Roth's Theorem

0.1 The Proof of Roth' Theorem

Theorem (Roth) Let α be an algebraic number of degree ≥ 2 . Then, for every $\epsilon > 0$, the inequality

$$\left|\frac{p}{q} - \alpha\right| > \frac{1}{q^{2+\epsilon}}$$

holds for all, except for finitely many, rational numbers p/q.

To prove Roth's theorem, we first state several lemmas. The first one is the so-called Siegel's lemma. Siegel's lemma is a corollary of the "pigeonhole principle."

Lemma 1(Siegel's Lemma) Let A be an $M \times N$ matrix with M < N and having entries in \mathbb{Z} of absolute value at most Q, where \mathbb{Z} is the set of integers. Then there exists a nonzero vector $\mathbf{x} = (x_1, \ldots, x_N) \in \mathbb{Z}^N$ with $A\mathbf{x} = 0$, such that

$$|x_i| \le [(NQ)^{M/(N-M)}] =: Z, \qquad i = 1, \dots, N.$$

Proof The number of integer points in the box

$$0 \le x_i \le Z, \quad i = 1, \dots, N$$

is $(Z + 1)^N$. On the other hand, for all j = 1, ..., N and for each such \mathbf{x} , the j^{th} coordinate y_j of the vector $\mathbf{y} := A\mathbf{x}$ lies in the interval $[-n_j QZ, (N - n_j)QZ]$, where n_j is the number of negative entries in the j^{th} row of A. Therefore, there are at most $(NQZ + 1)^M < (Z + 1)^N$ possible values of $A\mathbf{x}$. Hence, there must exist vectors $\mathbf{x}_1 \neq \mathbf{x}_2$ in the box and such that $A\mathbf{x}_1 = A\mathbf{x}_2$. Then $\mathbf{x} = \mathbf{x}_1 - \mathbf{x}_2$ satisfies the conditions of the lemma.

The second lemma states that most values $i_1/d_1 + \cdots + i_n/d_n$ with $0 \le i_h \le d_h$ $(h = 1, \ldots, m$ are close to n/2.

Lemma 2 (A Combinatorial Lemma) Let d_1, \ldots, d_n be integers greater than or equal to 1 and let $\epsilon_1 > 0$. The number of sets of integers (i_1, \ldots, i_n) satisfying

$$0 \le i_1 \le d_1, \dots, 0 \le i_n \le d_n$$

and

$$\left|\sum_{h=1}^{n} \frac{i_h}{d_h} - \frac{n}{2}\right| \ge \epsilon n$$

is at most $(d_1 + 1) \dots (d_n + 1)/(4n\epsilon^2)$.

Proof. We may consider i_1, \ldots, i_n as independent stochastic variables such that i_h is uniformly distributed on $\{0, \ldots, d_h\}$. Define the stochastic variable $X = \sum_{h=1}^{n} i_h/d_h$. Then X has expectation $\mu = n/2$ and variance

$$\sigma^2 = Var(i_1/d_1) + \dots + Var(i_n/d_n).$$

We have

$$Var(i_h/d_h) = \sum_{i_h=0}^{d_h} \left(\frac{i_h}{d_h} - \frac{1}{2}\right)^2 \frac{1}{d_h+1} = \frac{2d_h+1}{6d_h} - \frac{1}{4} \le \frac{1}{4}.$$

Hence $\sigma^2 \leq n/4$. By Kolmogorov's generalization of Chebyshev's inequality, we have $\operatorname{Prob}(|X - \mu| \geq c) \leq \sigma^2/c^2$. Thus

$$Prob(|X - n/2| \ge \epsilon_1 m) \le \frac{1}{4m\epsilon_1^2}$$

This proves the lemma

Definition 1 For a polynomial $P(X_1, \ldots, X_n) \in \mathbf{Z}[X_1, \ldots, X_n]$ and $\mathbf{i} = (i_1, \ldots, i_n) \in \mathbf{Z}_{\geq 0}^n$, put

$$P_{\mathbf{i}}(X_1, \dots, X_n) = \frac{1}{i_1! \cdots i_n!} \frac{\partial^{i_1}}{\partial X_1^{i_1}} \cdots \frac{\partial^{i_n}}{\partial X_1^{i_n}} P(X)$$
$$= \sum_{l_1, \dots, l_n \ge 0} \begin{pmatrix} j_1 \\ i_1 \end{pmatrix} \cdots \begin{pmatrix} j_n \\ i_n \end{pmatrix} C(j_1, \dots, j_n) X_1^{j_1 - i_1} \cdots X_n^{j_n - i_n}.$$

