Section 5.3b: Graphs of the Tangent and Cotangent Functions

Remember $\tan x = \frac{\sin x}{\cos x}$, so where $\cos(x) = 0$, $\tan(x)$ has an asymptote and where $\sin(x) = 0$, $\tan(x)$ has an x-intercept.

Tangent: $f(x) = \tan x$

How to graph $y = A \tan(Bx - C)$:

1. The period is given by $\frac{\pi}{B}$. Find two consecutive asymptotes by setting $Bx - C$ equal to $-\frac{\pi}{2}$ and $\frac{\pi}{2}$, then solve for x.

2. Find the x-intercept by taking the average of the two points on the x-axis where consecutive asymptotes pass.

3. Find the points on the graph \(\frac{1}{4}\) and \(\frac{3}{4}\) of the way between the consecutive asymptotes. The y-coordinates of these points are $-A$ and A.

Domain:____________________

Range:____________________

Period:____________________

Vertical Asymptotes:

x- intercepts:

y- intercept:______________
Example 1: Graph $f(x) = \tan\left(\frac{x}{2} - \frac{\pi}{4}\right)$ over one period.
Remember \(\cot x = \frac{\cos x}{\sin x} \), so where \(\sin(x) = 0 \), \(\tan(x) \) has an asymptote and where \(\cos(x) = 0 \), \(\tan(x) \) has an \(x \)-intercept.

Cotangent: \(f(x) = \cot x \)

- **Domain:**
- **Range:**
- **Period:**
- **Vertical Asymptotes:**
- **\(x \)-intercepts:**
- **\(y \)-intercept:**

How to graph \(y = A \cot(Bx - C) \):

1. The period is given by \(\frac{\pi}{B} \). Find two consecutive asymptotes by setting \(Bx - C \) equal to 0 and \(\pi \), then solve for \(x \).
2. Find the \(x \)-intercept by taking the average of the two points on the \(x \)-axis where consecutive asymptotes pass.
3. Find the points on the graph \(\frac{1}{4} \) and \(\frac{3}{4} \) of the way between the consecutive asymptotes. The \(y \)-coordinates of these points are \(-A\) and \(A\).
Example 2: Graph $y = \cot 2x$ over one period.
Example 3: Sketch $f(x) = \cot \left(x - \frac{\pi}{2} \right) - 2$