
Summary: Applications of Congruences

The main goals of this chapter are to become more comfortable working with
modular arithmetic, and to study some concrete applications of congruences.

Theorem 4.1 (RQ1) The check digit in an ISBN will always change if (a) one digit
of the number is changed, or (b) two digits (if they are different) of the number are
interchanged.

Proof. Recall that if a1, . . . , a9 are the digits of an ISBN, then the check digit is
determined by computing

9X

i=1

iai (mod 11).

We begin with part (a). Suppose that for some j satisfying 1 � j � 9, we change aj

to b, where aj 6= b. In order for the check digit to remained unchanged, the old and
new check sums must be equal mod 11. Since the only difference between the two
check sums occurs at the jth term, this means that

jaj � jb (mod 11).

Therefore it follows that 11 j j(aj � b), and since 11 is prime, this means that either
11 j j or 11 j (aj � b). Because 1 � j � 9, it’s clear that 11 � j. Thus it must be that
11 j (aj� b), that is, that aj � b (mod 11). However, since 0 � aj � 9 and 0 � b � 9,
both aj and b are possible remainders when dividing by 11. Since two remainders are
congruent if and only if they are equal, we have that aj = b which contradicts our
assumption that aj 6= b.

The proof of assertion (b) is similar in spirit to that of assertion (a). Suppose
that the digits aj and ak are interchanged, where j 6= k and aj 6= ak. (Of course,
if aj = ak, then the ISBN won’t change.) In order for the check sum to remain the
same, we must have

jaj + kak � jak + kaj (mod 11).

Equivalently, 11 divides

(jaj + kak)� (jak + kaj) = (j � k)(aj � ak).

So, we see that either 11 j (j�k) or 11 j (aj �ak) because 11 is prime. As before, the
only way that this can happen is if j = k or aj = ak, both of which are contradictions
to earlier assumptions.
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We now turn our attention to the “rock game”, introduced in the lab. Recall that
two players (we are counting the computer as a player) take turns removing rocks
from a pile. Each player may remove 1, 2, or 3 rocks during a turn. The player who
removes the last rock wins the game. In the lab, the computer always goes first.

Theorem 4.2 (RQ2(a)) Suppose that n is the number of rocks in the pile when the
game begins. If n 6� 0 (mod 4), then the computer always wins. If n � 0 (mod 4),
then it is possible to beat the computer.

Proof. First, we describe a winning strategy:

Pick enough rocks so that the number left is a multiple of 4.

If you leave a multiple of 4 rocks, then your opponent will take 1, 2, or 3 rocks making
the number in the pile congruent to 3, 2, or 1 modulo 4 respectively. In particular,
the number of rocks your opponent will leave you cannot be a multiple of 4. When
it is your turn again, it will be possible to leave a multiple of 4 again so you can
repeat the strategy. The number of rocks goes down and you never lose (since your
opponent cannot leave 0 rocks, that would be a multiple of 4), so ultimately you win!

Now it is clear that when n 6� 0 (mod 4) the computer will win (since the computer
goes first and follows this strategy), and when n � 0 (mod 4) you can always win.

Theorem 4.3 (RQ2(b)) Suppose that we adopt the modified rules for the game, and
that n is the number of rocks in the pile when the game begins. If n 6� 0 (mod 7), then
the computer always wins. If n � 0 (mod 7), then it is possible to beat the computer.

Proof. The proof of this theorem is similar to the proof given above. The details are
left to the reader.

Theorem 4.4 (RQ3) An integer n is divisible by 9 if and only if the sum of the
digits of n is divisible by 9.

Proof. The key observation that we shall use is the following: since 10 � 1 (mod 9),
it follows that

10j � 1j � 1 (mod 9)

for all j � 0. Now suppose that n = dkdk−1 . . . d1d0, where d0, d1, . . . , dk are the digits
of n. Then we have

n = dk10
k + dk−110

k−1 + � � �+ d110 + d0

� dk + dk−1 + � � �+ d1 + d0 (mod 9).

Therefore we see that n is congruent to the sum of its digits modulo 9, and so n is
divisible by 9 if and only if the sum of the digits of n is divisible by 9.
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Theorem 4.5 (RQ4) Suppose that n = dkdk−1 . . . d1d0, where d0, d1, . . . , dk are the
digits of n. Then n is divisible by 37 if and only if the sum

d0 + 10d1 + 26d2 + d3 + 10d4 + 26d5 + � � � (4.1)

is also divisible by 37.

