The Fundamental Theorem of Arithmetic

- The **Fundamental Theorem of Arithmetic** says that every integer greater than 1 can be factored uniquely into a product of primes.

- **Euclid’s lemma** says that if a prime divides a product of two numbers, it must divide at least one of the numbers.

- The **least common multiple** $[a, b]$ of nonzero integers a and b is the smallest positive integer divisible by both a and b.

Theorem. (Fundamental Theorem of Arithmetic) Every integer greater than 1 can be written in the form

$$p_1^{n_1}p_2^{n_2}\cdots p_k^{n_k}$$

where $n_i \geq 0$ and the p_i’s are distinct primes. The factorization is unique, except possibly for the order of the factors.

Example.

$$4312 = 2 \cdot 2156 = 2 \cdot 2 \cdot 1078 = 2 \cdot 2 \cdot 2 \cdot 539 = 2 \cdot 2 \cdot 2 \cdot 7 \cdot 77 = 2 \cdot 2 \cdot 2 \cdot 7 \cdot 7 \cdot 11.$$

That is,

$$4312 = 2^3 \cdot 7^2 \cdot 11. \quad \Box$$

I need a couple of lemmas in order to prove the uniqueness part of the Fundamental Theorem. In fact, these lemmas are useful in their own right.

Lemma. If $m \mid pq$ and $(m, p) = 1$, then $m \mid q$.

Proof. Write

$$1 = (m, p) = am + bp \quad \text{for some } a, b \in \mathbb{Z}.$$

Then

$$q = amq + bpq.$$

Now $m \mid amq$ and $m \mid bpq$ (since $m \mid pq$), so $m \mid (amq + bpq) = q. \quad \Box$

Lemma. If p is prime and $p \mid a_1a_2\cdots a_n$, then $p \mid a_i$ for some i.

For $n = 2$, the result says that if p is prime and $p \mid ab$, then $p \mid a$ or $p \mid b$. This is often called **Euclid’s lemma**.

Proof. Do the case $n = 2$ first. Suppose $p \mid a_1a_2$, and suppose $p \nmid a_1$. I must show $p \mid a_2$.

$(p, a_1) \mid p$, and p is prime, so $(p, a_1) = 1$ or $(p, a_1) = p$. If $(p, a_1) = p$, then $p = (p, a_1) \mid a_1$, which contradicts $p \nmid a_1$. Therefore, $(p, a_1) = 1$. By the preceding lemma, $p \mid a_2$. This establishes the result for $n = 2$.

Assume $n > 2$, and assume the result is true when p divides a product of with less than n factors. Suppose that $p \mid a_1a_2\cdots a_n$. Grouping the terms, I have

$$p \mid (a_1a_2\cdots a_{n-1})a_n.$$

By the case \(n = 2 \), either \(p \mid a_1a_2 \cdots a_{n-1} \) or \(p \mid a_n \). If \(p \mid a_n \), I’m done. Otherwise, if \(p \mid a_1a_2 \cdots a_{n-1} \), then \(p \) divides one of \(a_1, a_2, \ldots, a_{n-1} \), by induction. In either case, I’ve shown that \(p \) divides one of the \(a_i \)’s, which completes the induction step and the proof. \(\square \)

Proof. (Fundamental Theorem of Arithmetic) First, I’ll use induction to show that every integer greater than 1 can be expressed as a product of primes.

\[n = 2 \] is prime, so the result is true for \(n = 2 \).

Suppose \(n > 2 \), and assume every number less than \(n \) can be factored into a product of primes. If \(n \) is prime, I’m done. Otherwise, \(n \) is composite, so I can factor \(n \) as \(n = ab \), where \(1 < a, b < n \). By induction, \(a \) and \(b \) can be factored into primes. Then \(n = ab \) shows that \(n \) can, too.

Now I’ll prove the uniqueness part of the Fundamental Theorem.

Suppose that

\[p_1^{m_1} \cdots p_j^{m_j} = q_1^{n_1} \cdots q_k^{n_k}. \]

Here the \(p \)’s are distinct primes, the \(q \)’s are distinct primes, and all the exponents are greater than or equal to 1. I want to show that \(j = k \), and that each \(p_j^{m_j} \) is \(q_i^{n_i} \) for some \(b \) — that is, \(p_a = q_b \) and \(m_a = n_b \).

Look at \(p_1 \). It divides the left side, so it divides the right side. By the last lemma, \(p_1 \mid q_i^{n_i} \) for some \(i \).

But \(q_i^{n_i} \) is \(q_1 \cdots q_i \) \((n_i \) times\), so again by the last lemma, \(p_1 \mid q_i \). Since \(p_1 \) and \(q_i \) are prime, \(p_1 = q_i \).

To avoid a mess, renumber the \(q \)’s so \(q_i \) becomes \(q_1 \) and vice versa. Thus, \(p_1 = q_1 \), and the equation reads

\[p_1^{m_1} \cdots p_j^{m_j} = p_1^{n_1} \cdots q_k^{n_k}. \]

If \(m_1 > n_1 \), cancel \(p_1^{n_1} \) from both sides, leaving

\[p_1^{m_1-n_1} \cdots p_j^{m_j} = q_2^{n_2} \cdots q_k^{n_k}. \]

This is impossible, since now \(p_1 \) divides the left side, but not the right.

For the same reason \(m_1 < n_1 \) is impossible.

It follows that \(m_1 = n_1 \). So I can cancel the \(p_1 \)’s off both sides, leaving

\[p_2^{m_2} \cdots p_j^{m_j} = q_2^{n_2} \cdots q_k^{n_k}. \]

Keep going. At each stage, I pair up a power of a \(p \) with a power of a \(q \), and the preceding argument shows the powers are equal. I can’t wind up with any primes left over at the end, or else I’d have a product of primes equal to 1. So everything must have paired up, and the original factorizations were the same (except possibly for the order of the factors). \(\square \)

Example. The least common multiple of nonzero integers \(a \) and \(b \) is the smallest positive integer divisible by both \(a \) and \(b \). The least common multiple of \(a \) and \(b \) is denoted \([a, b] \).

For example,

\[[6, 4] = 12, \quad [33, 15] = 165. \]

Here’s an interesting fact that is easy to derive from the Fundamental Theorem:

\[a, b = ab. \]

Factor \(a \) and \(b \) in products of primes, but write out all the powers (e.g. write \(2^3 \) as \(2 \cdot 2 \cdot 2 \)):

\[a = p_1 \cdots p_lq_1 \cdots q_m, \quad b = q_1 \cdots q_m r_1 \cdots r_n. \]
Here the q's are the primes a and b have in common, and the p's and r don't overlap. Picture:

From the picture,

$$(a, b) = q_1 \cdots q_m, \quad [a, b] = p_1 \cdots p_1 q_1 \cdots q_m r_1 \cdots r_n, \quad ab = p_1 \cdots p_1 q_1^2 \cdots q_m^2 r_1 \cdots r_n.$$

Thus, $a, b = ab.$

Here's how this result looks for 36 and 90:

$$(36, 90) = 18, \quad [36, 90] = 180, \text{ and } 36 \cdot 90 = 32400 = 18 \cdot 180.$$