Nevanlinna Theory

0.1 The First Main Theorem

We begin by recalling the following well-known Poisson-Jensen formula in
the classical complex analysis.

Theorem A1.1.1 (Poisson-Jensen Formula) Let f # 0 be meromorphic
on the closed disc D(R), R < oo. Let ay,...,a, denote the zeros of f
in D(R), counting multiplicities, and let by,...,b, denote the poles of f in
D(R), also counting multiplicities. Then for any z in |z| < R which is not a
zero or pole, we have
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Proof.  We note that it suffices to prove the theorem when f has no zeros
or poles on the circle |z] = R. Otherwise, we consider the function f(pz) and
let p — 1.

We first consider the case when f is analytic and has no zeros in the

closed disc |z| < R. Then log|f| is harmonic. For a given z in D(R), we
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consider the linear transformation L(w) = RQ(Z) L sends z to zero and
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satisfies | L(w)| = R if jw| = R. Let F(w) = log f(L(w)). Applying the Mean
Value Theorem for harmonic functions to F'(w), we have
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Note that when |w| = R, |(| = R, and ?—f_ = df, so by combining (1) and

(2)
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The Theorem is proved in this case.
For the general case, we consider the function
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Then g has no zeros or poles in |z| < R. Note that when |z| = R, |g(2)| =
|f(2)|. Applying (1.3) to g yields the theorem.

Let zp € D(R). If f(2) = ¢(z — 2z0)™ + - - -, where ¢ is the leading nonzero
coefficient, then m is called the order of f at zy and is denoted by ord,,f.

Corollary A1.1.3 (Jensen’s Formula) Let f # 0 be meromorphic on
D(R), R < cc. Let ay,...,a, denote the zeros of f in D(R) — {0}, counting
multiplicities, and let bl, ..., b, denote the poles of f in D(R) — {0}, also
counting multiplicities. T hen
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where f(z) = ¢z 4 ... ordof € Z, and c; is the leading nonzero coeffi-
cient.

Proof. Applying Theorem A1.1.1 with z = 0 to the function

Flzyzmoet

We now proceed to define Nevanlinna functions. Let f be a meromorphic
function on D(R), where 0 < R < oo and let r < R. Denote the number



of poles of f on the closed disc D(r) by ng(r,00), counting multiplicity. We
then define the counting function Ny(r, co) to be

dt

Ny(r,00) =ng(0,00) logr + /Or[nf(t,oo) — nf((),oo)]?,

here ns(0,00) is the multiplicity if f has a pole at z = 0. For each complex
number a, we then define the counting function N(r,a) to be

Nf(?", a) = Nl/(ffa) (7‘, OO) (4)

So, in particular, by the definition of the Lebesgue-Stieltjes integral,

Ny(r,0) = (ordgf)logr+ > (ord]f)log (5)
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where ord f = max{0, ord,f} is just the multiplicity of the zero at 2. We note

that Nf(r, a) measures how many times f takes value a. With this notation,
we can rewrite Corollary A1.1.3 as

Corollary A1.1.4 Let f # 0 be meromorphic on D(r). Then
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or equivalently,

27 . de
log |es| = [ log | £(re”)| 5 + Ny(r.00) = Ny (r,0).

The Nevanlinna’s proximity function my(r, co) is defined by

ﬁ
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my(r,00) = [ log*[f(re”) )

where logt 2 = max{0,logz}. For any complex number a, the proximity
function m(r,a) of f with respect to a is then defined by

my(r,a) = my(f—a)(r, 00). (7)



We note that my(r, a) measures how close f is, on average, to a on the circle

of radius r. Finally, the Nevanlinna’s characteristic function of f is
defined by

Ty(r) = my(r, 00) + Ny (r, 00). (8)

Ty(r) measures the growth of f. For example: Ty(r) = O(1) if and only if f
is constant; Ty(r) = O(logr) if and only if f is a rational function.

The characteristic function 7', the proximity function m and the counting
function N are the three main Nevanlinna functions. Nevanlinna theory
can be described as the study of how the growth of these three functions is
interrelated. The First Main Theorem is a reformulation of Corollary A1.1.4.

