
Nevanlinna Theory

0.1 The First Main Theorem

We begin by recalling the following well-known Poisson-Jensen formula in
the classical complex analysis.

Theorem A1.1.1 (Poisson-Jensen Formula) Let f 6≡ 0 be meromorphic
on the closed disc D(R), R < ∞. Let a1, . . . , ap denote the zeros of f
in D(R), counting multiplicities, and let b1, . . . , bq denote the poles of f in
D(R), also counting multiplicities. Then for any z in |z| < R which is not a
zero or pole, we have

log |f(z)| =
∫ 2π

0

R2 − |z|2

|Reiθ − z|2
log |f(Reiθ)|dθ

2π

−
p∑

i=1

log

∣∣∣∣∣ R2 − āiz

R(z − ai)

∣∣∣∣∣+
q∑

j=1

log

∣∣∣∣∣ R2 − b̄jz

R(z − bj)

∣∣∣∣∣ .
Proof. We note that it suffices to prove the theorem when f has no zeros
or poles on the circle |z| = R. Otherwise, we consider the function f(ρz) and
let ρ → 1.

We first consider the case when f is analytic and has no zeros in the
closed disc |z| ≤ R. Then log |f | is harmonic. For a given z in D(R), we

consider the linear transformation L(w) =
R2(z − w)

R2 − z̄w
. L sends z to zero and

satisfies |L(w)| = R if |w| = R. Let F (w) = log f(L(w)). Applying the Mean
Value Theorem for harmonic functions to F (w), we have

log f(z) = F (0) =
∫ 2π

0
F (Reiθ)

dθ

2π
=
∫
|w|=R

F (w)
dw

2πiw
. (1)

We let ζ = L(w), then

w = L−1(ζ) =
R2(z − ζ)

R2 − z̄ζ
.

So, for |ζ| = R,

dw

2πiw
=

1

2πi

(
−1

z − ζ
+

z̄

R2 − z̄ζ

)
dζ =

(
−1

z − ζ
+

z̄

ζ̄ζ − z̄ζ

)
dζ

2πi

=

(
−ζ

z − ζ
+

z̄

ζ̄ − z̄

)
dζ

2πiζ
=

R2 − |z|2

|ζ − z|2
dζ

2πiζ
. (2)1



Note that when |w| = R, |ζ| = R, and dζ
iζ

= dθ, so by combining (1) and

(2)

log f(z) =
∫ 2π

0
log f(Reiθ)

R2 − |z|2

|Reiθ − z|2
dθ

2π
.

Thus

log |f(z)| =
∫ 2π

0
log |f(Reiθ)| R2 − |z|2

|Reiθ − z|2
dθ

2π
. (3)

The Theorem is proved in this case.
For the general case, we consider the function

g(z) = f(z)

∏p
µ=1

R2−āµz
R(z−aµ)∏q

ν=1
R2−b̄νz
R(z−bν)

.

Then g has no zeros or poles in |z| ≤ R. Note that when |z| = R, |g(z)| =
|f(z)|. Applying (1.3) to g yields the theorem.

Let z0 ∈ D(R). If f(z) = c(z− z0)
m + · · ·, where c is the leading nonzero

coefficient, then m is called the order of f at z0 and is denoted by ordz0f.

Corollary A1.1.3 (Jensen’s Formula) Let f 6≡ 0 be meromorphic on
D(R), R < ∞. Let a1, . . . , ap denote the zeros of f in D(R)−{0}, counting
multiplicities, and let b1, . . . , bq denote the poles of f in D(R) − {0}, also
counting multiplicities. Then

log |cf | =
∫ 2π

0
log |f(Reiθ)|dθ

2π
−

p∑
µ=1

log

∣∣∣∣∣Raµ

∣∣∣∣∣+
q∑

ν=1

log
∣∣∣∣Rbν

∣∣∣∣− (ord0f) log R,

where f(z) = cfz
ord0f + · · ·, ord0f ∈ Z, and cf is the leading nonzero coeffi-

cient.

Proof. Applying Theorem A1.1.1 with z = 0 to the function

f(z)z−ord0f .