Proof. The nature of this proof is similar to that of the preceding proof, although the
details are a bit more complicated. First, we note that

1� 1 (mod 37)
10� 10 (mod 37)

102
� 26 (mod 37)

103
� 1 (mod 37)

104
� 10 (mod 37)

105
� 26 (mod 37)
...

Therefore we see that

n = d0 + d110 + d210
2 + d310

3 + d410
4 + d510

5 + � � �

� d0 + 10d1 + 26d2 + d3 + 10d4 + 26d5 + � � � (mod 37),

and so it follows that n is divisible by 37 if and only if the sum given in (4.1) is
divisible by 37.

Theorem 4.6 (RQ5) Suppose that n = dkdk−1 . . . d1d0, where d0, d1, . . . , dk are the
digits of n. Then n is divisible by 7 if and only if the sum

d0 + 3d1 + 2d2 + 6d3 + 4d4 + 5d5 + d6 + 3d7 + � � � (4.2)

is also divisible by 7.

Proof. We begin by noting that

1� 1 (mod 7)
10� 3 (mod 7)

102
� 2 (mod 7)

103
� 6 (mod 7)

104
� 4 (mod 7)

105
� 5 (mod 7)

106
� 1 (mod 7)

107
� 3 (mod 7)
...
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Therefore we have

n = d0 + d110 + d210
2 + d310

3 + d410
4 + d510

5 + d610
6 + d710

7 + � � �

� d0 + 3d1 + 2d2 + 6d3 + 4d4 + 5d5 + d6 + 3d7 + � � � (mod 7),

and thus it follows that n is divisible by 7 if and only if the sum given in (4.2) is
divisible by 7.

Solutions to Selected Exercises

Exercise 4.2 Prove that the sequence 10j % p (j = 0, 1, 2, . . . ) is purely periodic for
any prime p 6= 2 or 5.

Rather than provide a proof here, the reader is referred to Proposition 4.8 below
which gives a more general result.

In producing a divisibility test for an integer m, the key observation is that when
we test an integer n with decimal digits d0, . . . , dk (as above), we write n in expanded
form

n = d010
0 + d110

1 + d210
2 + � � �+ dk10

k

and then replace the powers of 10 with integers to which they are congruent modulo
m. We could take any integers aj � 10j (mod m) and have that

n � d0a0 + d1a1 + d2a2 + � � �+ dkak (mod m).

The result is then always congruent to n modulo m.
In the tests described earlier, we replaced the powers 10j with their remainders

modulo m. This is the output of the function divtestmultipliers in the lab, and so
we will refer to the choice aj = 10j %m as the standard multipliers for the divisibility
test for m.

We now apply this idea in exercise 3.

Exercise 4.3 The standard divisibility test for 11 uses multipliers 1 and �1 instead
of 1 and 10. In other words, the test applied to 64368 would say that

64368 � 8 � 1 + 6 � (�1) + 3 � 1 + 4 � (�1) + 6 � 1 (mod 11)

� 7 (mod 11),

which gets to the answer much more quickly. Explain why the two versions of the
divisibility test for 11 are both valid.
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Solution. On the basis of the remarks above, we see that any choice of multipliers
ai � 10i (mod 11) would be valid. The two tests for divisibility by 11 given here differ
only when i is odd. In that case, 10i

� 10 � �1 (mod 11), so both tests work.

Note, the same approach could be applied to other tests, such as the test for 7.

Alternative divisibility test for 7: Suppose that n = dkdk−1 . . . d1d0, where
d0, d1, . . . , dk are the digits of n. Then n is divisible by 7 if and only if the sum

d0 + 3d1 + 2d2 � d3 � 3d4 � 2d5 + d6 + 3d7 + � � �

is also divisible by 7.

Exercise 4.4 Justify the standard tests for divisibility by n = 2, 5, and 10. In each
of these three cases, the standard test states that a number is congruent to its units
digit modulo n.

Solution. First, we could note that if d0 is the units digit of an integer a, then a =
d0 + 10k for some integer k. For n = 2, 5, or 10, this implies that a � d0 (mod n),
and so the tests work.