Theorem A1.1.5 (First Main Theorem) Let f # 0 be meromorphic on
D(R), R < 0. Then, for any 0 <r < R,

(1) Ty(r) = my(r,0) + Ny(r, 0) + log ;.
(i) Given a complex number a,

+log* |a| + log 2,

[ T4(r) = my(r,a) — Ny(r,a)| < |log |e1/s-a)

where ¢y/(f—q) 15 the leading non-zero coefficient in the Taylor’s expansion of

1/(f — a) around 0.

Proof. (i) is derived directly from Corollary A1.1.4. To prove (ii), applying
Corollary Al1.1.4 to 1/(f — a) yields
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Note that if z and y are positive real numbers, then
log"(z +y) <log" 2max{x,y} <log™ x +log" y + log 2.

So
[log™ |z — y| — log™ ||| < log™ |y| + log 2.
Thus

Ty(r) — my(r,a) — N¢(r,a) +log|ci—a)|] <log™ |a] + log2.

Lemma A1.1.6 For any a € C,
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Proof. If |a| > 1, then the function z — a has no zeros in |z| < 1, and
log™ |a] = log|al, so the formula holds by Jensen’s formula. If |a] < 1, then,
by Jensen’s formula

2 0,0
log |a| =/0 log|a — ¢| +log lal,

so J3" log |a — e|%% = (. This proves the lemma.

Let, for |z| < R,
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Lemma A.1.1.7 For r < R,
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Proof.  Notice that, for |z| < R, log" |G.(re?)| = log|G.(re?)|. This
immediately follows from the lemma above.

Proposition Let G = G =: [ljaj<R,f(a)= %. Then

ma(r) = N¢(R, 00) — N¢(r,00),

and similarly with O replacing oo.



0.2 The Logarithmic Derivative Lemma

In this section, we derive the Logarithmic Derivative Lemma. Let f or h be
meromorphic function on |z| < R with R fixed until otherwise specified. We
let

r<s<=nR

and let |z| = r.
We first study f’'/f when f has no zeros and poles.

Lemma A1.2.1 Suppose h is holomorphic without zeros on |z| < s. Then

1
my n(r) < log® s+ 2log*® P + log™ max[my(s), min(s)] + 2log 2.
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Proof. Since

log (2)| = 3 log h() +log h(:)],

and (log h(z)) =0,

= (log h(2))" = 2(log |A(2)])"

From Jensen’s formula
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Differentiating with respect to z under the integral to get
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Taking log™ and integrating proves the lemma.
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Next we deal with the canonical product. Let

A= I 22, exp= [ 2—%

flar—o 52 = a)’ fla)moo 52 — a)’

where the products are taken with the multiplicities. Let
P=P,=GX(2)/Gi(z), G=0Gs=G(2)GE(2).
Then
h=fpP!

has no zeros and poles in |z| < s and f = hP. We are able to estimate m ¢
in terms of mp//p and merq.

Recall that each term in the product of G%(z) and G°(z) has absolute
values > 1, so, for |z| < s,

log |G(2)| = log" |G}(2)], log |G2°(2)| = log™ |G ().
Hence |P| < |G| and |1/P] < |G|. We then obtain for > 1 or all » > 0 if
£(0) #0, 00
mp < my+myp <my+mg < Tf+mg,
mip < myp+myp <myp+me < Ty +mg,

since we assume that c; = 1, so Ty /5 = T. Since mg(s) = 0, we can re-write
the above lemma as

Lemma A1.2.2 Assume that ¢, = 1. Then for v > 1 or all v > 0 if
f(0) # 0, 00,

1
my n(r) <log™ R+ 2log" —— +log™ Ty(R) + 2log 2.
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Next we give a bound of m¢/ /¢ and mpr/p.

Lemma A1.2.3 Let ns(s,0+00) = ns(s,0) +ng(s,00). Then, for 0 < r < s
we have
s s—r R
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Proof. Consider one multiplication term
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We use the fact that |G,(z)| > 1 and the fact that @ — Q'/Q is a homomor-
phism. Then |G'/G| and |P'/P| < ¥, |G./Ga| < ﬁ|Ga|. The sum is over

zeros and poles. Apply log™and integrate, we get, by Proposition in the last
section,
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We now have to estimate N; and ny;. We prove the following lemma
which will conclude the proof of Lemma A1.2.3.

