Opposite Angle Identities

The identities shown below are called **opposite-angle identities**. They tell us that the sine, tangent, cosecant and cotangent are **odd** functions and cosine and secant are **even** functions.

\[
sin(-t) = -\sin(t) \quad \csc(-t) = -\csc(t) \\
\tan(-t) = -\tan(t) \quad \cot(-t) = -\cot(t) \\
\cos(-t) = \cos(t) \quad \sec(-t) = \sec(t)
\]

Example 1: Use the opposite-angle identities to evaluate the following.

a. \(\cos\left(\frac{-\pi}{3}\right)\)

b. \(\tan\left(\frac{-\pi}{4}\right)\)

Example 2: Simplify. \(\cot(-t)\sec(-t)\)

Example 3: Write an equivalent form: \(\csc(-6t) - \sec(-8t)\)

Example 4: Suppose \(\sin(t) = -\frac{2}{3}\) and \(\pi < t < \frac{3\pi}{2}\). Find \(\tan(t)\) and \(\sec(t)\).
Example 5: Suppose $\tan(t) = -\sqrt{3}/2$ and $\pi/2 < t < \pi$. Find $\csc(t)$ and $\cos(t)$.

Periodicity

The circumference of the unit circle is 2π. Thus, if we start with a point P on the unit circle and travel a distance of 2π units, we arrive back at the same point P. That means that the arc lengths of t and $t + 2\pi$ as measured from the point $(1, 0)$ give the same terminal point on the unit circle. Thus, we have the following identities.

$$\sin(t + 2k\pi) = \sin(t) \quad \cos(t + 2k\pi) = \cos(t)$$

So,

$$\csc(t + 2k\pi) = \csc(t) \quad \sec(t + 2k\pi) = \sec(t)$$

Like the sine and cosine functions, the tangent and cotangent functions also repeat themselves at intervals of lengths 2π. In addition, the tangent and cotangent functions also repeat themselves at intervals of shorter length, namely π. This, we have the following identities.

$$\tan(t + k\pi) = \tan(t) \quad \cot(t + k\pi) = \cot(t)$$

For all real numbers t and all integers k.

Example 6: Evaluate $\sin\left(-\frac{20\pi}{3}\right)$

Example 7: Evaluate $\cot\left(\frac{15\pi}{6}\right)$
Example 8: Evaluate $\frac{\cos\left(\frac{19\pi}{2}\right) \tan\left(\frac{21\pi}{4}\right)}{\cos(8\pi)}$

Example 9: Evaluate $\cot\left(\frac{15\pi}{4}\right) + \frac{\sin\left(\frac{10\pi}{3}\right)}{\cos\left(\frac{17\pi}{6}\right)}$