Let $\alpha_1, \ldots, \alpha_n \in \mathbf{C}$ and let d_1, \ldots, d_n be positive integers. Then the index of P at $\alpha = (\alpha_1, \ldots, \alpha_n)$ with weights d_1, \ldots, d_n is

$$t(P,(\alpha_1,\ldots,\alpha_m),d_1,\ldots,d_n) = \min\left\{\sum_{i=1}^n \frac{l_i}{d_i} \mid P_{\mathbf{i}}(\alpha) \neq 0\right\}.$$

Note that i(PQ) = i(P) + i(Q) and $i(P+Q) \ge \min\{i(P), i(Q)\}.$

The third lemma provides the construction of a polynomial with high index at some given point. For $P \in \mathbb{Z}[X_1, \ldots, X_n]$ we denote the maximum of the absolute value of the coefficients of P by |P|.

Lemma 3(the Index Theorem) Suppose that α is an algebraic integer of degree $d \geq 2$. Let $\epsilon > 0$, and let n be an integer with $n \geq d/2\epsilon^2$. Let d_1, \ldots, d_n be positive integers. Then there is $P \in \mathbb{Z}[X_1, \ldots, X_n]$, $P \not\equiv 0$, such that

(i) P has degree $\leq d_h$ in X_h , (ii) $t(P, (\alpha, \dots, \alpha), d_1, \dots, d_n) \geq n(1-\epsilon)/2$ (iii) $|P| \leq C_1^{d_1+\dots+d_n}$.

Proof. Write $P(X_1, \ldots, X_n) = \sum_{j_1=0}^{d_1} \cdots \sum_{j_n=0}^{d_n} z(j_1, \ldots, j_n) X_1^{j_1} \cdots X_n^{j_n}$, where $z(j_1, \ldots, j_n)$ are the integers which have to be determined such that (*ii*) hodls, i.e. $P_{\mathbf{i}}(\alpha) = 0$ for $i_1/d_1 + \cdots + i_n/d_n \le n(1-\epsilon)/2$. By taking all these expression together, we obtain

$$A_0\mathbf{z} + \alpha A_1\mathbf{z} + \dots + \alpha^{d_1 + \dots + d_n} A_{d_1 + \dots + d_n} \mathbf{z} = \mathbf{0}$$

where A_i are $M \times N$ integer matrices with $|A_i| \leq 4^{d_1 + \dots + d_n}$, where $N = (d_1 + !) \cdots (d_m + 1)$ and M is the number of tuples **i** with $i_1/d_1 + \cdots + i_n/d_n \leq n(1 - \epsilon)/2$. Using the fact that α is an algebra number of degree d, we get

 $B_0\mathbf{z} + \alpha B_1\mathbf{z} + \dots + \alpha^{d-1}B_{d-1}\mathbf{z} = \mathbf{0}$

where B_i are $M \times N$ integer matrices with $|B_i| \leq C_2^{d_1 + \dots + d_n}$. Since $1, \alpha, \alpha^2, \dots, \alpha^{d-1}$ are **Z**-linear independent, we have $B_0 \mathbf{z} = 0, \dots, B_{d-1} \mathbf{z} = \mathbf{0}$. Hence $B\mathbf{z} = \mathbf{0}$ where B is an $dM \times N$ integer matrices with $|B| \leq C_2^{d_1 + \dots + d_n}$. By the combinational lemma, we have

$$M \le \frac{(d_1+1)\cdots(d_n+1)}{4m\epsilon^2} = \frac{N}{4m\epsilon^2} \le \frac{N}{2d}$$

Now Siegel's lemma implies that there is a non-zero integer vector \mathbf{z} such that $B\mathbf{z} = \mathbf{0}$ and

$$|\mathbf{z}| \le (N|B|)^{dM/(N-dM)} \le N|B| \le C_3^{d_1 + \dots + d_n}$$

Note that the constants C_1, C_2 and C_3 depend only on α . This finishes the proof.