Lemma A1.2.4 Let n(r) be a monotone increasing function of r for 0 <
r < R, and let

N(r) = /0 "n(t) — n(O)]Cg +n(0) log -

Let 0 <s < R. If s> 1 orn(0) =0, then

R R
n(s) < 5T (N(R) = N(s)) < £ N(s),
and similarily for r < s,
N(s)~ N(r) <n(s)> L < 27" By




Proof. We shall use

We now put the lemmas together. We start with
myryp < Mpp + mpryp + log 2

and obtain
1 1
myy(r) < 3log" R+4log’ — +log" —+3log" T(R) +4log2 +
s—r -5
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The last term is obviously the worst, so we make it small and fix it up so
that the other terms will be founded as desired. Namely given r < R we
choose s such that

s—r R %
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where T' = T¢(R). Assume that r > 1 to ensure 7" > 0. Then the last term
satisfies
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From our choice of s, it then folows at once that s is to the left of the midpoint
between r and R. Theorefore
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Thus we can get rid ourselves of s, and get an estimate entirely in terms of
r and R, nemely:

Proposition 1.2.5

R 1
myp(r) < 3log™ R+ 4logt — + 5log™ T + 7Tlog™ T(R) +17log2 + 1.
r —r

Lemma A1l.2.4 (Borel’s Growth Lemma) Let F(r) be a positive, non-
decreasing, continuous function defined on [ro,o0) with ro > e such that
F(r) > e on [ro,00). Then, for every e > 0, there exists a closed set
E C [ro,00) (called the “exceptional set”) of finite Lebesgue measure such
that if we set p =1 +1/log"t F(r) for all r > ry and not in E, we have

log Fi(p) <log F(r) +1 (9)
and

PP

- < (1 +¢)logtlog F(r) + log 2. (10)

log

Proof Let

E:{re[ro,oo): F<T+logl+1F(r)> zeF(r)}.

We may assume that £ is non-empty, otherwise, the lemma is trivial. We
claim that E is of finite Lebesgue measure.

Let r; be the smallest r € E with r > ry. Now assume that we have
found numbers 7, ...,7,,S1,...,5,_1. We describe here how to inductively
extend this set, and we continue this process as long as possible. If there is no
number s with F(s) > eF(r,), then we stop here. Otherwise, by continuity
of F', there exists an s with F(s) = eF(r,). Let s, be the smallest such
s. Then, if there is an » € E with r > s,, let r,,1 be the smallest such r.
Otherwise, we stop here.

For each pair rj, s;, clearly s; > r;, and since r; € E,

1
F <7“j + WW) > eF(r;) = F(s;).
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Since [ is nondecreasing, this implies

and so

§;i—1) < ———.
T 10g" T F ()

Moreover, F(r;+1) > F(s;) = eF(r;) since s;+1 > s;. Hence,

F(rpy1) > eF(rp) > F(rp_1) > - > e"F(r)) > e"th

(11)

(12)

It follows that either we can only find finitely many 7, or else the sequence
r, goes to the infinity as n goes to the infinity. Since the set F is contained
in the union of [r,, s,], if we can only find finitely many r,,, then E is of finite
Lebesgue measure. Now consider the case where n goes to oco. Let m(E) be

the Lebesgue measure of F, then
m(E) <> (sp —Tn).
n=1

By (11) and (12),

[e.9] o0 1 o0

Z(sn—mszMéan

n=1 n=1 n=1

Thus the claim is proved.

To verify (9), let r > ry where r is not contained in F, then, by the

construction of F,

0= 1+ g

Thus log F'(p) <log F'(r) + 1. So (9) holds. Finally, we verify (10).

p
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Hence
+ P

logt —
& rp—1)
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) < eF(r).

1 1
— + = <log'™“ F(r) +1 < 2log" F(r).
roor

< (1+¢€)log* log F(r) + log 2.



Theorem A1.2.5 (Lemma on the Logarithmic Derivative) Let f be a
non-constant meromorphic function on C. Assume that T¢(ro) > e for some
r > 1 and cy = 1. Then, for every e > 0, the inequality

mf//f(r, o0) < 7log™ Ty(r) +4logr +5(1 +¢) log™ log™ Tp(r)+17log2+5

holds for all r > 1 outside a set E C (1,400) with finite Lebesgue measure,
where C' is a constant which depends only on f.

Proof. Take R =1r + m. So, outside a set E C (1, +00),
log* Ty(R) <log™ Ty(r) + 1,

1
5log™ T < (1+¢€)log® log* Ty(r).
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