Section 1.4: Continuity

A function is a **continuous** at a point if its graph has no gaps, holes, breaks or jumps at that point. If a function is not continuous at a point, then we say it is **discontinuous** at that point.

The function f(x) = x(x + 1)(x - 2) graphed below is continuous everywhere.

The function below is NOT continuous everywhere, it is discontinuous at x = -3 and $x = \pm 1$

We'll focus on the classifying them in a moment.

The following types of functions are continuous over their domain.

• Polynomials, Rational Functions, Root Functions, Trigonometric Functions, Inverse Trigonometric Functions, Exponential Functions, Logarithmic Functions

Theorem: If f and g are continuous at c, a is a real number then each are also continuous at c.

I.
$$f \pm g$$

II. af
III. fg
IV. $\frac{f}{g}$ provided $g(c) \neq 0$

Theorem: If g is continuous at c and f is continuous at g(c), then $f \circ g$ is continuous at c.

Example 1: Discuss the continuity for:

a.	$g(x) = 4x^7 + x$	Discontinuous	Continuous
b.	$f(x) = \frac{x-3}{x^2 - x - 6}$	Discontinuous	Continuous
c.	$h(x) = \frac{2x}{1 - \cos x}$	Discontinuous	Continuous

Types of Discontinuity

Removable Discontinuity occurs when:

• $\lim_{x \to a} f(x) \neq f(c)$ (or the limit exist, but f(c) is undefined.

Jump Discontinuity occurs when:

• $\lim_{x\to c^-} f(x)$ and $\lim_{x\to c^-} f(x)$ exists, but are not equal.

Infinite Discontinuity occurs when:

• $\lim_{x \to c^{\pm}} f(x) \to \pm \infty$ on at least one side of c. Infinite discontinuities are generally associated with a vertical asymptote

Example 2: Identify and state the discontinuity.

One-Sided Continuity

A function *f* is called **continuous from the left at** *c* if $\lim_{x\to c^-} f(x) = f(c)$ and **continuous from the right at** *c* if $\lim_{x\to c^+} f(x) = f(c)$

In the example 2, we have continuity from the right at x = 0 and continuity on the left at x = 2

Continuity Stated a Bit More Formally

A function *f* is said to be **continuous at the point** x = c if the following three conditions are met:

1. f(c) is defined. 2. $\lim_{x \to c} f(x)$ exists. 3. $\lim_{x \to c} f(x) = f(c)$

To check if a function is continuous at a point, we'll use the three steps above. This process is called the **three step method**.

Example 3: Let $f(x) = \begin{cases} x^3 & x < 1 \\ \sqrt{x} & x \ge 1 \end{cases}$ is the function continuous at x = 1?

So let's go through the process

1. Is f(1) defined?

2. Check to see if $\lim_{x \to 1} f(x)$ exist.

So check: $\lim_{x \to 1^-} f(x)$ and $\lim_{x \to 1^+} f(x)$

Does $\lim_{x\to 1} f(x)$ exist?

3. $\lim_{x \to 1} f(x) = f(1)$?

If at least one of the three steps fails, identify the type of discontinuity

Example 4: Let $f(x) = \begin{cases} 2x^2 + 9 \ x < 3 \\ 2 \ x = 3 \end{cases}$ is the function continuous at x = 3? $x^3 \ x > 3$

So let's go through the process

- 1. Is f(3) defined?
- 2. Check to see if $\lim_{x\to 3} f(x)$ exist.

So check: $\lim_{x\to 3^-} f(x)$ and $\lim_{x\to 3^+} f(x)$

Does $\lim_{x\to 3} f(x)$ exist?

3. $\lim_{x \to 3} f(x) = f(3)$?

Example 5: Let $f(x) = \begin{cases} 2x-3 & x<2\\ cx-x^2 & x \ge 2 \end{cases}$ is the function continuous at x = 2?

So let's go through the process

1. Is f(2) defined?

2. $\lim_{x \to 2} f(x)$ must exist, so we need to make sure $\lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x)$.

3. Set $\lim_{x\to 2} f(x) = f(2)$ to find *c*.

Example 6: Find A and B so that $f(x) = \begin{cases} 2x^2 - 1 & x < -2 \\ A & x = -2 \\ Bx - 3 & x > -2 \end{cases}$ is continuous.

1. Find f(-2).

2. $\lim_{x \to -2} f(x)$ must exist, so we need to make sure $\lim_{x \to -2^-} f(x) = \lim_{x \to -2^+} f(x)$.

3. Since $\lim_{x \to -2} f(x) = f(-2)$ then

Example 7: The function $f(x) = \frac{x-25}{\sqrt{x-5}}$ is defined everywhere except at x = 25. If possible define f(x) at 25 so that it becomes continuous at 25.

Example 8: Given f(x), find the points where the function is discontinuous and classify these points.

$$f(x) = \begin{cases} \frac{1}{x} & x < 2\\ \frac{1}{x} & 2 < x \le 4\\ x & 4 < x < 6\\ 4 & x = 6\\ x & x > 6 \end{cases}$$

l