Section 2.2: Derivatives of Polynomials and Trigonometric Functions

As you saw in several examples in Section 2.1, finding the derivative of a function using the definition is quite tedious. We now introduce some rules that will make our computations much easier.

A constant function is represented by a horizontal line. What is the slope of a horizontal line?

Then the derivative of any constant is zero!

Rule 1: The Derivative of a Constant

 $\frac{d}{dx}[k] = 0$, where k is a constant.

Example 1: Find the derivative of f(x) = -17.

Rule 2: The Power Rule

$$\frac{d}{dx} \left[x^n \right] = n x^{n-1} \text{ for any real number } n$$

Example 2: Find the derivative of each function

 $f(x) = x^5$ $g(x) = x^{-12}$

$$h(x) = \sqrt{x} \qquad \qquad i(x) = x^{\frac{3}{5}}$$

Rule 3: Derivative of a Constant Multiple of a Function

 $\frac{d}{dx}[kf(x)] = k \frac{d}{dx}[f(x)]$ where k is any real number

Example 3: Find the derivative of each function.

a. $f(x) = 4x^5$

$$b. \quad h(x) = \frac{2}{3x^4}$$

Theorem: Let *k* be any real number. If *f* and *g* are differentiable at *x*, then so are f + g and f - g. Moreover, $(f \pm g)'(x) = f'(x) \pm g'(x)$

Example 4: Find the derivative: $f(x) = -\frac{3}{4}x^6 + \frac{5}{x^3} + 6\sqrt[3]{x^2} + 13$

Example 5: Find the derivative:
$$f(x) = \frac{3x^5 - 7x^2 + 3}{x^3}$$

In some cases, we may want to find all points for which the tangent line to the graph of f is horizontal or equal to a specified number. Set the derivative equal to the given number and solve for x

Example 6: Find all x-value(s) on the graph of $f(x) = x^3 + 5x^2$ where the tangent line is horizontal.

Example 7: Find all x-value(s) on the graph of $f(x) = x^2 + 4x + 1$ where f'(x) = 5.

Tangent and Normal Lines

We already known what a tangent line is all about.

A normal line to a curve at a particular point is the line through that point and perpendicular to the tangent

Recall from Pre-Algebra the slope of any line perpendicular to a line with slope is the negative reciprocal.

Example 8: Find the equations of the tangent and normal line to $f(x) = 3x^2 + 4x + 2$ at x = -1

Math1431Section 2.2Higher Order Derivatives

f'(x), f''(x), f'''(x), $f^{(4)}(x)$ $\frac{d}{dx}f(x),$ $\frac{d^2}{dx^2}f(x),$ $\frac{d^3}{dx^3}f(x),$ $\frac{d^4}{dx^4}f(x),$

Example 9: Find $\frac{d^3}{dx^3} f(x)$ for $f(x) = 2x^5 - 3x^3 + 7x$

Derivatives of the Trigonometric Functions

 $(\sin x)' = \cos x \qquad (\csc x)' = -\csc x \cot x$ $(\cos x)' = -\sin x \qquad (\sec x)' = \sec x \tan x$ $(\tan x)' = \sec^2 x \qquad (\cot x)' = -\csc^2 x$

Example 10: Find the slope of the tangent line to the function $f(x) = 4 \tan x - 6 \cos x$ at $x = \frac{\pi}{4}$

Example 10: Find all values of x on $[0, 2\pi)$ where the tangent line is horizontal to $f(x) = 6\sqrt{3} \sin x + 18 \cos x$.

Now that we know much easier rules for finding derivatives, let's revisit differentiability with piecewise functions.

Example 11: Is this function differentiable?

$$f(x) = \begin{cases} 3x & x > 3 \\ x^2 + x - 3 & x \le 3 \end{cases}$$