
Roth’s Theorem

0.1 The Proof of Roth’ Theorem

Theorem (Roth) Let α be an algebraic number of degree ≥ 2. Then, for
every ε > 0, the inequality ∣∣∣∣∣pq − α

∣∣∣∣∣ > 1

q2+ε

holds for all, except for finitely many, rational numbers p/q.

To prove Roth’s theorem, we first state several lemmas. The first one is
the so-called Siegel’s lemma. Siegel’s lemma is a corollary of the “pigeonhole
principle.”

Lemma 1(Siegel’s Lemma) Let A be an M ×N matrix with M < N and
having entries in Z of absolute value at most Q, where Z is the set of integers.
Then there exists a nonzero vector x = (x1, . . . , xN) ∈ ZN with Ax = 0, such
that

|xi| ≤ [(NQ)M/(N−M)] =: Z, i = 1, . . . , N.

Proof The number of integer points in the box

0 ≤ xi ≤ Z, i = 1, . . . , N

is (Z + 1)N . On the other hand, for all j = 1, . . . , N and for each such x,
the jth coordinate yj of the vector y := Ax lies in the interval [−njQZ, (N −
nj)QZ], where nj is the number of negative entries in the jth row of A.
Therefore, there are at most (NQZ + 1)M < (Z + 1)N possible values of Ax.
Hence, there must exist vectors x1 6= x2 in the box and such that Ax1 = Ax2.
Then x = x1 − x2 satisfies the conditions of the lemma.

The second lemma states that most values i1/d1 + · · · + in/dn with 0 ≤
ih ≤ dh (h = 1, . . . ,m are close to n/2.
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Lemma 2 (A Combinatorial Lemma) Let d1, . . . , dn be integers greater
than or equal to 1 and let ε1 > 0. The number of sets of integers (i1, . . . , in)
satisfying

0 ≤ i1 ≤ d1, . . . , 0 ≤ in ≤ dn

and ∣∣∣∣∣
n∑

h=1

ih
dh

− n

2

∣∣∣∣∣ ≥ εn

is at most (d1 + 1) . . . (dn + 1)/(4nε2).

Proof. We may consider i1, . . . , in as independent stochastic variables such
that ih is uniformly distributed on {0, . . . , dh}. Define the stochastic variable
X =

∑n
h=1 ih/dh. Then X has expectation µ = n/2 and variance

σ2 = V ar(i1/d1) + · · ·+ V ar(in/dn).

We have

V ar(ih/dh) =
dh∑

ih=0

(
ih
dh

− 1

2

)2 1

dh + 1
=

2dh + 1

6dh

− 1

4
≤ 1

4
.

Hence σ2 ≤ n/4. By Kolmogorov’s generalization of Chebyshev’s inequality,
we have Prob(|X − µ| ≥ c) ≤ σ2/c2. Thus

Prob(|X − n/2| ≥ ε1m) ≤ 1

4mε2
1

.

This proves the lemma

Definition 1 For a polynomial P (X1, . . . , Xn) ∈ Z[X1, . . . , Xn] and i =
(i1, . . . , in) ∈ Zn

≥0, put

Pi(X1, . . . , Xn) =
1

i1! · · · in!

∂i1

∂X i1
1

· · · ∂in

∂X in
1

P (X)

=
∑

l1,...,ln≥0

(
j1

i1

)
· · ·

(
jn

in

)
C(j1, . . . , jn)Xj1−i1

1 · · ·Xjn−in
n .

2



Let α1, . . . , αn ∈ C and let d1, . . . , dn be positive integers. Then the index
of P at α = (α1, . . . , αn) with weights d1, . . . , dn is

t(P, (α1, . . . , αm), d1, . . . , dn) = min

{
n∑

i=1

li
di

∣∣∣∣∣ Pi(α) 6= 0

}
.

Note that i(PQ) = i(P ) + i(Q) and i(P + Q) ≥ min{i(P ), i(Q)}.

The third lemma provides the construction of a polynomial with high
index at some given point. For P ∈ Z[X1, . . . , Xn] we denote the maximum
of the absolute value of the coefficients of P by |P |.