The fourth lemma gives a sufficient condition for a polynomial to have small index with respect to the approximation vector $(p_1/q_1, \ldots, p_n/q_n)$ and (d_1, \ldots, d_n) .

Lemma 4 (Roth's Lemma) Let $n \ge 1$ be a positive integer, and $\epsilon > 0$. There exists a number $C_4 = C_4(m, \epsilon) > 1$ with the following property: Let $d_j(j = 1, ..., n)$ be integers with $d_h \ge C_4 d_{h+1}, h = 1, ..., n - 1$. Let $(p_1, q_1), ..., (p_n, q_n)$ be pairs of coprime integers with $q_h^{d_h} \ge q_1^{d_1}$ and $q_h \ge 2^{2mC_4}, h = 1, ..., n$. Let $P(X_1, ..., X_n) \not\equiv 0$ be a polynomial in $\mathbb{Z}[X_1, ..., X_n]$ of degree at most d_h in X_h with

$$|P|^{C_4} \le q_1^{d_1}, \quad P \not\equiv 0.$$

Then

$$t = t(P, (p_1/q_1, \dots, p_n/q_n), d_1, \dots, d_n) \le \epsilon.$$

The proof of Roth's lemma can be found in Lang's book. We omit it here.

Proof of Roth's Theorem Assume that Roth's Theorem fails, i.e.

$$\left|\frac{p}{q} - \alpha\right| < \frac{1}{q^{2+\delta/2}} \qquad (*)$$

holds for infinitely many p/q. We will derive a contradiction. Without loss of generality, we assume that α is an algebraic integer of degree $d \geq 2$ with $|\alpha| < 1$. We also assume that $0 < \delta < 1/2$.

Step 1: Choice of "suitable" points p_h/q_h . Let *P* be the polynomial constructed in the index Theorem with respect to α , $\epsilon = \delta/12$, $n > d/2\epsilon^2$ and arbitrary d_1, \ldots, d_n . Then *P* has index $> m(1-\epsilon)/2$ with respect to (α, \ldots, α) and (d_1, \ldots, d_n) . We first chose solutions $p_1/q_1, \ldots, p_n/q_n$ as follows:

(a) Choose (p_1, q_1) with

$$q_1 > \max((6C_1)^{1/\epsilon}, C_1^m, 2^{2mC_4})$$

where C_1 is the constant appearing in the index Theorem, and C_4 is the constant appearing in the Roth's lemma.

(b) Choose solutions $(p_2, q_2), \ldots, (p_n, q_n)$ such that

$$q_{h+1} > q_h^{(1+\epsilon)C_4}, \quad 1 \le h \le n-1$$

(c) Choose d_1 so that

$$q_1^{\epsilon d_1} \ge q_n$$

(d) for $q = 2, \ldots, n$, choose d_h such that

$$q_1^{d_1} \le q_h^{d_h} < q_1^{d_1(1+\epsilon)}$$

(This is possible since $q_1^{\epsilon d_1} \ge q_n \ge q_h$).

It is easy to verify that Roth's lemma are satisfied using the above choice.

Step 2: We show, using the Taylor's expansion, that $P(p_1/q_1, \ldots, p_n/q_n) = 0$. In fact, we can show a stronger result that P has index $> \epsilon$ with respect to $(p_1/q_1, \ldots, p_n/q_n)$ and (d_1, \ldots, d_n) . To do so, we need to prove that for **i** with

$$\frac{i_1}{d_1} + \dots + \frac{i_n}{d_n} \le \epsilon$$

we have $P_{\mathbf{i}}(p_1/q_1, \ldots, p_n/q_n) = 0$. Note that

$$P_{\mathbf{i}}(\alpha) = \sum_{\mathbf{j}} P_{\mathbf{j}}(\mathbf{0}) \begin{pmatrix} j_1 \\ i_1 \end{pmatrix} \cdots \begin{pmatrix} j_n \\ i_n \end{pmatrix} \alpha^{j_1 - i_1} \cdots \alpha^{j_n - i_n},$$