We now proceed to define Nevanlinna functions. Let f be a meromorphic
function on D(R), where 0 < R ≤ ∞ and let r < R. Denote the number
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of poles of f on the closed disc D(r) by nf (r,∞), counting multiplicity. We
then define the counting function Nf (r,∞) to be

Nf (r,∞) = nf (0,∞) log r +
∫ r

0
[nf (t,∞)− nf (0,∞)]

dt

t
,

here nf (0,∞) is the multiplicity if f has a pole at z = 0. For each complex
number a, we then define the counting function Nf (r, a) to be

Nf (r, a) = N1/(f−a)(r,∞). (4)

So, in particular, by the definition of the Lebesgue-Stieltjes integral,

Nf (r, 0) = (ord+
0 f) log r +

∑
z∈D(r),z 6=0

(ord+
z f) log

∣∣∣∣ rz
∣∣∣∣ (5)

where ord+
z f = max{0, ordzf} is just the multiplicity of the zero at z. We note

that Nf (r, a) measures how many times f takes value a. With this notation,
we can rewrite Corollary A1.1.3 as

Corollary A1.1.4 Let f 6≡ 0 be meromorphic on D(r). Then

log |cf | =
∫ 2π

0
log |f(reiθ)|dθ

2π
−

∑
z∈D(r),z 6=0

(ordzf) log
∣∣∣∣ rz
∣∣∣∣− (ord0f) log r,

or equivalently,

log |cf | =
∫ 2π

0
log |f(reiθ)|dθ

2π
+ Nf (r,∞)−Nf (r, 0).

The Nevanlinna’s proximity function mf (r,∞) is defined by

mf (r,∞) =
∫ 2π

0
log+ |f(reiθ)|dθ

2π
, (6)

where log+ x = max{0, log x}. For any complex number a, the proximity
function mf (r, a) of f with respect to a is then defined by

mf (r, a) = m1/(f−a)(r,∞). (7)
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We note that mf (r, a) measures how close f is, on average, to a on the circle
of radius r. Finally, the Nevanlinna’s characteristic function of f is
defined by

Tf (r) = mf (r,∞) + Nf (r,∞). (8)

Tf (r) measures the growth of f . For example: Tf (r) = O(1) if and only if f
is constant; Tf (r) = O(log r) if and only if f is a rational function.

The characteristic function T , the proximity function m and the counting
function N are the three main Nevanlinna functions. Nevanlinna theory
can be described as the study of how the growth of these three functions is
interrelated. The First Main Theorem is a reformulation of Corollary A1.1.4.

Theorem A1.1.5 (First Main Theorem) Let f 6≡ 0 be meromorphic on
D(R), R ≤ ∞. Then, for any 0 ≤ r < R,

(i) Tf (r) = mf (r, 0) + Nf (r, 0) + log |cf |.

(ii) Given a complex number a,

|Tf (r)−mf (r, a)−Nf (r, a)| ≤
∣∣∣log |c1/(f−a)|

∣∣∣+ log+ |a|+ log 2,

where c1/(f−a) is the leading non-zero coefficient in the Taylor’s expansion of
1/(f − a) around 0.

Proof. (i) is derived directly from Corollary A1.1.4. To prove (ii), applying
Corollary A1.1.4 to 1/(f − a) yields

log |c1/(f−a)| =
∫ 2π

0
log

1

|f(reiθ)− a|
dθ

2π
+ N1/(f−a)(r,∞)−N1/(f−a)(r, 0).

Since log x = log+ x− log+(1/x),

log |c1/(f−a)| =
∫ 2π

0
log+ 1

|f(reiθ)− a|
dθ

2π
−
∫ 2π

0
log+ |f(reiθ)− a|dθ

2π

+Nf (r, a)−Nf (r,∞).

Thus,∫ 2π

0
log+ |f(reiθ)− a|dθ

2π
= −Nf (r,∞) + mf (r, a) + Nf (r, a)− log |c1/(f−a)|.
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Note that if x and y are positive real numbers, then

log+(x + y) ≤ log+ 2 max{x, y} ≤ log+ x + log+ y + log 2.

