Roth’s Theorem

0.1 The Proof of Roth’ Theorem

Theorem (Roth) Let o be an algebraic number of degree > 2. Then, for
every € > 0, the inequalily
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holds for all, except for finitely many, rational numbers p/q.

To prove Roth’s theorem, we first state several lemmas. The first one is
the so-called Siegel’s lemma. Siegel’s lemma is a corollary of the “pigeonhole
principle.”

Lemma 1(Siegel’s Lemma) Let A be an M x N matriz with M < N and
having entries in Z of absolute value at most (), where Z is the set of integers.
Then there exists a nonzero vector x = (xq,...,xyx) € ZV with Ax = 0, such
that

|l2z;| < [(NQ)M/WN=-M] =. 7, i=1,...,N.

Proof The number of integer points in the box
0<z;, <2, i=1,....,N

is (Z + 1)Y. On the other hand, for all j = 1,..., N and for each such x,
the j'" coordinate y; of the vector y := Ax lies in the interval [-n,;QZ, (N —
n;)QZ), where n; is the number of negative entries in the j™ row of A.
Therefore, there are at most (NQZ + 1)M < (Z +1)Y possible values of Ax.
Hence, there must exist vectors x; # X in the box and such that Ax; = Ax,.
Then x = x; — Xy satisfies the conditions of the lemma.

The second lemma states that most values ¢;/d; + - -+ + 4, /d,, with 0 <
in <dp (h=1,...,m are close to n/2.



Lemma 2 (A Combinatorial Lemma) Let dy,...,d, be integers greater

than or equal to 1 and let ¢ > 0. The number of sets of integers (iy,...,1,)
satisfying
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is at most (dy +1)...(d, + 1)/(4ne?).

Proof. We may consider 11, ...,1, as independent stochastic variables such
that i, is uniformly distributed on {0, ..., d,}. Define the stochastic variable
X =Y} _,in/dp. Then X has expectation p = n/2 and variance

o =Var(iy/dy) + -+ Var(in/d,).

We have
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Hence 0% < n/4. By Kolmogorov’s generalization of Chebyshev’s inequality,
we have Prob(|X — u| > ¢) < 0?/c% Thus

1

Prob(|X —n/2| > eym) < e’

This proves the lemma
Definition 1 For a polynomial P(Xy,...,X,) € Z[X1,...,X,] and i =
(i1, ., in) € L%y, put
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P(Xy,...,X,) = P(X)



Let ayq,...,a, € C and let dy,...,d, be positive integers. Then the index
of Pat a=(w,...,a,) with weights d,,...,d, is

n

t(P, (a1, .. am),dy, ... dy) :min{zs | Pi(a);éO}.

Note that i(PQ) = i(P) +i(Q) and i(P 4+ Q) > min{i(P),i(Q)}.

The third lemma provides the construction of a polynomial with high
index at some given point. For P € Z[X1,..., X,] we denote the maximum
of the absolute value of the coefficients of P by |P|.

Lemma 3(the Index Theorem) Suppose that « is an algebraic integer of
degree d > 2. Lete > 0, and let n be an integer withn > d/2¢*. Letd,, ..., d,
be positive integers. Then there is P € Z[ Xy, ..., X,]|, P #0, such that
(i) P has degree < dj, in Xp,
(ii)
P (o,...,a),dy,...,dy) >n(l—¢€)/2

(i) |P| < Ot
Proof. Write P(X1,..., X,) = S0 o 0o 2(j1, ..., jn)X{" -+ XJ, where
2(J1, - - -, jn) are the integers which have to be determined such that (ii) hodls,
ie. P(a)=0foriy/di+---i,/d, < n(l—e)/2. By taking all these expression
together, we obtain

Aoz + Az + - + ad1+"'+d”Adl+...+dnz =0

where A; are M x N integer matrices with |A;] < 44+ -+dn where N =
(d1+!) -+ (dm + 1) and M is the number of tuples i with iy /dy + - - -4, /d, <
n(1l — €)/2. Using the fact that a is an algebra number of degree d, we get

Byz+aBiz+--+a*'B;1z=0

dy+-+d d—1
Cy

where B; are M x N integer matrices with | B;| < " Since l,a,0?, ...«
are Z-linear independent, we have Byz = 0,...,B4_1z2 = 0. Hence Bz = 0
where B is an dM x N integer matrices with |B| < C§** T4 By the com-
binational lemma, we have

(h+1)--(dnt1) N _N

M < _ N
- 4me? dme? — 2d




Now Siegel’s lemma implies that there is a non-zero integer vector z such
that Bz = 0 and

2] < (N|BIA/O00 < N|B| < ot

Note that the constants C',Cy and C3 depend only on «. This finishes the
proof.

