GIBB’S MINIMIZATION PRINCIPLE FOR APPROXIMATE SOLUTIONS OF
SCALAR CONSERVATION LAWS

MISHA PEREPELITSA

ABSTRACT. In this work we study variational properties of approximate solutions of scalar conservations laws. Solutions of this type are described by a kinetic equation which is similar to the kinetic representation of admissible weak solutions due to Lions-Perthame-Tadmor[12], but also retain small scale non-equilibrium behavior. We show that approximate solutions can be obtained from a BGK-type equation with equilibrium densities satisfying Gibb’s entropy minimization principle.

1. INTRODUCTION

1.1. Motivation. We consider a Cauchy problem for a scalar conservation law

\[\begin{align*}
\partial_t \rho + \text{div}_x A(\rho) &= 0, \quad (x,t) \in \mathbb{R}^{d+1}, \\
\rho(x,0) &= \rho_0(x), \quad x \in \mathbb{R}^d,
\end{align*} \]

where \(A : \mathbb{R} \to \mathbb{R}^d \) is a Lipschitz continuous function. For initial data \(\rho_0 \in L^\infty(\mathbb{R}^d) \cap L^1(\mathbb{R}^d) \), the problem is uniquely solvable in the class of admissible (entropy) solutions, as was established in [10]. When an admissible solution \(\rho(x,t) \) is represented by a kinetic density as

\[\rho(x,t) = \int f(x,t,v) \, dv, \]

with

\[f(x,t,v) = \begin{cases}
1_{[0,\rho(x,t)]}, & \rho(x,t) \geq 0 \\
-1_{[\rho(x,t),0]}, & \rho(x,t) < 0
\end{cases}, \]

then \(f \) is a weak solution of a kinetic equation

\[\partial_t f + A'(v) \cdot \nabla_x f = -\partial_v m, \quad \mathcal{D}'(\mathbb{R}^{2d+1}_+), \]

where \(m \) is non-negative Radon measure on \(\mathbb{R}^{2d+1}_+ \). Conversely, any solution of (3) constrained by condition (2) for some \(\rho(x,t) \) defines an admissible weak solution of conservation law in (1), see [12]. Kinetic methods for obtaining admissible solutions originate in works [5, 9]. References [1, 2, 3, 4, 11, 13, 16] is an short list of some representative results of the kinetic approach to solving systems of quasilinear PDEs.

Given a kinetic density \(f \), with \(\rho = \int f \, dv \), we will denote an equilibrium density in (2) by \(\Pi^eq_f \).

Date: March 14, 2016.
Email: misha@math.uh.edu.