1. Prove that if n is an odd prime, then $n > 1$.

2. Show that if n is even, then $n > 1$.

3. Find the smallest positive integer n with the given value of d.
 - $d = (u)p$ (p)
 - $d = (u)p$ (q)
 - $d = (u)p$ (a)

4. Given a list of the positive divisors of n.
 - List the prime factorization from part (a) to compute $p(r)$ (u)
 - List the prime factorization from part (a) to compute $p(r)$ (a)

5. For each of $u = 24$, $n = 105$, and $n = 544$.
Chapter I. Divisibility and Factorization

20. Let n be a positive integer.

21. Prove or disprove: \(a + b = a + b \).

22. Prove or disprove: \(\frac{a}{b} = \frac{a}{b} \).

23. Prove or disprove: \(a - b = a - b \).

24. Prove or disprove: \(a \times b = a \times b \).

25. Prove or disprove: \(a \div b = a \div b \).

26. Prove or disprove: \(a \mod b = a \mod b \).

27. Prove or disprove: \(a \equiv b \mod m \).

28. Prove or disprove: \(\gcd(a, b) = \gcd(a, b) \).

29. Prove or disprove: \(\lcm(a, b) = \lcm(a, b) \).

30. Prove or disprove: \(a \mid b \) if and only if \(\gcd(a, b) = a \).

31. Prove or disprove: \(a \mid b \) if and only if \(\lcm(a, b) = b \).

32. Prove or disprove: \(a \mid b \) if and only if \(\gcd(a, b) = 1 \).

33. Prove or disprove: \(a \mid b \) if and only if \(\lcm(a, b) = ab \).

34. Prove or disprove: \(a \mid b \) if and only if \(\gcd(a, b) = ab \).

35. Prove or disprove: \(a \mid b \) if and only if \(\lcm(a, b) = a \).

36. Prove or disprove: \(a \mid b \) if and only if \(\gcd(a, b) = b \).

37. Prove or disprove: \(a \mid b \) if and only if \(\lcm(a, b) = b \).

38. Prove or disprove: \(a \mid b \) if and only if \(\gcd(a, b) = a \).

39. Prove or disprove: \(a \mid b \) if and only if \(\lcm(a, b) = ab \).

40. Prove or disprove: \(a \mid b \) if and only if \(\gcd(a, b) = 1 \).

41. Prove or disprove: \(a \mid b \) if and only if \(\lcm(a, b) = ab \).

42. Prove or disprove: \(a \mid b \) if and only if \(\gcd(a, b) = b \).

43. Prove or disprove: \(a \mid b \) if and only if \(\lcm(a, b) = a \).

44. Prove or disprove: \(a \mid b \) if and only if \(\gcd(a, b) = a \).

45. Prove or disprove: \(a \mid b \) if and only if \(\lcm(a, b) = ab \).

46. Prove or disprove: \(a \mid b \) if and only if \(\gcd(a, b) = 1 \).

47. Prove or disprove: \(a \mid b \) if and only if \(\lcm(a, b) = b \).

48. Prove or disprove: \(a \mid b \) if and only if \(\gcd(a, b) = a \).

49. Prove or disprove: \(a \mid b \) if and only if \(\lcm(a, b) = ab \).

50. Prove or disprove: \(a \mid b \) if and only if \(\gcd(a, b) = b \).

51. Prove or disprove: \(a \mid b \) if and only if \(\lcm(a, b) = a \).
33. Two integers \(m \) and \(n \) are called an amicable pair if \((m, n) \) is perfect.

Show that if \(2^k - 1 \) is prime, then \(n = 2^{k-1}(2^k - 1) \) is perfect.

(34) An integer \(n \) is perfect if \(\sigma(n) = 2n \).

\[
(0 < w) \sum_{\omega \mid w} = (w)^\omega \quad (q)
\]

\[
\prod_{\omega \mid w} = (w)^\omega \quad (a)
\]

Find a general formula for:

33. Suppose that \(u \) is multiplicative.

Show that \((u) \sigma \) is multiplicative.

(32) A function \(f \) defined on the positive integers is said to be multiplicative if

\[
\left(\frac{1 - \frac{r}{d}}{1 - \frac{r}{1+d}} \right) \left(\frac{1 - \frac{s}{d}}{1 - \frac{s}{1+d}} \right) = (u) \sigma
\]

(31) For \(u, w \) with \(\gcd(u, w) = 1 \), show that

\[
(u, w) \sigma \text{ and } (u, w) \tau \text{ are equal to zero. (q)}
\]

It is possible that some of the \(a \)'s and \(b \)'s are equal to zero.

(30) Suppose that \(u = \prod p_i^{a_i} \), \(m = \prod q_j^{b_j} \), \((u, w) \sigma \text{ and } (u, w) \tau \text{ are } a \text{ and } b \text{ integers, respectively. (q)}

(29) Let \(u \) be a positive integer.

4. \(2^k - 1 \) is prime.

Show that \(2^k - 1 \) is prime.

(28) Show that \(6, 26, \text{ and } 496 \) are all perfect.

\[
(0 < w) \sum_{\omega \mid w} = (w)^\omega \quad (q)
\]

\[
\prod_{\omega \mid w} = (w)^\omega \quad (a)
\]
Deduction of the solution to the given problem:

4. By inspection, find a few integer solutions (if there are any) to the equation 6x + 2y = 4.

2. By inspection, find a few integer solutions (if there are any) to the equation 6x + 2y = 4.

Hint: Determine the gcd of 6 and 2, and consider the solutions of the form ax + by = gcd(6, 2).

The equation depends on the values of a, b, and c. The integer solutions to the equation depend on the integer values of x and y.

1. Find the quotient q and the remainder r from the division algorithm.

2. For each pair a and b, and remainder (computed by you) in the form of ax + by = gcd(6, 2).

3. Determine the gcd(6, 2) and the remainder r from the division algorithm.

4. By inspection, find a few integer solutions (if there are any) to the equation 6x + 2y = 4.

5. A sequence of integers a, b, and c is called an algebraic cycle of length k if

\[a = a_k = b - (a_{k-1}) \]

Show that the integers \(a_k\) form an algebraic cycle.

Prelab

Propositional Equations

2. The Euclidean Algorithm and Linear