{0 < |z| < r} \text{ord}_z^+ (f - a) \log \frac{r}{|z|} \)
Characteristic function
\(T_f(r) = \int_0^{2\pi} \log^+ |f(re^{i\theta})| \frac{d\theta}{2\pi} \)
\(+ N_f(r, \infty) \)
Jensen’s formula:
\(\int_0^{2\pi} \log |f(re^{i\theta})| \frac{d\theta}{2\pi} = N_f(r, 0) - N_f(r, \infty) + O(1) \)
First Main Theorem:
\(m_f(r, a) + N_f(r, a) = T_f(r) + O(1) \)
Weaker Second Main Theorem:
\((q - 2)T_f(r) - \sum_{j=1}^{q} N_f(r, a_j) \leq \epsilon T_f(r) \)
Second Main Theorem:
\((q - 2)T_f(r) - \sum_{j=1}^{q} N_f^{(1)}(r, a_j) \leq (1 + \epsilon) \log T_f(r) \)

Diophantine Approximation
infinite \(\{x\} \) in a number field \(k \)
An element of \(k \)
A finite subset of \(\{x\} \)
An embedding \(\sigma : k \rightarrow \mathbb{C} \)
\(|x|_\sigma \)
\((\text{ord}_P x) \log(N_{k/Q} P) \)
Proximity function
\(m(x, a) = \sum_{\sigma : k \rightarrow \mathbb{C}} \log^+ \|x\|_\sigma \)
Counting function:
\(N(x, a) = \frac{1}{[k:Q]} \sum_{P \subset \mathbb{R}_k} \text{ord}_P^+(x - a) \log(N_{k/Q} P) \)
Logarithmic height
\(h(x) = \frac{1}{[k:Q]} \sum_{\sigma : k \rightarrow \mathbb{C}} \log^+ \|x\|_\sigma \)
\(+ N(x, \infty) \)
Atin-Whaples Product Formula:
\(\sum_{\sigma : k \rightarrow \mathbb{C}} \log \|x\|_\sigma = N(x, 0) - N(x, \infty) \)
Height Property:
\(m(x, a) + N(x, a) = h(x) + O(1) \)
Roth’s Theorem:
\((q - 2)h(x) - \sum_{j=1}^{q} N(x, a_j) \leq \epsilon h(x) \)
Lang’s conjecture:
\((q - 2)h(x) - \sum_{j=1}^{q} N^{(1)}(x, a_j) \leq (1 + \epsilon) \log h(x) \)

Note that, in above, we use the notation \(\leq \) to denote that the inequality holds for all \(r \) except a set \(E \subset (0, + \infty) \) with finite Lebesgue measure in Nevanlinna theory and the inequality holds for all, except for finitely many, \(x \in k \) in Diophantine approximation.