So
| log+ |x− y| − log+ |x|| ≤ log+ |y|+ log 2.

Thus

|Tf (r)−mf (r, a)−Nf (r, a) + log |c1/(f−a)|| ≤ log+ |a|+ log 2.

Lemma A1.1.6 For any a ∈ C,∫ 2π

0
log |a− eiθ|dθ

2π
= log+ |a|.

Proof. If |a| > 1, then the function z − a has no zeros in |z| < 1, and
log+ |a| = log |a|, so the formula holds by Jensen’s formula. If |a| < 1, then,
by Jensen’s formula

log |a| =
∫ 2π

0
log |a− eiθ|dθ

2π
+ log |a|,

so
∫ 2π
0 log |a− eiθ| dθ

2π
= 0. This proves the lemma.

Let, for |z| < R,

Ga(z) =
R2 − āz

R(z − a)
.

Lemma A.1.1.7 For r < R,

mGa(r) :=
∫ 2π

0
log+ |Ga(re

iθ)|dθ

2π
= log

R

r
− log+ |a

r
|.

Proof. Notice that, for |z| ≤ R, log+ |Ga(re
iθ)| = log |Ga(re

iθ)|. This
immediately follows from the lemma above.

Proposition Let G = G∞
R,f =:

∏
|a|<R,f(a)=∞

R2−āz
R(z−a)

. Then

mG(r) = Nf (R,∞)−Nf (r,∞),

and similarly with 0 replacing ∞.
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0.2 The Logarithmic Derivative Lemma

In this section, we derive the Logarithmic Derivative Lemma. Let f or h be
meromorphic function on |z| ≤ R with R fixed until otherwise specified. We
let

r < s < R

and let |z| = r.

We first study f ′/f when f has no zeros and poles.

Lemma A1.2.1 Suppose h is holomorphic without zeros on |z| ≤ s. Then

mh′/h(r) ≤ log+ s + 2 log+ 1

s− r
+ log+ max[mh(s), m1/h(s)] + 2 log 2.

Proof. Since

log |h(z)| = 1

2
[log h(z) + log h̄(z)],

and (log h̄(z))′ = 0,

h′(z)

h(z)
= (log h(z))′ = 2(log |h(z)|)′.

From Jensen’s formula

log |h(z)| =
∫ 2π

0
log |h(seiθ)| s2 − |z|2

|seiθ − z|2
dθ

2π
.

Differentiating with respect to z under the integral to get

h′/h(z) =
∫ 2π

0
log |h(seiθ)| 2seiθ

(seiθ − z)2

dθ

2π
.

Using | log α| = log+ α + log+ 1/α. Then

|h′/h(z)| ≤ 2s

(s− r)2
[mh(s) + m1/h(s)].

Taking log+ and integrating proves the lemma.
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Next we deal with the canonical product. Let

G0
s(z) =

∏
f(a)=0

s2 − āz

s(z − a)
, G∞

s (z) =
∏

f(a)=∞

s2 − āz

s(z − a)
,

where the products are taken with the multiplicities. Let

P = Ps = G∞
s (z)/G0

s(z), G = Gs = G0
s(z)G∞

s (z).

Then
h = fP−1

has no zeros and poles in |z| < s and f = hP . We are able to estimate mf ′/f

in terms of mP ′/P and mG′/G.
Recall that each term in the product of G0

s(z) and G∞
s (z) has absolute

values ≥ 1, so, for |z| < s,

log |G0
s(z)| = log+ |G0

s(z)|, log |G∞
s (z)| = log+ |G∞

s (z)|.

Hence |P | ≤ |G| and |1/P | ≤ |G|. We then obtain for r ≥ 1 or all r ≥ 0 if
f(0) 6= 0,∞:

mh ≤ mf + m1/P ≤ mf + mG ≤ Tf + mG,

m1/h ≤ m1/f + m1/P ≤ m1/f + mG ≤ Tf + mG,

since we assume that cf = 1, so T1/f = Tf . Since mG(s) = 0, we can re-write
the above lemma as

Lemma A1.2.2 Assume that cf = 1. Then for r ≥ 1 or all r ≥ 0 if
f(0) 6= 0,∞,

mh′/h(r) ≤ log+ R + 2 log+ 1

s− r
+ log+ Tf (R) + 2 log 2.

