Example 1: Let θ be an acute angle of a right triangle and that $\tan (\theta)=\frac{3}{8} \sqrt{3}$. Find all the rest of the trigonometric functions of θ.

$$
\tan \phi=\frac{D P p}{A d_{j}}=\frac{3 \sqrt{3}}{\phi}
$$

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
(3 \sqrt{3})^{2}+8^{2} & =c^{2} \\
27+64 & =c^{2} \\
91 & =c^{2}
\end{aligned}
$$

Example 2: Let θ be an acute angle of a right triangle and that $\csc (\theta)=\frac{3}{2} \sqrt{5}$. Find all the rest of the trigonometric functions of θ.

$$
\csc \phi=\frac{h_{y p}}{o p p}=\frac{3 \sqrt{5}}{2}
$$

$$
\begin{aligned}
& \sqrt[35]{\sqrt[5]{5}} \\
& a^{2}+2^{2}=(3 \sqrt{5})^{2} \\
& a^{2}+4=45 \\
& a^{2}=41 \\
& a=\sqrt{41}
\end{aligned}
$$

$$
\begin{aligned}
& \sin \phi=\frac{2}{3 \sqrt{5}}=\frac{2 \sqrt{5}}{15} \\
& \cos \phi=\frac{\sqrt{41}}{3 \sqrt{5}}=\frac{\sqrt{205}}{15} \\
& \tan \phi=\frac{2}{\sqrt{41}}=\frac{2 \sqrt{41}}{41} \\
& \sec \phi=\frac{3 \sqrt{5}}{\sqrt{41}}=\frac{3 \sqrt{205}}{41} \\
& \cot \phi=\frac{\sqrt{41}}{2}
\end{aligned}
$$

$$
\text { Area }=\frac{1}{2} r^{2} \phi
$$

$\phi \Rightarrow$ in radians

$$
\begin{aligned}
\frac{16 \pi}{3} & =\frac{1}{2} r^{2} \cdot \frac{2 \pi}{3} \\
\frac{\frac{16 \pi}{3}}{\pi / 3}=\frac{\frac{\pi}{3} r^{2}}{\pi / 3} \quad r^{2} & =\frac{16 \pi}{7} \cdot \frac{2}{3} \\
r^{2} & =16 \\
r & =4 \mathrm{ft}
\end{aligned}
$$

b. Find the length of the sector for the problem above.

Length

$$
\begin{aligned}
S & =r \phi \\
& =4\left(\frac{2 \pi}{3}\right)=\frac{8 \pi}{3} f t
\end{aligned}
$$

Example 4: Find the area of the sector with a central angle of $\theta=240^{\circ}$ and a $r=6 \mathrm{~cm}$

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} r^{2} \phi \\
& =\frac{1}{2}(6)^{2}\left(\frac{4 \pi}{3}\right) \\
240^{\circ} \cdot \frac{\pi}{180^{\circ}} & =\frac{240 \pi}{180} \cdot 36 \cdot \frac{4 \pi}{3} \\
& =\frac{4 \pi}{3}
\end{aligned}
$$

Example 5: A car has wheels with a 10 cm radius. If each wheel's rate of turn is 3 revolutions per second
a. What is the angular speed? $3 \mathrm{rev} / \mathrm{sec}$

$$
1 \text { rev }=2 \pi
$$

$$
\omega=\frac{\varnothing}{t}=\frac{3 \cdot 2 \pi}{\sec }=6 \pi / \mathrm{sec}
$$

b. How fast is the car moving in units of $\mathrm{cm} / \mathrm{sec}$, (linear spead)?

$$
\begin{aligned}
V & =r \cdot \omega \\
& =10 \mathrm{~cm} \cdot 6 \pi / \mathrm{sec} \\
& =60 \pi \frac{\mathrm{~cm}}{\mathrm{sec}}
\end{aligned}
$$