Lemma 3(the Index Theorem) Suppose that α is an algebraic integer of
degree d ≥ 2. Let ε > 0, and let n be an integer with n ≥ d/2ε2. Let d1, . . . , dn

be positive integers. Then there is P ∈ Z[X1, . . . , Xn], P 6≡ 0, such that
(i) P has degree ≤ dh in Xh,
(ii)

t(P, (α, . . . , α), d1, . . . , dn) ≥ n(1− ε)/2

(iii) |P | ≤ Cd1+···+dn
1 .

Proof. Write P (X1, . . . , Xn) =
∑d1

j1=0 · · ·
∑dn

jn=0 z(j1, . . . , jn)Xj1
1 · · ·Xjn

n , where
z(j1, . . . , jn) are the integers which have to be determined such that (ii) hodls,
i.e. Pi(α) = 0 for i1/d1+· · · in/dn ≤ n(1−ε)/2. By taking all these expression
together, we obtain

A0z + αA1z + · · ·+ αd1+···+dnAd1+···+dnz = 0

where Ai are M × N integer matrices with |Ai| ≤ 4d1+···+dn , where N =
(d1+!) · · · (dm + 1) and M is the number of tuples i with i1/d1 + · · · in/dn ≤
n(1− ε)/2. Using the fact that α is an algebra number of degree d, we get

B0z + αB1z + · · ·+ αd−1Bd−1z = 0

where Bi are M×N integer matrices with |Bi| ≤ Cd1+···+dn
2 . Since 1, α, α2, . . . , αd−1

are Z-linear independent, we have B0z = 0, . . . , Bd−1z = 0. Hence Bz = 0
where B is an dM ×N integer matrices with |B| ≤ Cd1+···+dn

2 . By the com-
binational lemma, we have

M ≤ (d1 + 1) · · · (dn + 1)

4mε2
=

N

4mε2
≤ N

2d
.
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Now Siegel’s lemma implies that there is a non-zero integer vector z such
that Bz = 0 and

|z| ≤ (N |B|)dM/(N−dM) ≤ N |B| ≤ Cd1+···+dn
3 .

Note that the constants C1, C2 and C3 depend only on α. This finishes the
proof.

The fourth lemma gives a sufficient condition for a polynomial to have
small index with respect to the approximation vector (p1/q1, . . . .pn/qn) and
(d1, . . . , dn).

Lemma 4 (Roth’s Lemma) Let n ≥ 1 be a positive integer, and ε >
0. There exists a number C4 = C4(m, ε) > 1 with the following property:
Let dj(j = 1, . . . , n) be integers with dh ≥ C4dh+1, h = 1, . . . , n − 1. Let
(p1, q1), . . . , (pn, qn) be pairs of coprime integers with qdh

h ≥ qd1
1 and qh ≥

22mC4 , h = 1, . . . , n. Let P (X1, . . . , Xn) 6≡ 0 be a polynomial in Z[X1, . . . , Xn]
of degree at most dh in Xh with

|P |C4 ≤ qd1
1 , P 6≡ 0.

Then
t = t(P, (p1/q1, . . . , pn/qn), d1, . . . , dn) ≤ ε.

The proof of Roth’s lemma can be found in Lang’s book. We omit it here.

Proof of Roth’s Theorem Assume that Roth’s Theorem fails, i.e.∣∣∣∣∣pq − α

∣∣∣∣∣ < 1

q2+δ/2
(∗)

holds for infinitely many p/q. We will derive a contradiction. Without loss
of generality, we assume that α is an algebraic integer of degree d ≥ 2 with
|α| < 1. We also assume that 0 < δ < 1/2.

Step 1: Choice of ”suitable” points ph/qh. Let P be the polynomial con-
structed in the index Theorem with respect to α, ε = δ/12, n > d/2ε2 and ar-
bitrary d1, . . . , dn. Then P has index > m(1− ε)/2 with respect to (α, . . . , α)
and (d1, . . . , dn). We first chose solutions p1/q1, . . . , pn/qn as follows:
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(a) Choose (p1, q1) with

q1 > max((6C1)
1/ε, Cm

1 , 22mC4)

where C1 is the constant appearing in the index Theorem, and C4 is the
constant appearing in the Roth’s lemma.