Next we give a bound of mG′/G and mP ′/P .

Lemma A1.2.3 Let nf (s, 0+∞) = nf (s, 0)+nf (s,∞). Then, for 0 < r < s
we have

mP ′/P ≤ log+ s

(s− r)2
+

s− r

R− s

R

r
Nf (R, 0+∞)+log+

[
R

R− s
Nf (R, 0 +∞)

]
.
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Proof. Consider one multiplication term

Ga(z) =
s2 − āz

s(z − a)
.

Then

−G′
a/Ga(z) =

s2 − |a|2

(z − a)(s2 − āz)
.

But
|s2 − āz| ≥ s2 − ār ≥ s(s− r).

Therefore
|G′

a/Ga(z)| ≤ s

(s− r)2
|Ga(z)|.

We use the fact that |Ga(z)| ≥ 1 and the fact that Q 7→ Q′/Q is a homomor-
phism. Then |G′/G| and |P ′/P | ≤ ∑

a |G′
a/Ga| ≤ s

(s−r)2
|Ga|. The sum is over

zeros and poles. Apply log+and integrate, we get, by Proposition in the last
section,

mP ′/P ≤ log+ s

(s− r)2
+
∑
a

mGa(r) + log+ nf (s, 0 +∞)

≤ log+ s

(s− r)2
+ Nf (s, 0 +∞)−Nf (r, 0 +∞) + log+ nf (s, 0 +∞).

We now have to estimate Nf and nf . We prove the following lemma
which will conclude the proof of Lemma A1.2.3.

Lemma A1.2.4 Let n(r) be a monotone increasing function of r for 0 ≤
r ≤ R, and let

N(r) =
∫ r

0
[n(t)− n(0)]

dt

d
+ n(0) log r.

Let 0 < s < R. If s ≥ 1 or n(0) = 0, then

n(s) ≤ R

R− s
(N(R)−N(s)) ≤ R

R− s
N(s),

and similarily for r < s,

N(s)−N(r) ≤ n(s)
s− r

r
≤ s− r

R− s

R

r
N(R).
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Proof. We shall use
R− s

R
≤ log

R

s
≤ R− s

s
.

Then

n(s) =
1

log R
s

n(s)
∫ R

s

dt

t
≤ 1

log R
s

∫ R

s

n(t)

t
dt ≤ 1

log R
s

(N(R)−N(s)).

N(s)−N(r) =
∫ s

r
n(t)

dt

t
≤ n(s) log(s/r) ≤ n(s)

s− r

r
.

We now put the lemmas together. We start with

mf ′/f ≤ mh′/h + mP ′/P + log 2

and obtain

mf ′/f (r) ≤ 3 log+ R + 4 log+ 1

s− r
+ log+ 1

R− s
+ 3 log+ T (R) + 4 log 2 +

+
s− r

R− s

R

r
Nf (R, 0 +∞).

The last term is obviously the worst, so we make it small and fix it up so
that the other terms will be founded as desired. Namely given r < R we
choose s such that

s− r

R− s

R

r
=

1
2

T + 1
,

where T = Tf (R). Assume that r ≥ 1 to ensure T ≥ 0. Then the last term
satisfies

s− r

R− s

R

r
Nf (R, 0 +∞) ≤ 1.

From our choice of s, it then folows at once that s is to the left of the midpoint
between r and R. Theorefore

1

s− r
=

R

r

2(T + 1)

R− s
≤ R

r

4

R− r
(T + 1)

and
1

s− r
≤ 2

R− r
.
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Thus we can get rid ourselves of s, and get an estimate entirely in terms of
r and R, nemely:

Proposition 1.2.5

mf ′/f (r) ≤ 3 log+ R + 4 log+ R

r
+ 5 log+ 1

R− r
+ 7 log+ T (R) + 17 log 2 + 1.