Review Test 3
Example 6: Find three angles, two positive and one negative, that are coterminal with the given angle: $\frac{4 \pi}{3}$

$$
\begin{array}{ll}
\alpha+2 \pi & \frac{4 \pi}{3}+2 \pi=\frac{4 \pi}{3}+\frac{6 \pi}{3}=\frac{10 \pi}{3} \\
\alpha+4 \pi & 4 \pi / 3+4 \pi=\frac{4 \pi}{3}+\frac{12 \pi}{3}=\frac{16 \pi}{3} \\
\alpha-2 \pi & \frac{4 \pi}{3}-2 \pi=\frac{4 \pi}{3}-\frac{6 \pi}{3}=\frac{-2 \pi}{3}
\end{array}
$$

Example 7: Evaluate the following.

$$
\begin{array}{rlrl}
\sin \left(\frac{4 \pi}{3}\right)=\frac{-\sqrt{3}}{2} & \tan \left(\frac{-5 \pi}{6}\right)=\frac{\sqrt{3}}{3} & \cot \left(\frac{2 \pi}{3}\right)=\frac{\cos \left(\frac{2 \pi}{3}\right)}{\sin \left(\frac{2 \pi}{3}\right)}=\frac{-1 / 2}{\sqrt{3} / 2}=\frac{-\sqrt{3}}{3} \\
\cos \left(\frac{5 \pi}{4}\right)=\frac{-\sqrt{2}}{2} & \sec \left(\frac{5 \pi}{6}\right)=\frac{1}{\cos \left(\frac{5 \pi}{6}\right)}=\frac{1}{-\frac{\sqrt{3}}{2}} \csc \left(\frac{\pi}{3}\right)=\frac{1}{\sin \left(\frac{\pi}{3}\right)}=\frac{1}{\sqrt{3} / 2} \\
\frac{-2}{\sqrt{3}}=\frac{-2 \sqrt{3}}{3} & \frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}
\end{array}
$$

Example 8: Simplify

$$
\begin{aligned}
& \text { a. } \sin \left(\frac{14 \pi}{3}\right)=\sin \left(\frac{2 \pi}{3}+4 \pi\right)=\sin \left(\frac{2 \pi}{3}\right)=\frac{\sqrt{3}}{2} \\
& \sin (t+2 k \pi)=\sin (t) \\
& \text { b. } \tan \left(\frac{-16 \pi}{3}\right)=-\tan \left(\frac{16 \pi}{3}\right)=-\tan \left(\frac{\pi}{3}+5 \pi\right)=-\tan \left(\frac{\pi}{3}\right) \\
& \tan (t+\pi k)=\tan (t) \\
& =-\sqrt{3} \\
& \text { c. } 4 \cos \left(\frac{34 \pi}{6}\right)+\cot \left(\frac{17 \pi}{4}\right) \\
& 4 \cos \left(\frac{4 \pi}{6}+5 \pi\right)=4 \cos \left(\frac{10 \pi}{6}+4 \pi\right)=4 \cos \left(\frac{10 \pi}{6}\right) \\
& =4 \cos \left(\frac{5 \pi}{3}\right)=4\left(\frac{1}{2}\right)=2 \\
& \cot \left(\frac{17 \pi}{4}\right)=\cot \left(\frac{\pi}{4}+4 \pi\right)=\cot \left(\frac{\pi}{4}\right) \\
& =1 \\
& 2+1=3
\end{aligned}
$$

