Review Test 4

MATH 1330 Review for Test -4

Time: 50 minutes
Number of questions: 11 Multiple Choice

What is covered: 5.1, 4.4, Chapters 6 and 7.

Do not forget to reserve a seat for Test – 4!
Take practice Test – 4!

Example 1: Simplify:

a. \(\frac{\cos x}{- \cot(-x)} \)

b. \(\cos \theta \sec(-\theta) - \sin(-\theta) \csc \theta \)

c. \(\sin \alpha \tan \alpha + \cos \alpha \)

Example 2: Simplify

\(\frac{1 - \cot^2 x}{1 + \cot^2 x + 2 \cos^2 x} \)
Example 3: Given $\sin x = \frac{2}{3}$, with $90^\circ < x < 180^\circ$, and $\sin y = -\frac{1}{3}$ with $180^\circ < y < 270^\circ$
Find:

$\sin(x + y)$

$\sin(x - y)$

$\cos (x + y)$

$\cos(x - y)$
Review Test 4

\[\sin(2x) \]

\[\cos(2x) \]

Example 4: Given \(\cos x = \frac{1}{4} \) with \(270^\circ < x < 360^\circ \). Find \(\tan(2x) \)

Example 5: Suppose that \(\sec(x) = \frac{8}{7} \) and that \(0^\circ < x < 90^\circ \). Compute \(\sin(-x) \).

Example 6: Determine all solutions to \(\sin 3\theta = \frac{1}{2} \) on the interval \([0, 2\pi) \).
Review Test 4

Example 7: Solve the following equation on the interval \([0, 2\pi) \).

\[
3 \cos^2 x - 8 \cos x + 5 = 0
\]

Example 8: Solve the following equation on the interval \([0, 2\pi) \).

\[
2 \sin^2 x + \sin x - 1 = 0
\]

Example 9: Find using the sum or difference formulas.

a. \(\cos(15^\circ) \)

b. \(\sin(75^\circ) \)
Review Test 4

Example 10: A ramp for wheelchair accessibility is to be constructed with an angle of elevation of 14 degrees and a final height of 4 ft. How long is the ramp?

Example 11: Find the area of triangle XYZ if $\angle Y = 60^\circ$, $z = 8$ and $x = 4$.

Example 12: ABC is a triangle with $AB = 10$, $BC = 13$, and $AC = 7$. Find $\cos(A)$.
Note: You are asked to find $\cos(A)$ not the measure of angle A. Do not use a calculator.

Example 13: Given triangle ABC with $AB = 3$, and $BC = 3\sqrt{2}$ The measure of angle A is 135°. How many choices are there for the measure of angle C?
Example 14: In acute triangle ABC, the measure of angle A is $2x$, the length of AB is 7, and the length of AC is $\sqrt{3}$. If $\sin(x) = \frac{1}{6}$, what is the area of the triangle?

Example 15: Two cyclists leave the corner of State Street and Main Street simultaneously. State Street and Main Street are not at right angles; the cyclists’ paths have an angle of 150° between them. How far apart are the cyclists after they each travel 7 miles?

Example 16: ABC is a triangle with $AB = 9$, $BC = 14$, and $AC = 12$. Find $\cos(A)$. Note: You are asked to find $\cos(A)$ not the measure of angle A. Do not use a calculator.

Example 17: Given $\sin(x) = \sqrt{11}/6$ where x is an acute angle. Find $\sin(\frac{x}{2})$.