Lemma A1.2.4 (Borel’s Growth Lemma) Let F (r) be a positive, non-
decreasing, continuous function defined on [r0,∞) with r0 ≥ e such that
F (r) ≥ e on [r0,∞). Then, for every ε > 0, there exists a closed set
E ⊂ [r0,∞) (called the “exceptional set”) of finite Lebesgue measure such
that if we set ρ = r + 1/ log1+ε F (r) for all r ≥ r0 and not in E, we have

log F (ρ) ≤ log F (r) + 1 (9)

and
log+ ρ

r(ρ− r)
≤ (1 + ε) log+ log F (r) + log 2. (10)

Proof Let

E =

{
r ∈ [r0,∞) : F

(
r +

1

log1+ε F (r)

)
≥ eF (r)

}
.

We may assume that E is non-empty, otherwise, the lemma is trivial. We
claim that E is of finite Lebesgue measure.

Let r1 be the smallest r ∈ E with r ≥ r0. Now assume that we have
found numbers r1, . . . , rn, s1, . . . , sn−1. We describe here how to inductively
extend this set, and we continue this process as long as possible. If there is no
number s with F (s) ≥ eF (rn), then we stop here. Otherwise, by continuity
of F , there exists an s with F (s) = eF (rn). Let sn be the smallest such
s. Then, if there is an r ∈ E with r ≥ sn, let rn+1 be the smallest such r.
Otherwise, we stop here.

For each pair rj, sj, clearly sj > rj, and since rj ∈ E,

F

(
rj +

1

log1+ε F (rj)

)
≥ eF (rj) = F (sj).
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Since F is nondecreasing, this implies

rj +
1

log1+ε F (rj)
≥ sj,

and so

sj − rj ≤
1

log1+ε F (rj)
. (11)

Moreover, F (rj+1) ≥ F (sj) = eF (rj) since sj+1 ≥ sj. Hence,

F (rn+1) ≥ eF (rn) ≥ e2F (rn−1) ≥ · · · ≥ enF (r1) ≥ en+1. (12)

It follows that either we can only find finitely many rn or else the sequence
rn goes to the infinity as n goes to the infinity. Since the set E is contained
in the union of [rn, sn], if we can only find finitely many rn, then E is of finite
Lebesgue measure. Now consider the case where n goes to ∞. Let m(E) be
the Lebesgue measure of E, then

m(E) ≤
∞∑

n=1

(sn − rn).

By (11) and (12),

∞∑
n=1

(sn − rn) ≤
∞∑

n=1

1

log1+ε F (rn)
≤

∞∑
n=1

1

n1+ε
< +∞.

Thus the claim is proved.
To verify (9), let r ≥ r0 where r is not contained in E, then, by the

construction of E,

F (ρ) = F

(
r +

1

log1+ε F (r)

)
≤ eF (r).

Thus log F (ρ) ≤ log F (r) + 1. So (9) holds. Finally, we verify (10).

ρ

r(ρ− r)
=

1

ρ− r
+

1

r
≤ log1+ε F (r) + 1 ≤ 2 log1+ε F (r).

Hence
log+ ρ

r(ρ− r)
≤ (1 + ε) log+ log F (r) + log 2.
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Theorem A1.2.5 (Lemma on the Logarithmic Derivative) Let f be a
non-constant meromorphic function on C. Assume that Tf (r0) ≥ e for some
r > 1 and cf = 1. Then, for every ε > 0, the inequality

mf ′/f (r,∞) ≤ 7 log+ Tf (r) + 4 log r + 5(1 + ε) log+ log+ Tf (r) + 17 log 2 + 5

holds for all r ≥ 1 outside a set E ⊂ (1, +∞) with finite Lebesgue measure,
where C is a constant which depends only on f .

Proof. Take R = r + 1
log1+ε Tf (r)

. So, outside a set E ⊂ (1, +∞),

log+ Tf (R) ≤ log+ Tf (r) + 1,

5 log+ 1

R− r
≤ (1 + ε) log+ log+ Tf (r).
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