Review Test 3
Example 9: Fill in the unit circle

Example 10: Evaluate

$$
\begin{aligned}
& \sin ^{-1}\left(-\frac{1}{2} \sqrt{3}\right)=\frac{-\pi}{3} \quad \tan ^{-1}(-1)=\frac{-\pi}{4} \quad \cot ^{-1}(\sqrt{3}) \quad \pi \frac{x}{y}=\frac{\sqrt{3} / 2}{1 / 2} \quad \frac{\pi}{6} \\
& \sec ^{-1}\left(\frac{2 \sqrt{3}}{3}\right)=\frac{1}{x}=\frac{\pi}{6} \csc ^{-1}(\sqrt{2})=\frac{1}{y}=\frac{\pi}{4} \cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3} \\
& \frac{2 \sqrt{3}}{3} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \cdot 26}{x \cdot \sqrt{3}} \\
& \frac{\sqrt{2}}{1} \cdot \frac{\sqrt{2}}{\sqrt{2}} \\
& =\frac{2}{\sqrt{2}} \Rightarrow \frac{\sqrt{2}}{2} \\
& =\frac{2}{\sqrt{3}} \Rightarrow \frac{\sqrt{3}}{2} \text { 反 Look up }
\end{aligned}
$$

Review Test 3
Example 11: Evaluate $\cot \left[\cos ^{-1}\left(-\frac{3}{7}\right)\right]$

$$
\begin{array}{rlrl}
a^{2}+(-3)^{2}=7^{2} & \cot (\alpha) & =\frac{\cos (\alpha)}{\sin (\alpha)} \\
a^{2}+9 & =49 & & =\frac{A-j}{0 p p} \\
a^{2} & =40 & & \\
a & =2 \sqrt{10} & & \frac{-3}{2 \sqrt{10}}
\end{array}
$$

$$
\cos (\alpha)=\frac{A d_{j}}{h_{y p}}=\frac{-3}{7}
$$

Example 12: Find the amplitude, period and phase shift.
$4 \cos \left(\frac{1}{3} x\right) \quad$ Amp: 4

$$
\text { Period: } \frac{2 \pi}{3}=\frac{2 \pi}{1 / 3}=6 \pi
$$

$$
\text { PS: } 0
$$

$$
-\frac{1}{2} \sin \left(\frac{2 \pi}{3} x+\frac{3 \pi}{2}\right) \quad A_{m p}=\frac{1}{2}
$$

$$
B x-C \quad \text { Period }=\frac{2 \pi}{2 \pi / 3}=2 \pi \cdot \frac{3}{2 \pi}=3
$$

$6 \sin \left(\frac{1}{5} \pi x+\pi\right)$ Amp: 6

$$
P_{S .}=\frac{C}{B}=\frac{\frac{-3 \pi}{2}}{\frac{2 \pi}{3}}=\frac{-3 \pi}{2} \cdot \frac{3}{2 \pi}=\frac{-9}{4}
$$

$B x-C \quad$ Period: $\frac{2 \pi}{1 / 5 \pi}=2 \pi \cdot \frac{5}{\pi}=10$

$$
\text { PS: } \frac{C}{B}=\frac{-\pi}{1 / 5 \pi}=-5
$$

$5 \cos \left(\frac{1}{2} \pi x-\pi\right)$
Amp: 5

$$
\begin{aligned}
& \text { Period: } \frac{2 \pi}{y_{2} \pi}=4 \\
& P S=\frac{c}{B}=\frac{\pi}{1 / 2 \pi}=2
\end{aligned}
$$

$$
\Gamma y=0
$$

Example 13: List all the x-intercepts for

$$
y=4 \cos \left(4 x+\frac{1}{3} \pi\right)
$$

on the $[-\pi / 6, \pi / 2]$

$$
\cos (\alpha)=0 \quad \alpha=-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}
$$

$$
\begin{array}{lll}
4 x+\frac{1}{3} \pi=-\frac{\pi}{2} & 4 x+\frac{\pi}{3}=\frac{\pi}{2} & 4 x+\frac{\pi}{3}=\frac{3 \pi}{2} \\
4 x=\frac{-3 \pi}{6}-\frac{2 \pi}{6} & 4 x=\frac{3 \pi}{6}-\frac{2 \pi}{6} & 4 x=\frac{9 \pi}{6}-\frac{2 \pi}{6} \\
4 x=\frac{-5 \pi}{6} & 4 x=\frac{\pi}{6} & 4 x=\frac{7 \pi}{6} \\
x=\frac{-5 \pi}{24}<\frac{-4 \pi}{24}=-\frac{\pi}{6} & x=\frac{\pi}{24} & x=\frac{7 \pi}{24}
\end{array}
$$