whence, using $|\alpha| < 1$,

$$|P_{\mathbf{i}}(\alpha)| \le |P| \max_{\mathbf{j}} \begin{pmatrix} j_1 \\ i_1 \end{pmatrix} \cdots \begin{pmatrix} j_n \\ i_n \end{pmatrix} \le (2C_1)^{d_1 \cdots + d_n} \le (2C_1)^{nd_1}$$

where the maximum extends over all \mathbf{j} with $j_h \leq d_h$ for $h = 1, \ldots, n$. Expand $P_{\mathbf{i}}(X)$ in a Taylor series around (α, \ldots, α) ,

$$P_{\mathbf{i}}(X) = \sum_{\mathbf{j}} P_{\mathbf{j}}(\alpha) \begin{pmatrix} j_1 \\ i_1 \end{pmatrix} \cdots \begin{pmatrix} j_n \\ i_n \end{pmatrix} (X_1 - \alpha)^{j_1 - i_1} \cdots (X_n - \alpha)^{j_n - i_n}.$$

By the construction of P (see condition (ii) in the index theorem),

$$t(P, (\alpha, \dots, \alpha), d_1, \dots, d_n) \ge n(1-\epsilon)/2$$

Hence $P_{\mathbf{j}}(\alpha, \ldots, \alpha) = 0$, if $j_1/d_1 + \ldots j_n/d_n \leq n(1-\epsilon)/2$, so certainly if $(j_1 - i_1)/d_1 + \cdots + (j_n - i_n)/d_n \leq n(1 - 3\epsilon)/2$. Furthermore,

$$\sum_{\mathbf{j}} P_{\mathbf{j}} \alpha \begin{pmatrix} j_1 \\ i_1 \end{pmatrix} \cdots \begin{pmatrix} j_n \\ i_n \end{pmatrix} \leq (2C_1)^{nd_1} \sum_{\mathbf{j}} 2^{j_1 + \dots + j_n} \leq (6C_1)^{nd_1}$$

Hence, for

$$F(X) := P_{\mathbf{i}}(X) = \sum_{(l) \ge 0} F^{(l)}(\alpha, \dots, \alpha)(X - \alpha)^{(l)}.$$

we have that all the terms will be 0 except those belonging to (l) with

$$\frac{l_1}{d_1} + \dots + \frac{l_n}{d_n} \ge n(1 - 3\epsilon)/2$$

and

$$\sum_{\mathbf{j}} |F^{(l)}(\alpha, \dots, \alpha)| \le (6C_1)^{nd_1}.$$

It follows that, on denoting by (*) with the (l) with $\frac{l_1}{d_1} + \cdots + \frac{l_n}{d_n} \ge n((1-3\epsilon)/2)$,

$$\log |F(p_1/q_1, \dots, p_n/q_n)| \le (6C_1)^{nd_1} max_{(l)}^* \left| \frac{p_1}{q_1} - \alpha \right|^{l_1} \cdots \left| \frac{p_n}{q_n} - \alpha \right|^{l_n}$$

$$\le (6C_1)^{nd_1} max_{(l)}^* ((q_1^{d_1})^{l_1/d_1} \cdots (q_n^{d_n})^{l_n/d_n})^{-2-\delta}$$

$$\le (6C_1)^{nd_1} max_{(l)}^* ((q_1^{d_1})^{(l_1/d_1 + \dots + q_n^{d_n})(-2-\delta)}$$

$$\le (q_1)^{\epsilon nd_1} (q_1^{d_1})^{-n(1-3\epsilon)(1+\delta/2)}$$

$$\le (q_1^{d_1} \cdots q_n^{d_n})^{\{\epsilon - -n(1-3\epsilon)(1+\delta/2)\}/(1+\epsilon)}$$

$$< (q_1^{d_1} \cdots q_n^{d_n})^{-1}.$$

On the other hand, $|F(p_1/q_1, \ldots, p_n/q_n)|$ is a rational number with denominator dividing $q_1^{d_1} \cdots q_n^{d_n}$. Thus

$$P_{\mathbf{i}}(p_1/q_1,\ldots,p_n/q_n) = F(p_1/q_1,\ldots,p_n/q_n) = 0.$$

Step 3: The conclusion in Step 2 contradicts with the Roth's lemma. So this proves Roth's theorem.