Section 2.1
The Definition of the Derivative

We are interested in finding the slope of the tangent line at a specific point.

We need a way to find the slope of the tangent line analytically for every problem that will be exact every time.

We can draw a secant line across the curve, then take the coordinates of the two points on the curve, \(P \) and \(Q \), and use the slope formula to approximate the slope of the tangent line.

Now suppose we move point \(Q \) closer to point \(P \). When we do this, we’ll get a better approximation of the slope of the tangent line.

When we continue to move point \(Q \) even closer to point \(P \), we get an even better approximation. We are letting the distance between \(P \) and \(Q \) get smaller and smaller.
Now let’s give these two points names. We’ll express them as ordered pairs.

Now we’ll apply the slope formula to these two points.

\[m = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h} \]

This expression is called a difference quotient also called the average rate of change.

The last thing that we want to do is to let the distance between \(P \) and \(Q \) get arbitrarily small, so we’ll take a limit.

This gives us the definition of the slope of the tangent line.

The slope of the tangent line to the graph of \(f \) at the point \(P(x, f(x)) \) is given by

\[\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]

provided the limit exists.

We find the instantaneous rate of change when we take the limit of the difference quotient.

The derivative of \(f \) with respect to \(x \) is the function \(f'(x) \) defined by

\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]. The domain of \(f'(x) \) is the set of all \(x \) for which the limit exists.

Note that: \(\frac{dy}{dx} = \frac{d}{dx} f(x) = y' \)

Section 2.1 – The Definition of a Derivative
Example 1: Use the limit definition of the derivative to find $f'(x)$ for $f(x) = 3x^2 - x$.

Recall: $f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$

Then find $f'(c)$ when $c = 1$.
Example 2: Use the limit definition of the derivative to find \(f'(x) \) for \(f(x) = -\frac{2}{x-1} \).

Recall: \(f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \)
Try this one: Find the derivative of \(f(x) = \sqrt{x} + 2 \)

Recall: \(f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \)
Since the derivative is a “formula” for finding the slope of a tangent line, then given a certain \(x\)-value, we can find its slope AND its equation.

We’ll may use the point-slope equation of a line: \(y - y_1 = m(x - x_1)\)

Example 3: Find the equation of the line tangent to the function \(f(x) = x^2 + x\) at the point \((2, 6)\).

Recall: \(f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}\)

Example 4: Given \(\lim_{h \to 0} \left[\frac{((5 + h)^2 - (5 + h)) - (5^2 - 5)}{h} \right]\), give the function \(f\) and the value \(c\)

Try this one: Given \(\lim_{h \to 0} \left[\frac{\tan\left(\frac{\pi}{6} + h\right) - \sqrt{3}}{h} \right]\), give the function \(f\) and the value \(c\).
Example 5: If $f(1) = 5$ and $f'(1) = 6$, give the equation of the tangent line at $x = 1$.

Differentiability

A function f is **differentiable at an x-value c** if \[\lim_{{h \to 0}} \frac{f(c+h) - f(c)}{h} \] exists.

A function f is not differentiable where a function has:

- **Cusp**
- **Vertical Tangent**
- **Hole/Removable Discontinuity**
- **Vertical Asymptote**
- **Jump Discontinuity**

If the limit fails to exist, we say that the function is not differentiable at c.

Section 2.1 – The Definition of a Derivative
If \(f \) is differentiable at \(c \), then it is continuous at \(c \).

However, if a function \(f \) is continuous at \(c \), then it may or may not be differentiable at \(c \).

For example, take \(f(x) = |x| \). This function is \textbf{continuous everywhere, but it’s not differentiable} at \(x = 0 \), since the one-sided limits do not agree there.

Example 6: Use the graph below to answer the following questions.

a. Give any \(x \)-values where the function is not differentiable.

b. Give any \(x \)-values where the function is continuous by not differentiable.
Example 7: Given that \(f(x) = |9x^2 - 64| \), determine any \(x \)-values where \(f \) is not differentiable.