$$
2 \quad \pi / 4=\frac{6 \pi}{24} \uparrow
$$

$$
\frac{\pi}{2}=\frac{12 \pi}{24}<\frac{13 \pi}{24}
$$

Example 14: Write a cosine function with a positive vertical dilation, given the amplitude is 3 , the phase shift is 3 to the left, the vertical shift is 2 up, and the period is 2 .

$$
f(x)=A \cos (B x-C)+D \text { or } A \cos (B(x-C))+D
$$

$A_{\text {mp }}=3=A$

$$
P S=-3
$$

$$
\begin{aligned}
& 3 \cos (\pi(x+3))+2 \\
& 3 \cos (\pi x+3 \pi)+2
\end{aligned}
$$

Vs: \perp Z

$$
\begin{aligned}
\text { Per, }=2 & =\frac{2 \pi}{B} \\
B & =\pi
\end{aligned}
$$

Review Test 3
Example 15: Sketch the following functions: Label, for one period, x-, y-intercepts as ordered pairs; max values), min values) as ordered pairs.
$\mu_{\text {ax }}:\left(\frac{3 \pi}{4}, 3\right)$ $f(x)=-3 \sin (4 x)$.

Amp $=3$
Period: $\frac{2 \pi}{4}=\frac{\pi}{2}$

$$
P S=0
$$

$$
\begin{aligned}
& \frac{\frac{\pi}{4}+0}{2}=\frac{\frac{\pi}{4}}{2}=\frac{\pi}{8} \\
& \frac{\frac{\pi}{2}+\frac{\pi}{4}}{2}=\frac{\frac{2 \pi}{4}+\frac{\pi}{4}}{2}=\frac{3 \pi}{4}=\frac{3 \pi}{8}
\end{aligned}
$$

$$
g(x)=7 \cos (5 x)
$$

Amp: 7

$$
\begin{aligned}
& \text { Period }=\frac{2 \pi}{5} \\
& \text { PS. }=0
\end{aligned}
$$

$$
\frac{\frac{2 \pi}{5}}{2}=\frac{2 \pi}{10}
$$

$$
\mu_{\text {in }}:\left(\frac{\pi}{5},-7\right)
$$

$$
\begin{array}{cl}
A \sin (B x-C)+D & A \cos B(x-C)+D \\
C N_{0} P S & A=4
\end{array}
$$

$\mu_{\text {ax }}$ at $y=4>A_{\text {up }}=4 \Rightarrow A=4$
$\mu_{\text {in }} y=-4$

$$
\text { PS. }=\frac{\pi}{3}=C
$$

$$
\begin{gathered}
\text { Period }=\frac{\pi}{3} \times 4=\frac{4 \pi}{3}=\frac{2 \pi}{B} \\
\frac{4 \pi}{3} B=2 \pi \\
B=4 \pi \cdot \frac{3}{4 \pi}=\frac{3}{2} \\
4 \sin \left(\frac{3}{2} x\right)
\end{gathered}
$$

$$
\begin{gathered}
\text { Period }=\frac{\pi}{3} \times 4=\frac{4 \pi}{3} \\
\frac{4 \pi}{3}=\frac{2 \pi}{3} \\
B=\frac{3}{2}
\end{gathered}
$$

$$
D=0
$$

$4 \cos \frac{3}{2}\left(x-\frac{\pi}{3}\right)+0$
$4 \cos \left(\frac{3}{2} x-\frac{3 \pi}{6}\right)$
$4 \cos \left(\frac{3}{2} x-\frac{\pi}{2}\right)$

