Math 1330 Test 3 Review Sections 4.1-4.3, 5.1a, 5.2-5.4

17 _ 14 MC

Example 1:Let θ be an acute angle of a right triangle and that $\tan(\theta) = \frac{3}{8}\sqrt{3}$. Find all the rest of the trigonometric functions of θ .

Example 2:Let θ be an acute angle of a right triangle and that $\csc(\theta) = \frac{3}{2}\sqrt{5}$. Find all the rest of the trigonometric functions of θ .

 $csc \neq = \frac{hyp}{OPP} = \frac{3\sqrt{2}}{2}$ $s'n \neq = \frac{2}{3\sqrt{5}} = \frac{2\sqrt{5}}{15}$ $s'n \neq = \frac{2}{3\sqrt{5}} = \frac{2\sqrt{5}}{15}$ $cos \neq = \frac{\sqrt{41}}{3\sqrt{5}} = \frac{\sqrt{205}}{15}$ $a^{2} \pm 2^{2} = (3\sqrt{5})^{2}$ $dan \neq = \frac{2}{\sqrt{41}} = \frac{2\sqrt{41}}{41}$ $a^{2} \pm 41$ $a^{2} \pm 41$ $sec \neq = \frac{3\sqrt{5}}{\sqrt{41}} = \frac{3\sqrt{205}}{41}$ $cot \neq = \frac{\sqrt{41}}{2}$

Example 3: A sector of a circle has central angle $\theta = 2\pi/3$ and area $16\pi/3$ ft².

a. Find the radius of the circle.

b. Find the length of the sector for the problem above.

Length
$$S = r = 4(2\pi) = \frac{8\pi}{3} ft$$

Example 4: Find the area of the sector with a central angle of $\theta = 240^{\circ}$ and a r = 6 cm

Example 5: A car has wheels with a 10 cm radius. If each wheel's rate of turn is 3 revolutions per second a. What is the angular speed? 3rev/sec $1rev = 2\pi$

 $W = \frac{0}{12} = \frac{3 \cdot 271}{\text{sec}} = 677/\text{sec}$

b. How fast is the car moving in units of cm/sec, (linear spead)?

$$V = T \cdot W$$

= 10 cm · 6 Ti/see
= 607 cm
sec

Example 6: Find three angles, two positive and one negative, that are coterminal with the given angle: $\frac{4\pi}{3}$

Example 7: Evaluate the following.

 $\sin\left(\frac{4\pi}{3}\right) = -\frac{\sqrt{3}}{2} \qquad \tan\left(\frac{-5\pi}{6}\right) = \frac{\sqrt{3}}{3} \qquad \cot\left(\frac{2\pi}{3}\right) = \frac{\cos\left(\frac{2\pi}{3}\right)}{\sin\left(\frac{2\pi}{3}\right)} = \frac{-\sqrt{2}}{\sqrt{3}} = \frac{\sqrt{3}}{3}$

$$\cos\left(\frac{5\pi}{4}\right) := -\frac{\sqrt{2}}{2} \qquad \sec\left(\frac{5\pi}{6}\right) := \frac{1}{\cos\left(\frac{5\pi}{6}\right)} := \frac{1}{\cos\left(\frac{5\pi}{3}\right)} := \frac{1}{\sin\left(\frac{\pi}{3}\right)} := \frac{1}{\sin\left(\frac{\pi}{3}\right)} := \frac{1}{\sqrt{3}/2} \\ -\frac{2}{\sqrt{3}} := -\frac{2\sqrt{3}}{3} := \frac{2\sqrt{3}}{3} :=$$

Example 8: Simplify

a.
$$\sin\left(\frac{14\pi}{3}\right) = \sin\left(\frac{2\pi}{3} + 4\pi\right) = \sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2}$$

 $\sin\left(t + 2\pi\pi\right) = \sin\left(t\right)$
b. $\tan\left(\frac{-16\pi}{3}\right) = -\tan\left(\frac{16\pi}{3}\right) = -\tan\left(\frac{16\pi}{3}\right) = -\tan\left(\frac{\pi}{3}\right)$
 $\tan\left(t + \pi\pi\right) = \tan\left(t\right) = -\tan\left(\frac{\pi}{3}\right)$

$$c. \frac{4\cos\left(\frac{34\pi}{6}\right) + \cot\left(\frac{17\pi}{4}\right)}{4}$$

$$H \cos\left(\frac{4\pi}{6} + 5\pi\right) = 4 \cos\left(\frac{10\pi}{6} + 4\pi\right) = 4 \cos\left(\frac{10\pi}{6}\right)$$

$$= 4 \cos\left(\frac{5\pi}{3}\right) = 4 \left(\frac{1}{2}\right) = 2$$

$$\cot\left(\frac{17\pi}{4}\right) = \cot\left(\frac{\pi}{4} + 4\pi\right) = \cot\left(\frac{\pi}{4}\right)$$

$$= 1$$

$$2 + 1 = 3$$

Review Test 3 Example 9: Fill in the unit circle

Example 10: Evaluate

Review Test 3
Example 11: Evaluate

$$\cot\left[\cos^{-1}\left(-\frac{3}{7}\right)\right] = a^{2} + (-5)^{2} = 7^{2}$$

$$cs^{4}(ac) = \frac{cs(ac)}{sin(ac)}$$

$$a^{2} + (-5)^{2} = 7^{2}$$

$$cs^{4}(ac) = \frac{cs(ac)}{sin(ac)}$$

-> y=0

Example 13: List all the *x*-intercepts for

on the
$$[-\pi/6, \pi/2]$$

$$y = 4\cos\left(4x + \frac{1}{3}\pi\right)$$
$$\cos\left(\infty\right) = 0 \qquad \infty = \frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}$$

Example 14: Write a cosine function with a positive vertical dilation, given the amplitude is 3, the phase shift is 3 to the left, the vertical shift is 2 up, and the period is 2.

 $f(x) = A \cos(\beta x - c) + D \text{ or } A \cos(\beta(x - c)) + D$ $A_{mp} = 3 = A$ PS = -3 $Cos(\pi(x + 3\pi) + 2)$ $Vs : \perp Z$ $P_{er.} = 2 = \frac{2\pi}{B}$ $\beta = \pi$

Example 15: Sketch the following functions: Label, for one period, x-, y-intercepts as ordered pairs; max value(s), min value(s) as ordered pairs. $f(x) = -3\sin(4x)$.

	25 4 2	- 37	= 375
--	--------	------	-------

 $g(x) = 7 \cos(5x)$ Amp : 7 Period = $\frac{27}{5}$ P.S. = 0

27 - 27

P.S. = Iz = C Period = Fx4 = 47 D = 0 4 cos = (x - 3) + 0 $4\cos\left(\frac{3}{2}\times-\frac{3\pi}{6}\right)$ 4 cos (3× - 2)