Section 1.1 - Review

Prerequisites are topics you should have mastered before you enter this class. This section is intended as a quick review of these topics.

An Introduction to Functions

Let A and B be two nonempty sets. A function from A to B is a rule of correspondence that assigns to each element in A exactly one element in B. Here A is called the domain of the function and the set B is called the range of the function.

The Domain of a Function is defined as the set of all possible inputs allowed for that function.

To determine the domain of a function, start with all real numbers and then eliminate anything that results in zero denominators or even roots of negative numbers.

The domain of any **polynomial function** is $(-\infty,\infty)$ or all real numbers.

The domain of any **rational function**, where both the numerator and the denominator are polynomials, is all real numbers except for the values of x for which the denominator equals 0.

The domain of any **radical function** with even index is the set of real numbers for which the radicand is greater than or equal to 0. The domain of any radical function with odd index is $(-\infty,\infty)$.

Example 1: Find the domain: $f(x) = \sqrt{x-3}$

Example 2: Find the domain:
$$g(x) = \frac{4x^2 + 7}{x^2 - 4}$$

Math 1431 Section 1.1

Example 3: Find the domain: $k(x) = 4x^2 - 8x + 11$

Linear Functions

General Equation of a Line is in the form Ax + By + C = 0

Slope Intercept Form: y = mx + b, where *m* is the slope and *b* is the *y*-intercept of the line.

Point -Slope Form: $y - y_1 = m(x - x_1)$, where *m* is the slope and passes through the point (x_1, y_1) is given

When the m = 0, you have a **horizontal line**. When the m = undefined, you have a **vertical line**.

Example 4: Suppose the slope of a line is $\frac{1}{3}$ and the line passes through the point (-3,7). Write the equation of the line in slope-intercept form (y = mx + b).

Rational Functions

A rational function is a function of the form $f(x) = \frac{P(x)}{Q(x)}$, where *P* and *Q* are polynomial

functions and $Q(x) \neq 0$. You'll need to be able to find the following features of the graph of a rational function and then use the information to sketch the graph

- Domain
- Intercepts
- Holes
- Asymptotes(Vertical/Horizontal)
- Behavior near vertical asymptotes

Vertical Asymptotes/Holes:

Factor the numerator and denominator. Look at each factor in the denominator.

- If a factor cancels with a factor in the numerator, then there is a hole where that factor equals zero.
- If a factor does not cancel, then there is a vertical asymptote where that factor equals zero.

Horizontal Asymptotes

Let $f(x) = \frac{p(x)}{q(x)}$,

Shorthand: degree of f = deg(f), numerator = N, denominator = D

- 1. If deg(N) > deg(D) then there is no horizontal asymptote.
- 2. If $deg(N) \le deg(D)$ then there is a horizontal asymptote and it is y = 0 (*x*-axis).
- 3. If deg(N) = deg(D) then there is a horizontal asymptote and it is $y = \frac{a}{b}$, where

a is the leading coefficient of the numerator.

b is the leading coefficient of the denominator.

Example 5: Find any hole(s), vertical and/or horizontal asymptotes: $f(x) = \frac{x^2 + x}{x^2 - 1}$

Math 1431 Section 1.1

Example 6: Find any vertical and/or horizontal asymptotes: $g(x) = \frac{x-2}{x^2 - 4x + 3}$

Functions

Example 7: If $f(x) = 2x^2 - 8x$, find: a. f(-2)

b. f(4+h)

Difference quotient also called the **average rate of change**.

$$m = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

A function is **even** if f(x) = f(-x) for all x in the domain of the function. Even functions are symmetric with respect to the y-axis

A function is **odd** if f(-x) = -f(x) for all x in the domain of the function. Odd functions are symmetric with respect to the origin.

Things to remember for trigonometry

Unit Circle

Math 1431 Section 1.1

Quotient Identities:

$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \qquad \qquad \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}$$

Reciprocal Identities:

$$\csc(\theta) = \frac{1}{\sin(\theta)}, \ \sin(\theta) \neq 0 \quad \sec(\theta) = \frac{1}{\cos(\theta)}, \ \cos(\theta) \neq 0 \quad \cot(\theta) = \frac{1}{\tan(\theta)}, \ \tan(\theta) \neq 0$$

Pythagorean Identities:

 $\sin^2(\theta) + \cos^2(\theta) = 1 \qquad \tan^2(\theta) + 1 = \sec^2(\theta) \qquad 1 + \cot^2(\theta) = \csc^2(\theta)$

Addition Formulas

$$\sin(A+B) = \sin A \cos B + \cos A \sin B \qquad \qquad \cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\sin(A-B) = \sin A \cos B - \cos A \sin B$$

 $\cos(A-B) = \cos A \cos B + \sin A \sin B$

 $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \qquad \qquad \tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$

Double-Angle Formulas

$$\sin(2\theta) = 2\sin\theta\cos\theta$$
$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$

$$\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$$

Half-Angle Formulas

$$\sin\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \cos\theta}{2}}$$
$$\cos\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 + \cos\theta}{2}}$$
$$\tan\left(\frac{\theta}{2}\right) = \frac{\sin\theta}{1 + \cos\theta}$$