Section 5.2: Graphs of the Sine and Cosine Functions

A Periodic Function and Its Period

A nonconstant function f is said to be periodic if there is a number $p > 0$ such that $f(x + p) = f(x)$ for all x in the domain of f. The smallest such number p is called the period of f.

The graphs of periodic functions display patterns that repeat themselves at regular intervals.

Amplitude

Let f be a periodic function and let m and M denote, respectively, the minimum and maximum values of the function. Then the amplitude of f is the number $\frac{M - m}{2}$

Example 1: Specify the period and amplitude of the given function

![Graph of a periodic function](image)

Now let’s talk about the graphs of the sine and cosine functions.

Recall: $\sin(\theta + 2\pi) = \sin(\theta)$ and $\cos(\theta + 2\pi) = \cos(\theta)$

This means that after going around the unit circle once (2π radians), both functions repeat. So the period of both sine and cosine is 2π. Hence, we can find the whole number line wrapped around the unit circle.

Since the period of the sine function is 2π, we will graph the function on the interval $[0, 2\pi]$, since the rest of the graph will repeat itself.
Math 1330 Section 5.2
Let’s take a look at Sine

Example 2
Sine: \(f(x) = \sin x \)

The big picture:

Since the period of the cosine function is \(2\pi \), we will graph the function on the interval \([0, 2\pi]\), since the rest of the graph will repeat itself.

So let’s take a look at the Cosine function.
Example 3

Cosine: \(f(x) = \cos x \)

\[\begin{align*}
\text{Domain:} & \quad \text{________________} \\
\text{Range:} & \quad \text{________________} \\
\text{Period:} & \quad \text{________________} \\
\text{Amplitude:} & \quad \text{_________} \\
\text{x-intercepts:} & \quad \text{________________} \\
\text{y-intercept:} & \quad \text{________________}
\end{align*} \]

The big picture:

\[\begin{align*}
\text{Note:} & \quad \text{The graphs of } y = \sin(x) \text{ and } y = \cos(x) \text{ are exactly the same shape. The only difference is to get the graph of } y = \cos(x), \text{ simply shift the graph of } y = \sin(x) \text{ to the left } \frac{\pi}{2} \text{ units.}
\end{align*} \]

In fact \(\sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta) \)
Using the fact that $\sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta)$. These graphs will be translations, reflections, “stretches”, and “squishes” of $y = \sin(x)$ and $y = \cos(x)$.

For the following functions:

$$y = A\sin(Bx - C) \quad \text{and} \quad y = A\cos(Bx - C)$$

Amplitude $= |A|$ (Note: Amplitude is always positive.) If A is negative, that means an x-axis reflection.

$$\text{Period} = \frac{2\pi}{B}$$

Translation in horizontal direction (called the phase shift) $= \frac{C}{B}$

We’ll ask you to learn the shape of the graph and just graph five basic points, the x and y intercepts and the maximum and the minimum.

One complete cycle of the sine curve includes three x-intercepts, one maximum point and one minimum point. The graph has x-intercepts at the beginning, middle, and end of its full period.

One complete cycle of the cosine curve includes two x-intercepts, two maximum points and one minimum point. The graph has x-intercepts at the second and fourth points of its full period.

Key points in graphing these functions are obtained by dividing the period into four equal parts.

Example 4: Give the amplitude, period, and phase shift for the following functions:

a. $f(x) = 2\cos\left(\pi x + \frac{2\pi}{3}\right)$
Math 1330 Section 5.2

b. \(f(x) = 3 \sin \left(\frac{1}{2} x - \frac{\pi}{6} \right) \)

c. \(f(x) = \sin \left(x - \frac{\pi}{6} \right) \)

Example 5: Sketch over one period: \(f(x) = -4 \cos(2\pi x) \)
Example 6: Sketch over one period: \(f(x) = 3\sin(2x) + 1 \)

Example 7: Sketch over one period: \(f(x) = 3\cos\left(x - \frac{\pi}{4} \right) \)
Math 1330 Section 5.2

Example 8: Give a function of the form $y = A\sin(Bx - C) + D$ and $y = A\cos(Bx - C) + D$, which could be used to represent the graph. *Note:* these answers are not unique.
Math 1330 Section 5.2

Example 9: Give a function of the form $y = A\sin(Bx - C) + D$ and $y = A\cos(Bx - C) + D$, which could be used to represent the graph. *Note:* these answers are not unique.