Alternatively, we could apply our standard procedure for manufacturing divisi-
bility tests and compute 10j % n for these three values of n. In each case, 10 � 0
(mod n), and so 10j

� 0j
� 0 (mod n) for j � 1. The only multiplier which is

nonzero is a0 � 100
� 1 (mod n). Thus, the test with the standard multipliers in

these cases yields the desired result: the integer a is congruent to its units digit, d0,
modulo n.

Exercise 4.6 How many different shift ciphers are possible with a 95-letter alphabet?
How many different shift ciphers are possible with an n-letter alphabet?

Solution. A shift cipher with a n-letter alphabet is computed by the transformation

C � P + k (mod n)

where P is a letter in the original message, and C is the corresponding encoded letter.
There is one shift cipher for each candidate for k. If we are working mod n, there are
n possible values for k, and each value of k gives a different shift cipher. So, there are
n shift ciphers for a n-letter alphabet (and 95 shift ciphers for a 95-letter alphabet).

One could argue that the shift cipher with k = 0 does not count since it leaves the
original message unchanged. In that case, one would conclude that there are n � 1
shift ciphers for an n-letter alphabet.

Both answers, that there are n different shift ciphers or that there are n� 1 shift
ciphers, are acceptable if properly explained.
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Exercise 4.7 Text which was encoded with a shift cipher with key 9 was given. You
were asked to do the following.

(a) Decode the message.

(b) The author of this message was trying to predict what important mathematical
breakthroughs may occur in the near future. Explain why the statement is
nonsensical.

Solution. The decoded message says: “The obvious mathematical breakthrough
would be development of an easy way to factor large prime numbers. Bill Gates.”
The reason it does not make sense is that, by definition, prime numbers only have
trivial factorizations; the only positive divisors of a prime number p are 1 and p, no
matter how large p is. What Mr. Gates meant to refer to was the problem of factoring
large numbers as a product of primes, and that this problem is especially hard when
the prime factors are all large. This question is particularly important for cracking
modern cryptographic schemes, such as the public key encryption schemes RSA and
PGP.1 We will study RSA in a later chapter.

Going Farther: More Analysis of Divisibility Tests

Having looked at the process of deducing divisibility tests for different integers
m, we are now in a position to analyze the process more thoroughly. First, we will
prove some general properties of the multipliers for the standard divisibility test for
an integer m. Then, we will be able to apply this information to determine all integers
m which have simple divisibility tests.

We begin by establishing that the standard mulitpliers in a divisibility test always
repeat for any value of m. Let’s first look at the standard multipliers for m = 6:

100
� 1, 101

� 4, 102
� 4, 103

� 4, . . . (mod 6)

Here, the multiplier 4 is repeated but the repetition does not begin with 100. Thus
in this case, the standard multipliers are not purely periodic, but instead are only
ultimately periodic. So, the most general result we can prove is the following:

Proposition 4.7 For a positive integer m, the standard multipliers for testing divis-
ibility by m form an ultimately periodic sequence.

1PGP uses RSA.
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Proof. The standard multipliers are remainders modulo m. Therefore, there are only
m possible values for these multipliers to take. We are looking at infinitely many
powers of 10, so at some point we must have2 10i and 10j having the same remainder
modulo m, with i < j. Once we have a single repetition, part of the sequence of
multipliers must be repeated from there on. For instance if 10i

� 10j, then

10j+a
� 10j

� 10a
� 10i

� 10a
� 10i+a (mod m).

In other words, letting b = i + a and P = j � i, 10b
� 10b+P (mod m) for b � i.

Thus, the sequence of standard multipliers is ultimately periodic.

In most of the divisibility tests we have considered, the standard multipliers have
been purely periodic. The next proposition gives the exact condition which must be
satisfied to guarantee that the standard multipliers will be purely periodic.

Proposition 4.8 The standard multipliers for the divisibility test for m are purely
periodic if and only if gcd(m, 10) = 1.

Proof. We first will prove that gcd(m, 10) = 1 implies that the sequence of standard
multipliers are purely periodic. We already know that the standard multipliers are
ultimately periodic. In particular, there will exist positive integers i and j with i < j
such that 10i

� 10j (mod m). Therefore m divides 10j
� 10i = 10i(10j−i

� 1). Since
gcd(m, 10) = 1, it is clear that gcd(m, 10i) = 1, and therefore m j (10j−i

� 1) by
exercise 6 of Chapter 1. So, 10j−i

� 1 (mod m).
Now, we have produced an integer P = j � i > 0 so that 10P

� 100 (mod m).
As above, we now multiply both sides of the congruence by 10k to get 10k+P

� 10k

(mod m). Since these powers have the same remainders modulo m, we have that
ai+P = ai for all i � 0.