The fourth lemma gives a sufficient condition for a polynomial to have
small index with respect to the approximation vector (p1/qi,....pn/q,) and

(dy,. .., dy).

Lemma 4 (Roth’s Lemma) Let n > 1 be a positive integer, and e >
0. There exists a number Cy = Cy(m,€) > 1 with the following property:
Let d;(j = 1,...,n) be integers with d, > Cydpi1,h = 1,...,n — 1. Let
(P1,q1)s -« s (Dn, Gn) be pairs of coprime integers with q,‘f”’ > ¢ and q, >
22mCs b =1,...,n. Let P(X1,...,X,) # 0 be a polynomial in Z| X1, ..., X,]
of degree at most dy, in X} with

|P|9 < qft, P#£0.

Then
= t(Pa (pl/le s 7pn/Qn)>d1>- .. adn) S €.

The proof of Roth’s lemma can be found in Lang’s book. We omit it here.

Proof of Roth’s Theorem Assume that Roth’s Theorem fails, i.e.
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:

holds for infinitely many p/q. We will derive a contradiction. Without loss
of generality, we assume that « is an algebraic integer of degree d > 2 with
la| < 1. We also assume that 0 < § < 1/2.

Step 1: Choice of "suitable” points py,/q,. Let P be the polynomial con-
structed in the index Theorem with respect to a, € = §/12, n > d/2€* and ar-
bitrary dy,...,d,. Then P has index > m(1—¢€)/2 with respect to (o, ..., «)
and (dy,...,d,). We first chose solutions p/qi, ..., pn/qn as follows:
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(a) Choose (p1,q1) with
¢ > max((6C,)Y¢, Cm, 22mC)

where (] is the constant appearing in the index Theorem, and C} is the
constant appearing in the Roth’s lemma.
(b) Choose solutions (p2, q2), - - -, (Pn, gn) such that

i1 > gy T 1<h<n—1

(c) Choose d; so that
7" > gn
(d) for ¢ = 2,...,n, choose dj, such that

g < g < g0t

(This is possible since ¢S > g, > qn).
It is easy to verify that Roth’s lemma are satisfied using the above choice.

Step 2: We show, using the Taylor’s expansion, that P(p1/q1,...,pn/qn) =
0. In fact, we can show a stronger result that P has index > ¢ with respect
to (p1/q1,---,Pn/qn) and (dy,...,d,). To do so, we need to prove that for i
with , ,

oy,

PRRIRE =
we have Pi(p1/q1,...,pn/q,) = 0. Note that

Pa) = zj:pj(o) ( Zi ) ( In ) Qi gdnin,

in

whence, using |a| < 1,

[A(0)] < [P max ( It ) ( Jn ) < (20t < (204

11 in
where the maximum extends over all j with j, < dj, for h =1,... ,n. Expand
P;(X) in a Taylor series around (q, ..., «),
PO = B () () g -
j n



By the construction of P (see condition (ii) in the index theorem),
t(P,(a,...,a),dy,...,d,) >n(l—e)/2.

Hence Pj(a,...,a) = 0, if ji/di + ... Jn/dn < n(l — €)/2, so certainly if
(j1 —i1)/di+ -+ (Jn — in)/dn < n(1 — 3€)/2. Furthermore,

2 ) ( i ) < i ) < (200)" JI2 T < (60
i ! " i

Hence, for

and

STIFO(a,... a)| < (6C;)™,
J

It follows that, on denoting by (*) with the (1) with Cll—ll—l—- : '+¢lT: > n((1-3¢)/2,

l1

ln

y41
— —

q1

| Pn

log|F(p1/q1, - s0n/dn)| < (GCl)ndlmax’("l) .

< (60" rmat, (g )2/ - (g )i/ dn) =20
< (6Ch)" mafy((qf) /A2

< ( )endl( )—n(1—3e)(1+5/2)

< ( in){effn(l 3¢)(146/2)}/ (1+¢)

< (‘h "'qn )_1-

On the other hand, |F(p1/qi,...,pn/qs)| is a rational number with denomi-
nator dividing ¢ - - - q. Thus

Pi(pi/a1s - pn/@n) = F(p1/q1, - 0n/qn) =0

Step 3: The conclusion in Step 2 contradicts with the Roth’s lemma. So
this proves Roth’s theorem.



