Lesson 5 – One-sided Limits and Continuity

Sometimes we are only interested in the behavior of a function when we look from one side and not from the other.

Example 1: Use the given graph to find \(\lim_{x \to 0} f(x) \).

Now suppose we are only interested in looking at the values of \(x \) that are bigger than 0. In this case, we are looking at a one-sided limit. We write \(\lim_{x \to 0^+} f(x) \). This is called a right-hand limit, because we are looking at values on the right side of the target number.

In this case, \(\lim_{x \to 0^+} f(x) = -1 \).

If we are interested in looking only at the values of \(x \) that are smaller than 0, then we would be finding the left-hand limit. The values of \(x \) that are smaller than 0 are to the left of 0 on the number line, hence the name. We write \(\lim_{x \to 0^-} f(x) \).

In this case, \(\lim_{x \to 0^-} f(x) = 1 \).

Our definition of a limit from the last lesson is consistent with this information. We say that \(\lim_{x \to a} f(x) = L \), if and only if the function approaches the same value, \(L \), from both the left side and the right side of the target number. This idea is formalized in this theorem:

Theorem: Let \(f \) be a function that is defined for all values of \(x \) close to the target number \(a \), except perhaps at \(a \) itself. Then \(\lim_{x \to a} f(x) = L \) if and only if \(\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L \).

We can also find one-sided limits from piecewise defined functions.
Example 2: Consider this graph:

![Graph Image]

Find each of the following limits, if it exist.
A. \(\lim_{x \to 0^-} f(x) \)
B. \(\lim_{x \to 0^+} f(x) \)
C. \(\lim_{x \to 0} f(x) \)

Example 3: Suppose \(f(x) = \begin{cases}
 x^2 - x + 2, & x < 1 \\
 x + 1, & 1 \leq x < 2 \\
 x^3 - 4, & x \geq 2
\end{cases} \). Find each of the following limits, if it exist.

A. \(\lim_{x \to 2^-} f(x) \)
B. \(\lim_{x \to 2^+} f(x) \)
C. \(\lim_{x \to 2} f(x) \)

D. \(\lim_{x \to 1^-} f(x) \)
E. \(\lim_{x \to 1^+} f(x) \)
F. \(\lim_{x \to 1} f(x) \)
Continuity at a Point

Here’s the general idea of continuity at a point: a function is continuous at a point if its graph has no gaps, holes, breaks or jumps at that point. Stated a bit more formally,

A function \(f \) is said to be continuous at the point \(x = a \) if the following three conditions are met:

1. \(f(a) \) is defined
2. \(\lim_{{x \to a}} f(x) \) exists
3. \(\lim_{{x \to a}} f(x) = f(a) \)

If a function is not continuous at a point, then we say it is discontinuous at that point.

We find points of discontinuity by examining the function that we are given. A function can have a removable discontinuity, a jump discontinuity or an infinite discontinuity.

Example 4: The graph of a function given below is discontinuous at some values of \(x \). State the \(x \)-values of where the function is discontinuous then state why the function is discontinuous at each one of those points.
Let \(f(x) \) be discontinuous at \(x = a \). Then:

- If \(\lim_{{x \to a^-}} f(x) \) and \(\lim_{{x \to a^+}} f(x) \) exists, but are not equal (i.e. \(\lim_{{x \to a}} f(x) \) does not exist) then at \(a \) there is a **jump discontinuity**.

- If \(\lim_{{x \to a^-}} f(x) \) exists but \(\lim_{{x \to a^+}} f(x) \neq f(a) \), then at \(a \) there is a **removable discontinuity**.

- If \(\lim_{{x \to a^-}} f(x) \) and/or \(\lim_{{x \to a^+}} f(x) \) is/are infinite, then at \(a \) there is an **infinite discontinuity**.

Example 5: Let \(f(x) = \begin{cases} x - 6, & x \leq 0 \\ x^2 + 5x + 6, & x > 0 \end{cases} \) is the function continuous at \(x = 0 \)?

We need to check:

1. Is \(f(0) \) defined?

2. Does \(\lim_{{x \to 0}} f(x) \) exist?

3. \(\lim_{{x \to 0}} f(x) = f(0) \)?
Example 6: Let \(f(x) = \begin{cases} \frac{x^2 - 25}{5 + x}, & x \neq -5 \\ -10, & x = -5 \end{cases} \) is the function continuous at \(x = -5 \)?

We need to check:

1. Is \(f(-5) \) defined?

2. Does \(\lim_{x \to -5} f(x) \) exist?

3. \(\lim_{x \to -5} f(x) = f(-5) \)?
Continuity

We will be interested in finding where a function is continuous and where it is discontinuous. We’ll look at continuity over the entire domain of the function, over a given interval and at a specific point.

Continuity over an Interval

A function is continuous over the interval \((a, b)\) if it is continuous at every point in the interval. We’ll state answers using interval notation.

Example 7: Find the intervals on which \(f\) is continuous:

a. \(f(x) = \frac{7 - x}{x^2 - 5x - 14}\)

b. \(f(x) = 3x^4 - 5x^2 + 2x - 7\)

An Application Involving Limits

Example 8: The average cost in dollars of constructing each skateboard when \(x\) skateboards are produced can be modeled by the function \(\bar{C}(x) = 12.5 + \frac{123,500}{x}\). What is the average cost per skateboard if the number of boards produced gets larger?