(b) Choose solutions (p2, q2), . . . , (pn, qn) such that

qh+1 > q
(1+ε)C4

h , 1 ≤ h ≤ n− 1

(c) Choose d1 so that
qεd1
1 ≥ qn

(d) for q = 2, . . . , n, choose dh such that

qd1
1 ≤ qdh

h < q
d1(1+ε)
1 .

(This is possible since qεd1
1 ≥ qn ≥ qh).

It is easy to verify that Roth’s lemma are satisfied using the above choice.

Step 2: We show, using the Taylor’s expansion, that P (p1/q1, . . . , pn/qn) =
0. In fact, we can show a stronger result that P has index > ε with respect
to (p1/q1, . . . , pn/qn) and (d1, . . . , dn). To do so, we need to prove that for i
with

i1
d1

+ · · ·+ in
dn

≤ ε

we have Pi(p1/q1, . . . , pn/qn) = 0. Note that

Pi(α) =
∑
j

Pj(0)

(
j1

i1

)
· · ·

(
jn

in

)
αj1−i1 · · ·αjn−in ,

whence, using |α| < 1,

|Pi(α)| ≤ |P |max
j

(
j1

i1

)
· · ·

(
jn

in

)
≤ (2C1)

d1···+dn ≤ (2C1)
nd1

where the maximum extends over all j with jh ≤ dh for h = 1, . . . , n. Expand
Pi(X) in a Taylor series around (α, . . . , α),

Pi(X) =
∑
j

Pj(α)

(
j1

i1

)
· · ·

(
jn

in

)
(X1 − α)j1−i1 · · · (Xn − α)jn−in .
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By the construction of P (see condition (ii) in the index theorem),

t(P, (α, . . . , α), d1, . . . , dn) ≥ n(1− ε)/2.

Hence Pj(α, . . . , α) = 0, if j1/d1 + . . . jn/dn ≤ n(1 − ε)/2, so certainly if
(j1 − i1)/d1 + · · ·+ (jn − in)/dn ≤ n(1− 3ε)/2. Furthermore,

∑
j

Pjα)

(
j1

i1

)
· · ·

(
jn

in

)
≤ (2C1)

nd1
∑
j

2j1+···+jn ≤ (6C1)
nd1 .

Hence, for

F (X) := Pi(X) =
∑
(l)≥0

F (l)(α, . . . , α)(X − α)(l).

we have that all the terms will be 0 except those belonging to (l) with

l1
d1

+ · · ·+ ln
dn

≥ n(1− 3ε)/2

and ∑
j

|F (l)(α, . . . , α)| ≤ (6C1)
nd1 .

It follows that, on denoting by (*) with the (l) with l1
d1

+· · ·+ ln
dn
≥ n((1−3ε)/2,

log |F (p1/q1, . . . , pn/qn)| ≤ (6C1)
nd1max∗(l)

∣∣∣∣∣p1

q1

− α

∣∣∣∣∣
l1

· · ·
∣∣∣∣∣pn

qn

− α

∣∣∣∣∣
ln

≤ (6C1)
nd1max∗(l)((q

d1
1 )l1/d1 · · · (qdn

n )ln/dn)−2−δ

≤ (6C1)
nd1max∗(l)((q

d1
1 )(l1/d1+···+qdn

n )(−2−δ)

≤ (q1)
εnd1(qd1

1 )−n(1−3ε)(1+δ/2)

≤ (qd1
1 · · · qdn

n ){ε−−n(1−3ε)(1+δ/2)}/(1+ε)

< (qd1
1 · · · qdn

n )−1.

On the other hand, |F (p1/q1, . . . , pn/qn)| is a rational number with denomi-
nator dividing qd1

1 · · · qdn
n . Thus

Pi(p1/q1, . . . , pn/qn) = F (p1/q1, . . . , pn/qn) = 0.

Step 3: The conclusion in Step 2 contradicts with the Roth’s lemma. So
this proves Roth’s theorem.
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