The other direction of the proof is left as a homework exercise.

Note that our proof provides a little extra information about how the multipliers
repeat. Namely, any repetition 10i

� 10j (i < j) implies that j � i is a period.
We now restrict the discussion to integers m which are relatively prime to 10. By

Proposition 4.8, the multipliers for the test of divisibility by m are purely periodic,
which will simplify a few of the details.

We have seen that some divisibility tests are easy to use, and some are not so easy
to use. For example, the tests for divisibility by 3 and by 9 are especially easy since
one just has to add up the digits of the number. In the test for divisibility by 11,
one alternates multiplying the digits by +1 and by �1 before adding them up. The
divisibility test for 37 is a little more complicated because there are three different
multipliers (1, 10, and 26). On the other hand, the test for 7 is pretty horrendous

2This is an application of the Pigeonhole Principle: “If you put r pigeons in s holes with r > s,
then some pigeonhole must hold more than one pigeon”.
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with 6 different multipliers.3 In fact, the test for 7 is so unwieldy that many people
believe that there is no such thing as a divisibility test for 7.

The number of multipliers for a divisibility test is an indication of how easy it will
be to use. Before continuing, we pause to make the following definition.

De�nition Let gcd(m, 10) = 1. The length of the test for divisibility by m is the
number of distinct multipliers in the divisibility test.

As we remarked above, any repetition in the sequence of standard multipliers is a
period for the sequence. So, the length of a divisibility test is the same as the minimal
period of its sequence of standard multipliers. Thus, for example, the length of the
test for divisibility by 37 is 3, and the length of the test for divisibility by 7 is 6.

Proposition 4.9 Let m be a positive integer relatively prime to 10. Then, the length
of the test for divisibility by m is at most m� 1.

Proof. The multipliers for the divisibility test for m are the remainders of 10i when
divided by m. In general, there are m possible remainders when dividing by m.
However, since m and 10 are relatively prime, we cannot have 10i

� 0 (mod m).
Hence, there are at most m� 1 possible values for the remainder of 10i when divided
by m.

We now restrict to prime numbers p 6= 2, 5, and analyze the length of the test for
divisibilty by p. Below is a table of lengths of the divisibility test for the first few
primes p 6= 2, 5:

p 3 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Length 1 6 2 6 16 18 22 28 15 3 5 21 46 13 58

Length of the divisibility test for small primes p

Notice that the divisibility test for approximately half of the primes shown require
the maximum number of multipliers (the maximum is p � 1 according to Proposi-
tion 4.9). If we continued the table, would we find more primes with very short
divisibility tests? The next proposition allows us to analyze the problem from an-
other direction.

Proposition 4.10 Let p be a prime number different from 2 and 5. Then the length
of test for divisibility by p is the smallest positive integer j such that 10j

� 1 (mod p).

The proof only requires us to bring together various statements made above.

3While this may be difficult for a human to remember and use, it would make the basis for a
computer algorithm which was testing large numbers for divisibility by 7, if we store the numbers
as an array of their digits in base 10. In practice, almost all computers store integers using a power
of 2 as the base. In that case, we would need a corresponding test in that base. Divisibility tests for
bases other than base 10 are discussed in the homework exercises.



241

Proof. Since p is a prime distinct from 2 and 5, it is relatively prime to 10. Thus, the
sequence of standard multipliers for a divisibility test for p is purely periodic, and the
minimal period for this sequence is the length of the divisibility test for p. Moreover,
since any repetition in the sequence of standard multipliers gives a period, the length
of the divisibility test will be given by the first repetition, that is, the smallest integer
j such that 10j

� 100 (mod p).

Suppose we wanted to look for other primes with a short divisibility tests. If p
has a divisibility test of length j, then 10j

� 1 (mod p), which implies p j (10j
� 1).

We list the factorizations of 10j
� 1 for small values of j:

101
� 1 = 33

102
� 1 = 32

� 11

103
� 1 = 33

� 37

The first line containing a prime p gives the length of its divisibility test. So, 3 is
the only prime with a test of length 1, 11 is the only prime with a test of length 2,
and 37 is the only prime with a test of length 3. In particular, this chapter already
contained all of the divisibility tests of length � 3 (for primes p).


